KB0-CC-32各类风机与水泵单台设备控制电路图2-Model

KB0-CC-32各类风机与水泵单台设备控制电路图2-Model

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/5c8764168.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

水泵控制原理图

第五章泵的自动控制 泵浦是向液体传送机械能,用来输送液体的一种机械,在船上用使非常广泛。在不同的 系统中,泵的具体功能各异,其控制也不相同。 第一节泵的常规控制 一、主海水泵的控制 为主、副机服务的燃油泵、滑油泵、冷却水泵等主要的电动副机,为了控制方便和工作 可靠均设置两套机组。该机组不仅能在机旁控制,也能在集控室进行遥控;而且在运行中运 行泵出现故障时能实现备用泵自动切入,使备用泵投入工作。原运行泵停止运行并发出声光 报警信号,以保证主、副机等重要设备处于正常工作状态。图2-5-1为泵的控制线路,其工 作原理分析如下: 1.泵的遥控手动控制 将电源开关QS1、QS2合闸,遥控-自动选择开关SA1、SA2置于遥控位置。对于1号泵, 按下启动按钮SB12,则继电器KA10线圈通电,接触器KM1线圈回路KA10触头闭合,1号 泵电动机通电启动并运行,同时KA10触头闭合自锁。在1号泵正常运行时,若按下停止按 钮SB11,则KA10线圈断电,使接触器KM1线圈失电,1号泵停止运行。 2号泵的手动控制与1号泵基本相同,并且两台泵可以同时手动起停控制,实现双机运行。 2.泵的自动控制过程 以1号泵为运行泵,2号泵为备用泵为例,其自动控制过程说明如下: 准备状态(即两台泵都处于备用状态):将电源开关QS1、QS2合闸,遥控-自动选择开 关SA1、SA2置于自动位置。组合开关SA12、SA22置于备用位置,此时对1号泵控制电路来说,开关SA12闭合,其各主要电器设备工作情况分析为:13支路KM1辅助触点断开,时间 继电器线圈KT3不得电,其10支路触头断开,所以线圈KA13不得电,其6支路常闭触头 闭合,使线圈KA11得电,从而使2号泵控制电路的4支路KA11断开。同样道理,2号泵控 制电路中,触头KA21也断开,因此KA10线圈不得电,KM1线圈也不得电;13支路KT2线 圈得电,其7支路触头延时闭合;6支路KA13处于闭合状态,所以线圈KA12也通电。因此, 1号泵控制电路中,线圈KA11、、KA12、、KT2得电,而线圈KA13、、KT3、、KA10、、KM1不得电。同理,2号泵相应线圈工作状态与之类似,即2号泵控制电路中,线圈KA21、、KA22、、 KT2得电,而线圈KA23、、KT3、、KA20、、KM2不得电。 正常运行:若1号泵为运行泵,2号泵为备用泵,则应将SA11置于运行位置,SA22置 于备用位置。对于1号泵有:3支路SA11和KA12均闭合,所以1支路线圈KA10得电,其 电路中相应触头闭合;使KM1线圈得电,从而接触器主触头闭合,1号泵电动机启动并运转;同时12支路KM1触头闭合,使线圈KT3得电;其10支路触头延时闭合,使10支路线 圈KA13得电;其6支路KA13常闭触头断开,但在此之前压力开关KPL1已经闭合,从而保 持KA11、KA12线圈有电。同理分析可知:2号泵仍处于备用状态,其控制电路工作状态与 前述备用时相比没有发生变化。 运行泵故障时,备用泵自动切入:当1号泵由于机械等故障原因造成失压时,其压力 开关KPL1断开,使线圈KA11失电;相应的2号泵控制电路中4支路KA11触头闭合,2支 路线圈KA20得电,KM2线圈得电,其主触头闭合,2号泵电动机启动并运转;同时1号泵 141

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

三相异步电动机常用控制电路图

三相异步电动机常用控制 电路图 Prepared on 22 November 2020

三相异步电动机的控制电路 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30% 时,都可以直接启动。 1).点动控制 合上开关S,三相电源被引入控制电路,但电动机还不能起 动。按下按钮SB,接触 合,常开主触点接通, 电动机定子接入三相电 源起动运转。松开按钮 SB, 接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而 停转。 2).直接起动控制 器KM线圈通电,与SB1并联的KM的辅助常开 触点闭合,以保证松开按钮SB1后KM线圈持续 通电,串联在电动机回路中的KM的主触点持续

闭合,电动机连续运转,从而实现连续运转控制。 接触器KM线圈断电,与SB1并联的KM的 辅助常开触点断开,以保证松开按钮SB2 后KM线圈持续失电,串联在电动机回路 中的KM的主触点持续断开,电动机停 转。 与SB1并联的KM的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压保护。 a)起短路保护的是串接在主电路中的熔断器FU。一旦电路发生 短路故障,熔体立即熔断,电动机立即停转。 b)起过载保护的是热继电器FR。当过载时,热继电器的发热元 件发热,将其常闭触点断开,使接触器KM线圈断电,串联在 电动机回路中的KM的主触点断开,电动机停转。同时KM辅 助触点也断开,解除自锁。故障排除后若要重新起动,需按 下FR的复位按钮,使FR的常闭触点复位(闭合)即可。 c)起零压(或欠压)保护的是接触器KM本身。当电源暂时断电 或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自 行释放,使主、辅触点自行复位,切断电源,电动机停转, 同时解除自锁。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

解析国标图集10D303《常用电机控制电路图——专业技术要求

解析国标图集10D303《常用电机控制电路图——专业技术 要求 【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图 (10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。

常见电动机控制电路图

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。 2

与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 3

水泵液位控制电路原理图

西安祥天和电子科技有限公司详情咨询官网https://www.360docs.net/doc/5c8764168.html, 主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等 水泵液位控制电路原理图 水泵液位自动控制系统的主要由以下三个部分组成: 液位信号的采集液位信号的传输水泵控制系统 1.液位信号的采集 液位信号的采集主要是选择合适的液位传感器。液位传感器的发展从最早的电极式、UQK/GSK传统浮子、到现在的压力式、光电式和GKY液位传感器等,形成了多种液位控制方式。电极式便宜简单,但在水中会吸附杂质,使用寿命短。传统浮子与相对滑动轨道之间只有1mm 左右的细缝,很容易被脏东西卡住,可靠性较低。这些是不能在污水中使用的。光电式也不能用于污水,因为玻璃反射面脏了就会出现误判断。GKY液位传感器可以弥补这些缺陷,在污水和清水中可以使用。所以液位控制的系统设计应该根据具体使用环境慎重选择传感器,如果选择不当,将会导致控制系统故障频发,甚至瘫痪,这是导致现有很多液位自动控制系统使用不到一年就失灵的重要原因。 不同液位传感器检测液位的原理是不同的,具体可参见百度文库中“如何选择液位传感器”“什么是液位开关液位开关原理”等文章。 2.液位信号的传输 液位信号的传输可以有有线和无线两种方式。有线就是通过普通电缆线或屏蔽线传输,大部分传统液位传感器通过普通的BV线就可以了,传输信号易受干扰的压力式、电容式传感器需要用屏蔽线传输而且距离不能太远。 在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号,如GKY-WX。第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地,如GKY-DXSF。第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号,如 GKY-GPRSSF。

排烟风机电气控制原理图的优化教案资料

排烟风机电气控制原理图的优化 上海铠绎建筑设计有限公司的研究人员刘海波,在2015年第5期《电气技术》杂志上撰文,排烟风机入口处总管上设置的280℃排烟防火阀在关闭后应直接联动控制风机停止,但图集10D303-2《常用风机控制电路图》中此部分控制原理图,在应用于室外安装的风机时可能存在一定的不安全因素,本文对此不安全因素进行分析,并对《图集》此部分控制原理图进行优化设计。《建筑设计防火规范》 GB50016-2006 第9.4.8条第四款规定:“在排烟风机入口处的总管上应设置当烟气温度超过280℃时能自行关闭的排烟防火阀,该阀应与排烟风机连锁,当该阀关闭时,排烟风机应能停止运转”。《高层建筑设计防火规范》GB50045-95(2005年版)第8.4.7条也有类似的规定。为了满足规范要求,电气专业在设计排烟风机控制箱系统图时需要设计这个连锁 控制。然而大多数设计人员设计控制电路原理图时均会引用图集10D303-2《常用风机控制电路图》(以下简称《图集》),但这种不加修改的引用《图集》做法,可能会给设计人员带来一定的麻烦。笔者有次在现场处理风机运行问题时,手无意碰触到了风阀,竟然发生了电击事故(还好不严重),经过检查发现防火阀接线端子被雨水淋湿,整个防火阀带电。这台风机的控制原理图正是按《图集》照搬而来的。经

过分析发现问题出在两个方面:①安装于室外的防火阀信号接线端子缺少必要的防水及防护措施;②风机控制箱“风阀连锁”信号线缆引出了AC220V电源。问题①为暖通专业产品选择问题,问题②为电气设计安全问题。笔者认真研读《图集》,发现此部分控制原理图,在应用于室外安装的风机时存在一定的电气安全隐患。为减少安全隐患,避免触电事故,本文就问题②对《图集》此部分控制原理图提出自己的修改优化意见,并望能起到抛砖引玉的作用。1 问题分析及优化1.1消防兼平时两用双速风机的控制原理图图1为《图集》P28页中消防兼平时两用双速风机的控制原理图(图中省略了主要设备及材料表、接线端子的表示,下同),图中KH为280℃防火阀现场联锁常闭触点(或称微动开关),由接线端子X1:5、X1:6引出两根线缆接至现场280℃防火阀常闭触点接线桩上。大家是否注意到,引出的线缆带有AC220V 电源,这样阀门接线桩也就带有AC220V电源,并且不管风机是否运行还是停止的状态均带电。试想想,如果本阀长期位于室外,而又没有必要的防护措施,就会存在安全隐患,甚至发生严重的触电伤亡事故。众所周知,消防风机经常露天放置在屋面上,并且少有防护措施,其入口总管处的280℃防火阀也少有防水及防触电措施。可想而知没有必要的防护措施,下雨接线端子进水后就会造成整个金属阀门带电(AC220V),这时只要有人员碰触到阀门就会带来触电危

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

解析国标图集10D303《常用电机控制电路图——专业技术要求

【图集解析】 解析国标图集10D303《常用电机控制电路图》 ——专业技术要求 在JGJ 16-2008《民用建筑电气设计规范》中强制性条文第7.6.4条规定:“配电线路的过负荷保护,应在过负荷电流引起的导体温升对导体的绝缘、接头、端子或导体周围的物质造成损害前切断负荷电流。对于突然断电比过负荷造成的损失更大的线路,该线路的过负荷保护应作用于信号而不应切断电路。” 从第7.6.4条可以看出,针对10D303中的消防风机(消防排烟风机、加压送风机等)和消防水泵(消火栓用消防泵、自动喷洒用消防泵和消防稳压泵),过负荷保护应作用于信号而不应作用于切断电路。 1 消防风机过负荷保护只报警不跳闸的实现 图8为两用单速风机(平时和消防均使用的风机,风机不可调速)电路图(10D303第21、22页)XKDF-1。从图8控制原理中可以看出,风机手动控制和平时DDC自动控制,热继电器常闭触点BB参与控制,风机过负荷后,热继电器常闭触点BB断开,接触器QAC线圈失电,主回路接触器QAC主动合触点断开,切断了风机主电路。而在消防状态下,无论由消防联动(模块)控制KA1,还是由消防控制室手动旋转开关“SF” 应急控制,热继电器常闭触点BB不参与控制,控制回路躲过热继电器常闭触点BB,风机过负荷,不会使接触器QAC线圈失电,不切断风机主电路。但风机过负荷时,热继电器常开触点BB闭合,会使声光报警(黄色信号灯PGY 点亮,蜂鸣器PB报警)。因此在消防状态下,实现了风机过负荷只作用于信号而不作用于切断电路。图中声响报警可以通过复位按钮“ SR ”解除。 2 消防水泵过负荷保护只报警不跳闸的实现 一般工程设计中消防风机无备用风机,而消防水泵一般是一台工作一台备用(或两用一备)。GB 50055-93《通用用电设备配电设计规范》第2.4.6条的条文说明中有这么一句话:“一、过载是导致电动机损坏的主要原因。……在为编制原规范而进行的调查中,收集到国内……以至美国

污水泵控制原理

潜水泵电路原理图 一、潜水泵的电路控制部分主要由交流接触器、热继电器、转换开关、指示灯、按钮、液位控制器、潜水泵过热保护器、中间继电器等元件组成。 二、交流接触器(CJ)是一种自动电磁式开关,适用于远距离频繁地接通或分断主电路的用电设备,具有控制容量大、动作可靠、操作效率高、使用寿命长等优点。交流接触器是利用电磁力作用下的吸合和反向弹簧作用下的释放,使主触点闭合和分断导致主电路的接通和分断。交流接触器主要由电磁系统、触头系统、灭弧装置及辅助部分构成。 1、电磁系统:由线圈、静铁心、动铁心组成。线圈电压有220V,380V,接触器分交流接触器和直流接触器。铁心用硅钢片叠制而成,做成E型状。 2、触头:主触头是用于接通和断开主电路,因此触头的质量很重要,必须用紫铜片制成,接触部分还要镀银,为了使触头接触紧密并消除触头开始接通时产生的颤动,在触头上还装有压紧弹簧。触头采用双断点桥式结构,两触头串连于同一电路中,同时接通或断开。主触头允许通过较大电流,(接触器的额定电流)称之为一次接线,辅助触头用于自锁、互锁等控制电路,只能通过小电流。称之为二次接线。 3、灭弧装置:当接触器断开较大电流时,动静触头之间会产生较强的电弧,其产生的光和热易使触头烧坏,因此减小电弧造成的危害至关重要,所以在接触器上装有灭弧罩,触头采用双断点桥式结构,使电弧分成两路,加大了电弧距离,减小触头分断电流,使电弧容易熄灭。型号为CT10-20、CT10-40。 4、接触器工作原理:线圈通电时产生磁场,使静铁心产生较大的吸引力,以克服弹簧的作用力将动铁心吸合,从而带动主触头闭合,接通主电路。辅助触头发出各种信号,以达到远距离控制的目的。当线圈失电或电压下降到一定数额时,静铁心产生的吸引力消失,动铁心在反向弹簧的作用下释放回复原先位置,接触器断开主电路。 三、热继电器:主要是利用电流的热效应对电动机或其它用电设备进行过载保护、断相保护、电流不平衡保护。热继电器形式有多种,双金属片式应用最多。热继电器主要由热元件、动作机构、触头系统、电流整定装置、复位机构、温度补偿元件组成。动作机构有偏心轮、推杆和拉簧组成。 1、热元件一般有2—3个,热元件由双金属片和绕在金属片上的电阻丝组成,其一端被固定,另一端为自由端。双金属片是将等长的具有不同的线膨胀系数的两种金属以机械方式碾为一个整体,膨胀系数大的一面为主动层,膨胀系数小的为从动层,当热量达到一定时,主动层向从动层伸缩,这样就由平直状态变为弯曲状态,这是热元件的工作原理。 2、电流整定装置:热继电器电流是指感温元作长期工作允许通过的最大电流,超过此值后,热继电器动作。通常整定值为被保护设备的额定电流值。复位机构分自动和手动,双金属片冷却后恢复原状,然后按复位键使触头闭合。 3、热继电器只能作为过载保护,不能作为短路保护(短路保护是熔断器来实现),因为双金属片从升温到发生弯曲直到断开常闭触头需要一个时间过程,不可能在短路瞬间分断电路。型号为JR36系列等 4、热继电器工作原理:热元件串接在被保护的负载电路中,被负载电流加热,正常情况下负载电流不超过热元件的额定电流,故产生的热量不足以使双金属片发生弯曲变形,电路处于接通状态。当负载电流超过其整定电流1.2倍时,双金属片受热膨胀而弯曲变形,从而推动动作机构动作,断开其常闭触点,常闭触头串接在接触器线圈控制回路中,当常闭触头断开时接触器线圈断电,切断控制电路使主电路断电起到过载保护作用。 四、潜水排污泵电路原理图说明: 1、手动:将转换开关打到手动位置,按下起动按钮QA,接触器线圈KM就有电流通过而吸合,接触器主回路常开触点(主触头)闭合,潜水泵运转。同时又使其与QA并联的辅助常开触点KM1闭合,当松开QA时,由于KM1常开触点依然闭合使回路保持畅通,凡是接触器利用它自己的辅助触点来保持线圈吸合的,我们都称它为“自锁”这个触点叫做自锁触点。如要使潜水泵停止运转,只须将停止按钮TA按下,接触器线圈失电而释放,接触器主回路常开触点即断开,潜水泵停止运转。 2、自动:将转换开关打到自动位置,当水位上升,液位控制器浮起,液位控制器内铁球滚动撞击导板移动从而推动触头系统动作,使触点D3-6与D3-5接通,接触器线圈KM有电流通过而吸合,潜水泵运转。当水位下降,液位控制器垂直向下,触点D3-6与D3-8接通,接触器线圈失电而释放,潜水泵停止运转。

相关文档
最新文档