基于粒子群神经网络的发动机故障诊断方法

基于粒子群神经网络的发动机故障诊断方法
基于粒子群神经网络的发动机故障诊断方法

粒子群算法的研究现状及其应用

智能控制技术 课程论文 中文题目: 粒子群算法的研究现状及其应用姓名学号: 指导教师: 年级与专业: 所在学院: XXXX年XX月XX日

1 研究的背景 优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。 对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。粒子群算法(PSO )就是其中的一项优化技术。1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。 粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。 目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为 T i i1i2im Gbest [,]g = ,g ,g 。 粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下: i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+?+?; i+1i+1i x x v =+, 式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

基于神经网络的故障诊断

神经网络工具箱应用于故障诊断 1.问题描述 电力系统的安全运行具有十分重要的意义。当高压变压器或其他类似设备在运行中出现局部过热、不完全放电或电弧放电等故障时,其内部绝缘油、绝缘纸等绝缘材料将分解产生多种气体,包括短链烃类气体(C2H2、CH4等)和H2、CO2等,这些气体称作特征气体。而特征气体的含量与故障的严重程度有着很密切的关系,如下图1所示。将BP神经网络应用于变压器故障诊断对大型变压器的运行有着非常重要的意义。 2.神经网络设计 (1)输入特征向量的确定 变压器的故障主要与甲烷(CH4)、氢气(H2)、总烃(C1+C2)以及乙炔(C2H2)4 种气体的浓度有关,据此可以设定特征向量由这 4 种气体的浓度组成,即CH4、H2、C1+C2(总烃)和C2H2,同时也设定了网络输入层的节点数为4个。 (2) 输出特征向量的确定 输出量代表系统要实现的功能目标,其选择确定相对容易一些。只要问题确定了,一般输出量也就确定了。在故障诊断问题中,输出量就代表可能的故障类型。变压器的典型故障类型有:一般过热故障、严重过热故障、局部放电故障、火花放电故障以及电弧放电故障等5种类型,因此这里选择 5 个向量作为网络的输出向量,即网络输出节点确定为 5 个。根据Sigmoid 函数输出值在0 到1 之间的特点,这里设定以0 到1 之间的数值大小表示对应的故障程度,也可以理解为发生此类故障的概率,数值越接近 1 表示发生此类故障的几率越大或说对应的故障程度越大。针对本系统,

设定输出值大于等于0.5 时认为有此类故障,小于0.5 时认为无此类故障。 (3)样本的收集 输入、输出向量确定好以后就可以进行样本的收集。 数据归一化处理时,注意:在归一化处理的时候,因考虑到各气体浓度值相差较大,如总烃的浓度比H2的浓度值高出几个数量级,因此在归一化处理的时候,分别对各个气体浓度值进行处理,即最大值和最小值取的是各气体的最值,而不是所有样本值中的最值。 在本实例中采用:MATLAB利用归一化公式 u=(x-min(min(x)))./(max(max(x))-min(min(x))) (1) 在公式1中x表示所需归一化处理的数据,u表示归一化后的结果 处理结果如下:

趋势分析之深度神经网络

趋势分析之深度神经网络 深度神经网络(Deepl Neural Networks, DNN)从字面上理解就是深层次的神经网络。自从Hinton和Salakhutdinov在《Science》上发表的论文解决了多层神经网络训练的难题后,随着研究的深入,各种深度神经网络模型如雨后春笋般涌现出来。 2012年Krizhevsky等人设计的包含5个卷积层和3个全连接层的AlexNet,并将卷积网络分为两个部分在双CPU上进行训练;2014年Google研发团队设计的22层GoogleNet;同年牛津大学的Simonyan和Zisserman设计出深度为16-19层的VGG网络;2015年微软亚洲研究院的何凯明等人提出了152层的深度残差网络ResNet,最新改进后的ResNet网络深度可达1202层;2016年生成式对抗网络GAN获得广泛关注。 深度神经网络热度变化图 下面我们将用Trend analysis分析深度神经网络领域内的研究热点。 (点击链接即可进入Deep Neural Networks Trend Analysis: https://https://www.360docs.net/doc/5d8599411.html,/topic/trend?query=Deep%20Neural%20Network%20) 通过Trend analysis的分析挖掘结果我们可以看到,当前该领域的热点研究话题有feature

extraction、speech recognition、face recognition、information retrieval、object recognition、cell cycle等。近年来,深度神经网络由于优异的算法性能,已经广泛应用于图像分析、语音识别、目标检测、语义分割、人脸识别、自动驾驶、生物医学等领域,而根据分析结果可知语音识别是该领域热门研究话题top 1。 深度神经网络在工业界也得到了广泛的应用,Google、Facebook、Microsoft、IBM、百度、阿里巴巴、腾讯、科大讯飞等互联网巨头也纷纷开展深度神经网络的研究工作,并且成功应用于谷歌Now、微软OneNote手写识别、Cortana语音助手、讯飞语音输入法等。 附一. 深度神经网络领域5位代表学者 Dong Yu (俞栋) Tara N. Sainath

粒子群算法基本原理

4.1粒子群算法基本原理 粒子群优化算法[45]最原始的工作可以追溯到1987年Reynolds 对鸟群社会系统Boids (Reynolds 对其仿真鸟群系统的命名)的仿真研究 。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体(鸟),避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48]和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中 。Kennedy 和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻食物。Kennedy 和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本的粒子群优化算法[49]。 假设在一个D 维搜索空间中,有m 个粒子组成一粒子群,其中第i 个粒子的空间位置为123(,,,...,)1,2,...,i i i i iD X x x x x i m ==,它是优化问题的一个潜在

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/5d8599411.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

粒子群算法在神经网络非线性函数拟合中的应用【精品文档】(完整版)

粒子群算法在神经网络非线性函数 拟合中的应用 一、本文研究和解决的问题 在自动控制问题中,系统辨识的目的是为了建立被控对象的数学模型。多年来,控制领域对于复杂的非线性对象的辨识一直未能很好的解决,神经网络所具有的非线性特性和学习能力使其在系统辨识方面有很大的潜力。为解决具有复杂的非线性、不确定性和不确知对象的辨识问题开辟了一条有效的途径。基于神经网络的系统辨识是以神经网络作为被辨识对象的模型,利用其非线性特性,可建立非线性系统的静态或动态模型。理论上,多层前馈神经网络能够以任意精度逼近任意非线性映射。 但传统神经网络学习算法中存在的收敛速度慢、容易陷入局部最优等缺点,于是设计了基于标准粒子群算法的神经网络非线性函数拟合系统。 二、传统的BP神经网络 BP 神经网络即采用误差反向传播算法的网络,是一种至今仍然最为流行的前馈型神经网络模型。BP 神经网络有很强的非线性映射能力,它能学习和存贮大量输入-输出模式映射关系,而无需事先了解描述这种映射关系的数学方程。只要能提供足够多的样本模式对供给网络进行学习训练,它便能完成由n 维输入空间到m 维输出空间的非线性映射。BP 学习算法属于误差修正型学习,其关键在于根据误差修正输出层和隐含层的连接权值。其学习的基本实现方法是基于最小平方误差准则和梯度下降优化方法来确定权值调整法则。 BP网络建模特点: 非线性映照能力:神经网络能以任意精度逼近任何非线性连续函数。在建模过程中的许多问题正是具有高度的非线性。 并行分布处理方式:在神经网络中信息是分布储存和并行处理的,这使它具有很强的容错性和很快的处理速度。 自学习和自适应能力:神经网络在训练时,能从输入、输出的数据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能力,即将这组权值应用于一般情形的能力。神经网络的学习也可以在线进行。 数据融合的能力:神经网络可以同时处理定量信息和定性信息,因此它可以利用传统的工程技术(数值运算)和人工智能技术(符号处理)。 多变量系统:神经网络的输入和输出变量的数目是任意的,对单变量系统与多变量系统提供了一种通用的描述方式,不必考虑各子系统间的解耦问题。

人工神经网络在设备故障诊断中的应用

人工神经网络在设备故障诊断中的应用 程瑞琪 (西南交通大学 成都 610031) 摘 要 介绍了神经网络技术在设备故障诊断中应用的2个主要方向———故障模式识别和诊断专家系统,对应用的方法、特点及存在的问题也 作了概略分析。 关键词 神经网络 故障诊断 模式识别 专家系统中图分类号 TP 18 近年来人工神经网络(Artificial neural network -ANN )的研究发展迅速,ANN 以其诸多优点在设备状态监测与故障诊断中受到了愈来愈广泛的重视,为设备故障诊断的研究开辟了一条新途径。 ANN 具有以下主要特征:①实现了并行处理机制,可提供高速的信息处理能力;②分布式信息存储,可提供联想与全息记忆的能力;③网络的拓扑结构具有非常大的可塑性,使系统有很高的自适应和自学习能力;④具有超巨量的联接关系,形成高度冗余,使系统具有很强的容错能力;⑤是一类大规模非线性系统,提供了系统自组织与协同的潜力。本文作者仅就ANN 用于故障模式识别及诊断专家系统这两个方面应用的主要方法、特点及存在的问题作概括介绍。 1 神经网络与故障模式识别 模式识别是ANN 应用的一个较成功的领域,诊断问题实质上就是一种模式分类,是将系统的状态区分为正常状态或某一种故障状态的问题。通常故障模式的分布是非常不规则的,故要求所用模式分类方法能在模式空间里形成各种非线性分割平面,ANN 的特性使其可以作为一类性能良好的非线性分类器。1.1 方法及特点 ANN 故障模式识别可用图1所示BP 模型来说明 。 图1 BP 网模型 其中网络输入节点对应故障征兆,输出节点对应故障原因。进行故障模式识别时,先用一批故障样本 对模型进行训练,以确定网络结构(隐层及其节点数)和参数(节点间的联接权);网络训练好后,故障的模式分类就是根据给定的一组征兆,实现征兆集到故障集之间非线性映射的过程。 用ANN 作故障模式识别的特点有:①可用于系统模型未知或系统模型较复杂及非线性系统的故障模式识别;②兼有故障信号的模式变换与特征提取功能;③对系统含有不确定因素、噪声及输入模式不完备的情况不太敏感;④可用于复杂多模式的故障诊断;⑤可用于离线诊断,也能适应实时监测的要求。1.2 模型 用于故障模式识别的ANN 模型按学习方式可分有监督学习模型和无监督学习模型两大类,前者主要包括B P 网和径向基函数(RB F )网;后者主要包括自适应共振(ART )网和自组织特征映射(SOM )网。1.2.1 有监督学习模型 BP 网是目前故障诊断中应用最多且较成熟的一种模型,其神经元的非线性映射函数采用Sigmoid 函数,网络训练采用误差反向传播(Back pr opagation )学习算法。BP 网的结构及学习算法简单,但应用中还存在2个问题:一是关于网络的学习,因BP 算法是自适应最小均方(LMS )算法的推广,故网络的学习速度较慢,且可能陷入局部极小值点,针对这一问题已有许多改进的BP 算法;二是关于网络的结构设计,即如何选取隐层及隐层节点数,目前尚无确定的理论和方法。根据Hecht -Nilson 的映射定理:对任何闭区间上的一个连续函数,总可以用含一层隐单元的感知器网来映射;目前应用中多采用含一层隐单元的BP 网。关于隐层节点下限的确定已有一些研究结果,鉴于问题的复杂性,此处不作说明。选择较多的隐层及隐层节点虽可加快学习速度,但使网络的结构变得复杂,网络的推广能力也会变差。实际应用中,通常用对测试样本与学习样本的误差进行交叉评价的试错 法来选择隐层及隐层节点数。 RB F 网是一种较新颖的ANN 模型,只有一层隐含层,输出节点是线性的,隐单元采用对称的高斯基 · 13·第12卷第1期 《机械研究与应用》 ME CHANICAL RESE ARCH &APPLICATION Vol 12No .1 1999

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

基于粒子群优化的BP神经网络

基于粒子群优化的BP神经网络 【摘要】人工神经网络的优化学习是其研究中的一个重要课题。将粒子群优化算法用于BP神经网络的学习,将粒子优化算法的全局搜索和BP神经网的局部搜索相结合,并设计一网络实例加以训练,达到了比较满意的效果。 【关键词】粒子群优化算法BP神经网络BP算法BP网络(Back Propagation Network)是用途最为广泛的一类神经网络,具有很强的信息处理能力。但是,由于BP算法的基本思想是最小二乘法,采用的是梯度搜索技术,难免存在收敛速度慢、局部极小等问题。粒子群优化算法(Particle Swarm Optimaziton,简称PSO )是由Kennedy J和Eberhart R C于1995年提出的一种优化算法,源于对鸟群和鱼群群体运动行为的研究。由于其容易理解,易于实现,不要求目标函数和约束条件是可微的,并能以较大概率求得全局最优解,目前已在许多优化问题中得到成功应用。由于它具有并行计算的特点,而且可以提高计算速度。因此,可以用粒子群优化算法来优化BP网络。 一、BP神经网络及其算法 BP网络是一种具有三层或三层以上的单向传播的多层前馈网络,其拓扑结构如图1。 图1 拓扑结构图 BP算法的执行步骤如下: (1)对各层权系数置一个较小Wij的非零随机数。(2)输入一个样本X=(X1,X2,…,x n),以及对应期望输出) Y=(y1,y2,…,yn)。(3)计算各层的输出。 对于第k 层第i个神经元的输出有:Uki=∑WijXk-1i,Xki=f(Uki)(一般为sigmoid 函数,即f(x)=1/(1-epx(-x))。(4)求各层的学习误差dki。对于输出层,有,k=m,dmi=Xmi(1-Xmi)(Xmi-Ymi)。 对于其他各层,有dxi=Xki(1-Xki)∑Wijdk+1i。(5)修正权系数Wij。Wij (t+1)=Wij-η•dki•Xk-1j。(6)当求出各层权系数之后,可判别是否满足要求。如果满足要求,则算法结束;如果未满足要求,则返回(3)执行。 二、粒子群优化算法

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

基于BP神经网络的故障诊断方法

基于BP神经网络的故障诊断方法

《智能控制基础》 研究生课程设计报告 题目基于BP神经网络的故障诊断方法学院机械与汽车工程学院 专业班级车辆工程 学号221601852020 学生姓名李跃轩 指导教师武晓莉 完成日期2016年12月10日

目录 1 设计概述 (2) 1.1研究对象介绍 (2) 1.2设计内容及目标 (2) 2 设计原理、方法及步骤 (3) 2.1基于BP算法的神经网络模型 (3) 2.2 神经网络信息融合故障诊断步骤 (4) 3 结果及分析 (6) 3.1数据仿真 (6) 3.2 结果分析 (9) 4 设计小结 (10) 参考文献 (10) 附录程序 (11)

1 设计概述 1.1研究对象介绍 信息融合是多源信息综合处理的一项新技术,是将来自某一目标(或状态)的多源信息加以智能化合成,产生比单一信息源更精确、更完全的估计和判决。信息融合所处理的多传感器信息具有更为复杂的形式,可以在不同的信息层次上出现。多传感器信息融合的优点突出地表现在信息的冗余性、容错性、互补性、实时性和低成本性。 神经网络是由大量互联的处理单元连接而成,它是基于现代神经生物学以及认知科学在信息处理领域应用的研究成果。它具有大规模并行模拟处理、连续时间动力学和网络全局作用等特点,有很强的自适应学习和非线性拟合能力,从而可以替代复杂耗时的传统算法,使信号处理过程更接近人类思维活动。 柴油机故障具有相似性,故障与征兆的关系不明确,具有较强的模糊性,故障特征相互交织,柴油机故障诊断是一个复杂的问题。综合柴油机故障的特点以及神经网络的优势,采用基于BP神经网络的多传感器信息融合技术对柴油机机械故障进行诊断。 1.2设计内容及目标 设计内容:针对传统故障诊断方法存在的诊断准确性不高的问题,提出了BP神经网络信息融合的方法,实现对柴油机的机械故障诊断。由多个传感器采

粒子群算法与遗传算法的比较

粒子群算法介绍 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重 影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法. 这种算法以 其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolutionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随 当前搜索到的最优值来寻找全局最优。 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士提出。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容: 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如floys和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的 过程. 但后来发现PSO是一种很好的优化工具.

神经网络的电网故障诊断资料

基于新型神经网络的电网故障诊断方法 1引言 快速事故后恢复系统正常运行是减少电能中断时间和增强供电可靠性的必要条件。作为事故恢复的第一步,应实现快速、准确的故障诊断以隔离故障元件并采取相应措施以恢复电能供应。然而在线快速、准确地故障诊断仍是一个悬而未决的难题,尤其在保护和断路器不正常动作或多重故障的情况下,故障诊断更为困难。 故障诊断一般基于SCADA系统所提供的保护和断路器信息来判别电力系统中的故障元件。多种人工智能技术已用于解决此问题,如专家系统[1~4],随机优化技术[5~10]和人工神经网络[11~14]等等。其中基于专家系统的方法得到了广泛的注意和研究。这种方法能够提供强有力的推理并具解释能力,然而专家系统中知识的获取、组织、校核和维护等都非常困难,并成为其应用的瓶颈。而且,专家系统必须搜索庞大的知识库以得到最终的诊断结论,这使得它不能满足故障诊断实时的要求。另外,当系统中存在保护和断路器不正常动作时,专家系统可能会因缺乏识别错误信息的能力而导致错误的诊断结论。 用于故障诊断的另一种较有潜力的方法是基于工程随机优化的方法。这种方法的主要原则是将故障诊断表述为一个整数优化问题,随后使用全局优化方法,如波尔兹曼机[5]、遗传算法[6~8]、仿蚂蚁系统[9]或tabu搜索[10]等,去求解该优化问题。这种方法在实际应用过程中也出现了一些问题:如何确定这些随机优化方法的参数以实现快速正确的故障诊断;如何使这些方法适用于保护和断路器不正常动作的情况等等。 近年来,人工神经网络[11~14]引起了研究工作者的兴趣,因为它具有学习、泛化和容错能力。并且神经元的计算是并行的,这有利于实现实时应用。在神经网络的各种模型中,应用得最为广泛的模型就是BP(Back-Propagation)神经网络。标准的BP模型使用梯度下降算法训练,因此BP神经网络的结构必须是事先已知的,而且该学习算法收敛速度很慢,并有可能收敛于局部最小点。这些不利因素限制了BP模型在故障诊断中的应用。 本文提出使用径向基函数(Radial basis function,RBF)神经网络[15~16]解决电力系统中的故障诊断问题。理论上讲RBF神经网络具有任意函数逼近能力[17]。

粒子群算法基本原理

4.1 粒子群算法基本原理 粒子群优化算法[45] 最原始的工作可以追溯到1987年Reynolds 对鸟群社会 系 统Boids(Reynolds 对其仿真鸟群系统的命名)的仿真研究。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体( 鸟) ,避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48] 和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中。Kennedy和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻 食物。Kennedy和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果 却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多 种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本 [49] 的粒子群优化算法。 假设在一个 D 维搜索空间中,有m个粒子组成一粒子群,其中第i 个粒子的空间位置为X( x , x ,x,..., x ) i 1,2,..., m ,它是优化问题的一个潜在解, i i1 i 2 i 3 iD 将它带入优化目标函数可以计算出其相应的适应值,根据适应值可衡量x的优 i 劣;第i 个粒子所经历的最好位置称为其个体历史最好位置,记为 P ( p , p , p , ... p,) i 1, 2 ,,m..相,应的适应值为个体最好适应值Fi ;同 i 1i i2 3i i D 时,每个粒子还具有各自的飞行速度V(v ,v ,v,..., v ) i 1,2,..., m 。所有粒 i i1 i 2 i 3 iD

(完整版)深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

粒子群算法论文

粒子群算法的寻优算法 摘要:粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。这篇文章简要回顾了粒子群算法的发展历史;引入了一个粒子群算法的实例,对其用MATLAB进行编程求解,得出结论。之后还对其中的惯性权重进行了延伸研究,对惯性权重的选择和变化的算法性能进行分析。 关键词:粒子群、寻优、MATLAB、惯性权重 目录: 1.粒子群算法的简介 (2) 1.1 粒子群算法的研究背景 (2) 1.2 起源 (2) 1.3 粒子群理论 (3) 2.案例背景 (4) 2.1问题描述 (4) 2.2 解题思路及步骤 (4) 3.MATLAB编程实现 (5) 3.1设置PSO算法的运行参数 (5) 3.2种群初始化 (5) 3.3寻找初始极值 (5) 3.4迭代寻优 (6) 3.5结果分析 (6) 4.惯性权重对PSO算法的影响 (8) 4.1惯性权重的选择 (8) 4.2惯性权重变化的算法性能分析 (8) 5 结论 (10) 参考文献: (11)

1.粒子群算法的简介 粒子群算法(Particle Swarm Optimization)是一种新的智能优化算法。谈到它的发展历史,就不得不先介绍下传统的优化算法,正因为传统优化算法自身的一些不足,才有新智能优化算法的兴起,而粒子群算法(PSO)就是在这种情况下发展起来的。 1.1 粒子群算法的研究背景 最优化是人们在科学研究、工程技术和经济管理等领域中经常遇到的问题。优化问题研究的主要内容是在解决某个问题时,如何从众多的解决方案中选出最优方案。它可以定义为:在一定的约束条件下,求得一组参数值,使得系统的某项性能指标达到最优(最大或最小)。传统的优化方法是借助于优化问题的不同性质,通常将问题分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题等。相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共扼梯度法,应用于整数规则的分枝界定法、动态规划等。列举的这些传统的优化算法能够解决现实生活和工程上的很多问题,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。因此,发展通用性更强、效率更高的优化算法总是需要的。 1.2 起源 在自然界中,鸟群运动的主体是离散的,其排列看起来是随机的,但在整体的运动中它们却保持着惊人的同步性,其整体运动形态非常流畅且极富美感。这些呈分布状态的群体所表现出的似乎是有意识的集中控制,一直是许多研究者感兴趣的问题。有研究者对鸟群的运动进行了计算机仿真,他们通过对个体设定简单的运动规则,来模拟鸟群整体的复杂行为。 1986 年Craig ReynolS 提出了Boid 模型,用以模拟鸟类聚集飞行的行为,通过对现实世界中这些群体运动的观察,在计算机中复制和重建这些运动轨迹,并对这些运动进行抽象建模,以发现新的运动模式。之后,生物学家Frank Heppner 在此基础上增加了栖息地对鸟吸引的仿真条件,提出了新的鸟群模型。这个新的鸟群模型的关键在于以个体之间的运算操作为基础,这个操作也就是群体行为的同步必须在于个体努力维持自身与邻居之间的距离为最优,为此每个个体必须知道自身位置和邻居的位置信息。这些都表明群体中个体之间信息的社会共享有助于群体的进化。 在1995年,受到Frank Heppner 鸟群模型的影响,社会心理学博士James

粒子群算法及其改进技术研究

第31卷湖北师范学院学报(自然科学版)V o l 31第2期Journal o fH ube iN or m a lU n i versity(N at u ra l Sc i ence)N o 2,2011 粒子群算法及其改进技术研究 李 志,陈年生,郭小珊,柯宗武 (湖北师范学院计算机科学与技术学院,湖北黄石 435002) 摘要:粒子群算法是一种基于种群的随机优化技术,1995年由Eberha rt博士和K ennedy博士提出,该算法 源于对鸟群觅食和鱼群学习行为的研究,在很多领域得到了广泛应用,本文介绍了粒子群算法的基本原 理,并针对粒子群算法在不同应用领域的需求,详细讨论了粒子群算法的各种改进技术,最后,对粒子群算 法未来发展进行了展望。 关键词:粒子群算法;惯性权重;学习因子 中图分类号:TP393 文献标识码:A 文章编号:1009 2714(2011)02 0104 05 粒子群优化算法(Particle Sw ar m Opti m ization,PSO)[1,2]是一种基于种群的随机优化技术,1995年由Eberhart博士和Kennedy博士提出,该算法源于对鸟群觅食和鱼群学习行为的研究,它吸取了人工生命、鸟群觅食、鱼群学习和群理论的思想,又具有进化算法的特点。PSO算法最早用来训练神经网络,目前的应用包括训练博弈代理、电力系统、图像与数据聚类、优化设计、控制器设计、调度、模型选择、生物信息学、数据挖掘、音乐生成、机器学习与训练、模式识别、信号控制、函数优化等诸多方面[3]。针对不同应用领域以及不同领域需求的基本粒子群算法在收敛速度以及求解精度上存在不足,因而出现了很多粒子群改进算法。 1 粒子群算法 1.1 基本粒子群算法的基本原理 粒子群优化算法要求每个粒子在进化过程中维护两个向量,一个是粒子i在t时刻的速度向量v t i =[v t i1,v t i2, v t id],另一个是粒子i在t时刻的位置向量x t i=(x t i1,x t i2, x t id),其中d为求解问题的维数。粒子的速度决定了其运动的方向和速率,而位置则体现了粒子所代表的解在解空间中的位置。算法同时还要求每个粒子各自维护一个自身的历史最优位置向量pB es,t另外群体还维护一个全局最优向量gBes,t代表所有粒子的pBest中最优的那个。 粒子群算法和遗传算法相比没有了选择算子、交叉算子和变异算子[3],粒子在t+1时刻速度和位置更新公式为: v t+1id= v t id+c1 r1 (pB est t id-x t id)+c2 r2 (gB est t gd-x t id)(1) x t+1id=x t id+v t+1id(2) 在公式(1)中, 是惯性权重,c 1和c 2 是加速系数(也称为学习因子),r 1 和r 2 是两个[0,1]区间 上的随机数。粒子通过不断进化得到全局最优解。有实验表明,较大的惯性权重有利于展开全局寻优,较小惯性权重有利于局部寻优,而c1和c2通常取2 收稿日期:2010 11 13 基金项目:湖北省高等学校优秀中青年科技创新团队计划项目(T200806)、湖北省教育厅中青年项目(Q20082203)等资助 作者简介:李 志(1977 ),男,湖北黄石人,硕士研究生

相关文档
最新文档