计算方法编程作业1_拉格朗日插值与牛顿插值

计算方法编程作业1_拉格朗日插值与牛顿插值
计算方法编程作业1_拉格朗日插值与牛顿插值

西华数学与计算机学院上机实践报告

课程名称:计算方法年级:2012级上机实践成绩:

指导教师:严常龙姓名:贺容英

上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期:yyyy.mm.dd 上机实践编号:1312012070102209 上机实践时间:2014.10.27

一、目的

1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解;

2.能对上述两种插值法提出正确的算法描述编程实现。

二、内容与设计思想

自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。(从课件或教材习题中选题)

已知y=f(

三、使用环境

操作系统:win7

软件环境:vs2012

四、核心代码及调试过程

4.1核心代码

1、拉格朗日插值法代码如下

double lagrangesf(point points[],int t)

{

int n=t;

int i,j;

double x,tmp=1,lagrange=0;

printf("请输入需要计算的x的值:");

scanf("%lf",&x);

for(i=0;i<=n-1;i++)

{

tmp=1;

for(j=0;j<=n-1;j++)

{

if(j!=i)

tmp=tmp*(x-points[j].x)/(points[i].x-points[j].x);

}

lagrange=lagrange+tmp*points[i].y;

}

printf("lagrange(%lf)=%lf\n",x,lagrange);

return 0;

}

2、牛顿插值法代码如下

double newtonsf(point points[],int t)

{

int n=t;

int i,j;

double d[maxt+1];

double x,tmp,newton=0;

printf("差商表\n");

printf("***************************************************\n"); printf("x ");

for(i=0;i<=n-1;i++)

{

printf("%lf ",points[i].x);

}

printf("\n");

printf("y ");

for(i=0;i<=n-1;i++)

{

d[i]=points[i].y;

printf("%lf ",points [i].y);

}

printf("\n");

for(i=0;i

{

printf("%d阶差商",i+1);

for(int t=1;t<=i+12;t++)

printf(" ");

for(j=n-1;j>i;j--)

{

d[j]=(d[j]-d[j-1])/(points[j].x-points[j-i-1].x);//计算差商

printf("%lf ",d[j]);

}

printf("\n");

}

printf("***************************************************\n"); printf("请输入需要计算的x的值:");

scanf("%lf",&x);

tmp=1;

newton=d[0];

for(i=0;i

{

tmp=tmp*(x-points[i].x);

newton=newton+tmp*d[i+1];

}

printf("newton(%lf)=%lf\n",x,newton);

return 0;

}

3、主函数中负责输入被插值点的输入,以及拉格朗日插值法和牛顿插值法的调用,代码如下

int n=0;

int i,j;

point points[maxt+1];

double x,tmp=0,lagrange=0;

do

{

printf("请输入被插值点数目:");

scanf("%d",&n);

if(n>maxt)

{

printf("被插值点数超出范围%d",maxt);

return 0;

}

}while(n<=0);

printf("请输入被插值点:\n");

for(i=0;i<=n-1;i++)

{

scanf("%lf%lf",&points[i].x,&points[i].y);

}

printf("lagrange插值\n");

lagrangesf(points,n);

printf("newton插值\n");

newtonsf(points,n);

system("pause");

4.2、调试过程

1、在拉格朗日插值法调试过程中,累乘过程中用来承载累乘的tmp没有重新赋值为1,导致结果始终不正确。

for(i=0;i<=n-1;i++)

{

tmp=1;

for(j=0;j<=n-1;j++)

{

还有在调用传值时,没有传被插值点数目,导致传过去的point结构体读不出值。

printf("lagrange插值\n");

lagrangesf(points,n);

printf("newton插值\n");

newtonsf(points,n);

在方法体中错写成“int n=0”,所以point结构体读不出值。应是“int n=t”,t为传过来的被插值点数目。

2、调试结果:

拉格朗日插值法t=0.63时,值为0.532488;牛顿插值法t=0.63时,值为0.532488。

五、总结

使用这两种插值法都可以近似求出t=0.63时的函数值,从结果来看拉格朗日插值法和牛顿插值法结果没有差别,但从理论来说是有的,并且牛顿插值法会精确些,可以多保留小数点位数再来观察结果就会有差别。

六、附录

1、点结构体

#define maxt 20

typedef struct point

{

double x,y;

}point;

2、调试结果图

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

不等距节点下的牛顿插值公式以及拉格朗日插值公式实验课报告

数值分析实验报告三 插值法(2学时) 一实验目的 1.掌握不等距节点下的牛顿插值公式以及拉格朗日插值公式。二实验内容 1.已知函数表: 用牛顿插值公式求) (y的近似值。 102 2. 已知函数表: 用拉格朗日插值公式计算01 x以及所对应的近似值。 =y .5 4.1= 三实验步骤(算法)与结果 1.不等距节点下的牛顿插值公式 Ⅰ.按差商表计算n阶差商

12111[,,,][,,,] [,,,]i i i n i i i n i i i n i n i f x x x f x x x f x x x x x +++++-+++-= - 其中 Ⅱ.按以下公式,带入x 值 00010120101101()() ()[,] ()()[,,]()()()[,,] n n f x f x x x f x x x x x x x f x x x x x x x x x f x x -=+-+--++--- Ⅲ.得出结果()f x 程序代码: #include"stdio.h" #include"math.h" int main() { int a,i,j; printf("输入x 系数的个数:"); scanf("%d",&a); float d,e=0,c; float x[a]; float y[a-1][a]; printf("输入x 的系数:"); for(i=0;i

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange 插值的基本理论,譬如:线形插值,抛物插值,Lagrange 多项式等.然后将线形插值,抛物插值,Lagrange 多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词: 拉格朗日插值公式 唯一性 证明 解题应用 资产评估 曲线插值问题,直观地说,认为已知的一批数据点()n k k k f x 0,=是准确的,这些数据点所表现的 准确函数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1,+k k x x 的端点处的函数值()k k x f y =, ()11++=k k x f y ,要求线性插值多项式()x L 1使它满足()k k y x L =1, ()111++=k k y x L . ()x L y 1=的几何意义:通过两点()k k y x ,和()11,++k k y x 的直线, 如图1所示,()x L 1的表达式由几何意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()11111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). y=L 1x () y=f x () y k+1 y k x k+1 x k o y x

拉格朗日插值法C语言的实现

实验 一 .拉格朗日插值法C 语言的实现 1.实验目的: 进一步熟悉拉格朗日插值法。 掌握编程语言字符处理程序的设计和调试技术。 2.实验要求: 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标 。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值 。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X 坐标; (3)分别输入已知点的Y 坐标; (4)通过调用函数lagrange 函数,来求某点所对应的函数值。 拉格朗日插值多项式如下: 0L ()()0,1,n n j k k j j k x y l x y j n ====∑…… 其中00()()0,1,,()k k x x l x k n x x -= =-k-1k+1n k k-1k k+1k n ……(x-x )(x-x )?…(x-x )…………(x -x )(x -x )?…(x -x ) 程序流程图:

↓ 程序如下: #include #include <> #include <> float lagrange(float *x,float *y,float xx,int n) /*拉格朗日插值算法*/ { int i,j; float *a,yy=; /*a作为临时变量,记录拉格朗日插值多项式*/ a=(float *)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:"); scanf("%d",&n); if(n>=20) { printf("Error!The value of n must in (0,20)."); getch();return 1; } if(n<=0) { printf("Error! The value of n must in (0,20)."); getch(); return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n");

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

数值计算方法—拉格朗日插值

数值计算方法作业 专业:测控1002 学号:10540226 姓名:崔海雪

拉格朗日插值的算法及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;Matlab 算法程序; 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。 2、Lagrange 插值公式 (1)线性插值)1(1L 设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足 )(01x L =0y ,)(11x L =1y ,几何上,)(1x L 为过(0x ,0y ) ,(1x ,1y )的直线,从而得到 )(1x L =0y +0101x x y y --(x-0x ). (2)

多项式插值法和拉格朗日插值

多项式插值法和拉格朗日插值 教案一多项式插值法和拉格朗日插值 基本内容提要 1 多项式插值法的基本概念 2 插值多项式的存在性与唯一性分析 3 拉格朗日插值多 项式的构造及截断误差 4 截断误差的实用估计式 5 逐次线性插值法教学目的和要求 1 熟练掌握多项式插值法的基本概念 2 理解插值多项式的存在性与唯一性 3 掌握拉 格朗日插值法 4 掌握截断误差的估计方法 5 理解逐次线性插值法的基本思想,掌握Aitken逐次线性插值法 6 掌握运用拉格朗 日插值法处理问题的基本过程教学重点 1 拉格朗日插值基函数及拉格朗日插值多项式的构造 2 拉格朗日插值多项式的截断 误差分析 3 逐次线性插值法的基本思想教学难点 1 插值多项式存在唯一性条件的讨论分析 2 插值误差的分析与估计 3 Aitken逐次线性插值法的计算过程课程类型新知识理论课教学方法 结合提问,以讲授法为主教学过程 问题引入 实际问题中许多变量间的依赖关系往往可用数学中的函数概念刻画,但在多数情况下,这些函数的表达式是未知的,或者函数已知,但形式十分复杂。基于未知函数或复杂函数 的某些已知信息,如何构造这些函数的近似表达式?如何计算这些函数在其它点处的函数值?所构造的近似表达式与真实函数的误差是多少?插值理论与方法就是解决这些问题的 有效工具之一。 §2.1 多项式插值 2.1.1 基本概念 假设f(x)是定义在区间[a,b]上的未知或复杂函数,但已知该函数在点a≤x0 P(xi)=yi,i=0,1,2,L,n,即在给定点xi处,P(x)与f(x)是相吻合的。 (2.1) 把P(x)称为f(x)的插值多项式(函通常把上述x0 数), f(x)称为被插函数。[a,b]称为插值区间,条件(2.1)称为插值条件,并把 求P(x)的过程称为插值法。

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生: 班级: 学号: : 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

插值算法之拉格朗日插值

记一下拉格朗日插值公式的推导和一些要点【这里说的都是二维插值,多维上的以此类推】 1、插值问题:在做实验的过程中,往往得到一堆离散的数据,现在想用数学公式模拟这堆离散数据。怎么办,数学家们提出了插值问题。插值问题的提法是这样的给定一堆数据点(x0, y0), (x1, y1), (x2, y2)...(xn, yn),要求一个函数y = f(x) ,要求该函数经过上面所有的数据点。 2、多项式插值及其唯一性:在所有的函数中,多项式函数是最简单的函数,所以只要是人就会想到用多项式函数来作为插值函数,好,以上给定了n+1个点,现在要求一个n次多项式y = an * x^n + ... a1 * x + a0, 使它们经过这n+1个点;通过范德蒙行列式和克莱姆法则,可以判定如果这n+1个点的x值各不相同,那么这个多项式是唯一的。结果唯一,但是用直接法很不好求。现在用别的办法来求之。这就是:拉格朗日多项式 3、拉格朗日多项式的构造,以四个点为例子进行说明 由于函数经过4个点(x0, y0),(x1, y1),(x2, y2),(x3, y3),所以可以设函数为: f(x) = b0(x) * y0 + b1(x) * y1 + b2(x) * y2 + b3(x) * y3 注意:b0(x),...,b3(x)都是x的3次多项式,称之为拉格朗日插值基函数。 由于要求当x为x0时候,f(x) = y0, 所以最简单的做法就是让b0(x0) = 1, b1(x0) = b2(x0) = b3(x0) = 0; 同理可知,在x1,x2,x3点上,插值基函数的值构造如下:

b0(x) b1(x) b2(x) b3(x) x=x0 1 0 0 0 x=x1 0 1 0 0 x=x2 0 0 1 0 x=x3 0 0 0 1 问题1、根据这些值来确定b0(x)的表达式, 由于b0(x1) = b0(x2) = b0(x3) = 0,所以x1, x2, x3是b0(x)的零点,由于b0(x)是三次多项式,所以设 b0(x) = c0 * (x-x1) * (x-x2) * (x-x3) 由于b0(x0) = 1,所以1 = c0 * (x0-x1) * (x0-x2) * (x0-x3) 得到c0 = 1/[(x0-x1)(x0-x2)(x0-x3)] 所以:b0(x) = (x-x1)*(x-x2)*(x-x3)/[(x0-x1)*(x0-x2)*(x0-x3)] 同理可求b1(x)、b2(x),略 问题2、根据上面的表格说明插值基函数的一个性质:无论x取和值,它们的和都为1.【这

对拉格朗日插值法与牛顿插值法的学习和比较

对拉格朗日插值法与牛顿插值法的学习和比较 摘要:根据对拉格朗日插值法和牛顿插值法的理解,本文主要介绍了拉格朗日插值法和牛顿插值法的相关内容以及它们的区别。 关键词:拉格朗日插值法;牛顿插值法 The leaning and comparison of the Lagrange interpolation and Newton interpolation Abstract: Based on the understanding of the Lagrange interpolation and Newton interpolation ,this paper mainly describes some related knowledge as well as the difference between these two methods. Keywords: Lagrange interpolation ; Newton interpolation 前言 在工程和科学研究中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。这样就有了插值法,插值法是解决此类问题目前常用的方法。 如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。 插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i == 而在其他点i x x ≠上,作为)(x f 的近似。 通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。求插值函数)(x P 的方法称为插值法。 插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。 在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)( 使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

Lagrange插值程序1

在Matlab中,可以编写如下程序来利用Lagrange插值公式进行计算: function f=Lagrange(x,fx,inx) n=length(x);m=length(inx); for i=1:m; z=inx(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x(j))/(x(k)-x(j)); end end s=p*fx(k)+s; end f(i)=s; end plot(x,fx,'O',inx,f) x=[1:12] fx=[12 234 34 -1 34 2 5 23 34 9 45 23] xi=[1:0.2:12] Lagrange(x,fx,xi) 得出结果: 12.0000 -60.5937 18.2765 124.9778 202.5952 234.0000 223.3757 184.1249 131.4738 78.4253 34.0000 2.9467 -13.6885 -17.5810 -12.0379 -1.0000 11.7556 23.1624 31.1611 34.7730 34.0000 29.6054 22.8332 15.1153 7.8099 2.0000 -1.6307 -2.8397 -1.7907 1.0404 5.0000 9.4024 13.6643 17.4033 20.4834 23.0000 25.2037 27.3769 29.6858 32.0400 34.0000 34.7742 33.3426 28.7320 20.4439 9.0000 -3.4848 -12.8605 -12.8873 4.0592 4 5.0000 112.3788 197.1817 267.9699 254.3439 23.0000

拉格朗日插值法理论及误差分析

目录: 一、 引言 二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验 四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献 一、引言 插值在数学发展史上是个古老问题。插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。在科学研究和日常生活中,常常会遇到计算函数值等一类问题。插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。 二、插值及多项式插值 1、插值问题的描述 设已知某函数关系()y f x =在某些离散点上的函数值: 插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠=的函数值()f x ,或计算函数的一阶、二阶导数 值。 2、插值的几何意义 x x 0 y y 1 y 1 n y -n y 1 x 1 n x -n x

插值的几何意义如图1所示: 图1 3、多项式插值 基本概念 假设()y f x =是定义在区间,a b ????上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<< <≤处的函数值01,,n y y y 。找一个简单的函数,例如函数 ()P x ,使之满足条件 (),0,1,2, ,,i P x y i n == () 通常把上述01n x x x << < 称为插值节点,把()P x 称为()f x 的插值多项 式,条件()称为插值条件,并把求()P x 的过程称为插值法。 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式: 1011()m m m m m P x a x a x a x a --=++ + 那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数 011,, ,m m a a a a -。由于插值条件包含n+1独立式,只要m=n 就可证明插值函数多 项式是唯一存在。 实际上,由n+1个插值条件可得

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用

拉格朗日插值公式的证明及其应用 摘要: 拉格朗日(Lagrange)插值公式是多项式中的重要公式之一,在理论和实践中都有着广泛的应用.本文阐述了Lagrange插值的基本理论,譬如:线形插值,抛物插值,Lagrange多项式等.然后将线形插值,抛物插值,Lagrange多项式插值分别应用到高中知识中,并且学会用计算机程序来编写.插值法的思想与中国剩余定理一脉相承, 体现了代数中"线性化" (即表示为求和和数乘的形式) 这一基本思路, 大巧若拙.本文的目的是通过介绍拉格朗日插值公式的推导,唯一性,证明过程及其在解题与实际生活问题中的应用来寻找该公式的优点,并且引人思考它在物理,化学等领域的应用.通过实际鉴定过程,利用插值公式计算生活中的成本问题,可以了解它的计算精度高,方法快捷. 关键词:拉格朗日插值公式唯一性证明解题应用资产评估 曲线插值问题,直观地说,认为已知的一批数

3 据点()n k k k f x 0 ,=是准确的,这些数据点所表现的准确函 数关系()x f 是未知的,在这种情况下要作一条近似曲线()x P 且点点通过这些点,插值问题不仅要讨论这种近似曲线()x P 的构造方法,还要讨论点增多时这种近似曲线()x P 是否稳定地收敛于未知函数()x f ,我们先研究一种简单常用的插值——拉格朗日插值. 一.定义,推导及其在解题中的应用 1.线性插值 1.1. 线性插值的定义 假定已知区间[]1 ,+k k x x 的端 点处的函数值() k k x f y =, () 11++=k k x f y , 要求线性插值多项式()x L 1 使它满 足()k k y x L =1 , ()1 11++=k k y x L . () x L y 1=的几何意义:通过两点() k k y x ,和() 11 ,++k k y x 的直线,如图1所示,()x L 1 的表达式由几何 意义直接给出,即 ()()k k k k k k x x x x y y y x L ---+ =++111 (点斜式), 图1 ()1 1111++++--+--= k k k k k k k k y x x x x y x x x x x L (两点式). 由两点式方程看出,()x L 1 由两个线性函数 ()1 1 ++--= k k k k x x x x x l ,()k k k k x x x x x l --= ++11的线性组合得到,其系数分别 y=L 1x () y=f x () y k+1 k x k+1 x k o y

拉格朗日插值多项式

数值计算方法上机报告拉格朗日插值多项式 学院:计算机与通信学院 班级:计算机科学与技术05级3班姓名:柴小辉 学号:05240326

尽管满足插值条件P n(x i)=y i(i=0,1,2,…,n) (1) 的n次插值多项式是唯一的,然而它的表达式却可以有多种形式。如果取满足条件 1 i=k l k(x i)= (i=0,1,2,…,n) (2) 0 i≠k 的一组n次的代数多项式l0(x)、l1(x)、…、l n(x)作为上述线性空间的基,容易看出 y0l0(x)+ y1l1(x)+…+y n l n(x)=∑y k l k(x) (3) 必是一个不高于n次的代数多项式,而且它在节点x0、x1、…、x n 上的值依次是y0、y1、…、y n也就是说,由n+1个n次代数多项式y0l0(x)、y1l1(x)、…、y n l n(x)线性生成的多项式(3),就满足插值条件(1)的n次插值多项式。 满足条件(2)的n次代数多项式l k(x)(k=0,1,2…,n),称为在n+1个节点x i (i=0,1,2,…,n)上的n次基本插值多项式;形如(3)的插值多项式称为拉格朗日插值多项式,记作L n(x),即 (4) 其中基函数 例给定函数表如下: 试求e0.285的近似值。 附: #define M 5 struct data {double x; double y; }; main() {int i,j,k; double x,sum=0,p; struct data z[M];

printf("Your data:\n"); for(i=0;i

数值分析拉格朗日插值法.doc

``````````````````````````````````````````` 数值分析拉格朗日插值法 拉格朗日插值的算法设计及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点-x 求f(-x )数值解,我们称- x 为一个插值节点,f(-x )≈p(-x )称为-x 点的插值,当-x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]

相关文档
最新文档