高三数学不等式选讲 知识点和练习

高三数学不等式选讲 知识点和练习
高三数学不等式选讲 知识点和练习

不等式选讲

一、绝对值不等式 1.绝对值三角不等式

定理1:如果a,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立。

注:(1)绝对值三角不等式的向量形式及几何意义:当,不共线时,|+|≤||+||,它的几何意义就是三角形的两边之和大于第三边。

(2)不等式|a|-|b|≤|a ±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a|≥|b|。

定理2:如果a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。

2.绝对值不等式的解法

(1)含绝对值的不等式|x|<a 与|x|>a 的解集

注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x 到原点的距离;| x-a |±|x-b|)表示数轴上的点x 到点a,b 的距离之和(差)

(2)|ax+b|≤c(c >0)和|ax+b|≥c(c >0)型不等式的解法 ①|ax+b|≤c -c ≤ax+b ≤c;

②| ax+b|≥c ax+b ≥c 或ax+b ≤-c.

(3)|x-a|+|x-b|≥c(c >0)和|x-a|+|x-b|≤c(c >0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想;

方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

a b a b a

b

O ??

二、证明不等式的基本方法 1.比较法 (1)作差比较法

①理论依据:a >b a-b >0;a <b a-b <0. ②证明步骤:作差→变形→判断符号→得出结论。

注:作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系。

(2)作商比较法 ①理论依据: ②证明步骤:作商→变形→判断与1的大小关系→得出结论。 2.综合法

(1)定义:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得到命题成立,这种证明方法叫做综合法。综合法又叫做推证法或由因导果法。

(2)思路:综合法的思索路线是“由因导果”,也就是从一个(组)已知的不等式出发,不断地用必要条件代替前面的不等式,直至推导出要求证明的不等式。

3.分析法

(1)定义:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法。

(2)思路:分析法的思索路线是“执果索因”,即从要证的不等式出发,不断地用充分条件来代替前面的不等式,直到打到已知不等式为止。

注:综合法和分析法的内在联系是综合法往往是分析法的相反过程,其表述简单、条理清楚。当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,用综合法叙述、表达整个证明过程。

4.放缩法

(1)定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种证明方法称为放缩法。

??0,

1;a

b a b b

>>?>0,

1;a

b a b b

<>?<

(2)思路:分析证明式的形式特点,适当放大或缩小是证题关键。 5.除此之外还有反证法和数学归纳法

【绝对值不等式习题】

【例1】不等式|5||3|10x x -++≥的解集为

(A )[-5.7] (B )[-4,6]

(C )(,5][7,)-∞-?+∞ (D )(,4][6,)-∞-?+∞ 【答案】D 【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离 和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确

【例2】 已知集合{}

1|349,|4,(0,)A x R x x B x R x t t t

??=∈++-≤=∈=+∈+∞???

?

,则集合A B ?=________. 【答案】{}52|≤≤-∈x R x

【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,

()()?

?

????

+∞∈-?≥∈=??????+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,

∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A .

【例3】对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为.【答案】5

【例4】不等式130x x +--≥的解集是______.

【解析】}1|{≥x x 。由题得1)3()1(|3||1|2

2≥∴-≥+∴-≥+x x x x x 所以不等式

的解集为}1|{≥x x 。

【例5】若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 【答案】(,3][3,)-∞-+∞

【解析】:因为12|12|3x x x x ++-≥+-+=所以12a x x ≥++-存在实数解,有

3a ≥3a ≤-或3a ≥

【例6】已知函数f (x )=|x-2|-|x-5|.

(I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2

-8x+15的解集.

解:(I )3,

2,()|2||5|27,25,3, 5.x f x x x x x x -≤??

=---=-<

当25,327 3.x x <<-<-<时 所以3() 3.f x -≤≤ (II )由(I )可知,

当2

2,()815x f x x x ≤≥-+时的解集为空集;

当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.

综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为

【例7】已知函数 (1)解关于的不等式;

(2)若函数的图象恒在函数图象的上方,求的取值范围。

解:(1)不等式,即。 当时,不等式的解集是; 当时,不等式的解集为;

()|2|,()|3|.f x x g x x m =-=-++x ()10()f x a a R +->∈()f x ()g x m ()10f x a +->210x a -+->1a =(,2)(2,)-∞+∞ 1a >R

当时,即,即或者,即或者

,解集为。 (5分)

(2)函数的图象恒在函数图象的上方,即对任意实数

恒成立。即对任意实数恒成立。

由于,故只要。 所以的取值范围是。

【不等式证明习题】

【例1】若a ,b ,c 为不全相等的正数,求证:

lg a +b 2+lg b +c 2+lg a +c 2

>lg a +lg b +lg c.

证明: 由a ,b ,c 为正数,得

lg a +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c 2≥lg ac.

而a ,b ,c 不全相等,

所以lg a +b 2+lg b +c 2+lg a +c 2

>lg ab +lg bc +lg ac =lg a 2b 2c 2

=lg(abc)=lg a

+lg b +lg c.

即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c.

【例2】证明不等式1+

).(21

...3121+∈+++N n n n

证法一 (1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立

(2)假设n=k(k ≥1)时,不等式成立,即1+k

1

3121+

++ <2k , ,

121

1

)1(1

1

)1(21

12113

12

11+=++++<

+++=

++

<++++

+k k k k k k k k k k 则

∴当n=k+1时,不等式成立

综合(1)、(2)得 当n ∈N *

时,都有1+

n

13

12

1+

++

证法二 对任意k ∈N *

,都有

1a <21x a ->-21x a -<-21x a ->-1x a <+3x a >-(,1)(3,

)a a -∞+-

+∞ ()f x

()g

x 23x x m ->-++x 23x x m -++>x 23(2)(3)5x x x x -++≥--+=5m

.

2)1(2)23(2)12(221

31211),

1(21

2

2

1n n n n

k k k k k k k

=--++-+-+<++++--=-+<

+=

因此

证法三 设f(n)=),13

12

11(2n

n +

++

+

-

那么对任意k ∈N *

都有

1

)1(])1(2)1[(1

1]1)1(2)1(2[111

1)1(2)()1(2

>+-+=

++-+?+=

-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f

∴f(k+1)>f(k)

因此,对任意n ∈N *

都有f(n)>f(n -1)>…>f(1)=1>0,

∴.2131211n n <++++

【例3】已知a >0,b >0,且a+b=1 求证(a+

a 1)(b+

b 1)4

25

证法一 (分析综合法)

欲证原式,即证4(ab)2+4(a 2+b 2

)-25ab+4≥0,

即证4(ab)2

-33(ab)+8≥0,即证ab ≤

4

1

或ab ≥8 ∵a >0,b >0,a+b=1,∴ab ≥8不可能成立 ∵1=a+b ≥2ab ,∴ab ≤4

1

,从而得证 证法二 (比较法)

∵a+b=1,a >0,b >0,∴a+b ≥2ab ,∴ab ≤

4

1 425)1)(1(0

4)8)(41(4833442511425)1)(1(2222≥

++∴≥--=++=-+?+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法三 (综合法)

∵a+b=1, a >0,b >0,∴a+b ≥2ab ,∴ab 4

1

2

2

2

25(1)1139(1)1251611(1)144164

4ab ab ab ab ab ab

?-+≥?-+?∴-≥-=?-≥??≥

??≥??

4

25

)1)(1(≥

++b b a a 即 【例4】已知*21().n n a n N =-∈求证:

*12

231

1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111

.,1,2,...,,2122(21)2 3.222232k k k k k k k

k a k n a +++-==-=-≥-=--+-

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 【例5】若02<

<

证明:由题意知202020->->->a b c ,,

假设有()()()21

2121->->->???

?

?a b b c c a

那么

()()2221

-+≥->a b

a b 同理,

()22

1

-+>b c

()22

1

-+>c a

①+②+③,得33>矛盾,假设不成立。 故()2-ab ,()2-bc ,()2-ca 不能同时大于1。 【例6】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).

(1)求f (x )的单调区间;

(2)求证:当m >n >0时,(1+m )n

<(1+n )m

. 【解析】(1)f ′(x )=1-a ln(x +1)-a ,

①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,

a

a

-1e -1]上单调递增,在[

a

a -1e -1,+∞)单调递减.

(2)证明:要证(1+m )n <(1+n )m

,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m

ln(1+n )

n

.

设g (x )=ln(1+x )x (x >0),则g ′(x )=x

1+x -ln(1+x )x 2

=x -(1+x )ln(1+x )

x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

不等式选讲高考真题

不等式选讲综合测试 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.若||||a c b -<,则下列不等式中正确的是( ). A .a b c <+ B .a c b >- C .||||||a b c >- D .||||||a b c <+ 2.设0,0,1x y x y A x y +>>=++, 11x y B x y =+++,则,A B 的大小关系是( ). 2.B 11111x y x y x y B A x y x y y x x y +=+>+==++++++++,即A B <. 3.设命题甲:|1|2x ->,命题乙:3x >,则甲是乙的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知,,a b c 为非零实数,则222222111()()a b c a b c ++++最小值为( ) . A .7 B .9 C .12 D .18 4.B 22222222111111()()()(111)9a b c a b c a b c a b c ++++≥?+?+?=++=, ∴所求最小值为9. 5.正数,,,a b c d 满足a d b c +=+,||||a d b c -<-,则有( ). A .ad bc = B .ad bc < C .ad bc > D .ad 与bc 大小不定 5.C 特殊值:正数2,1,4,3a b c d ====,满足||||a d b c -<-,得ad bc >. 或由a d b c +=+得222222a ad d b bc c ++=++, ∴2222()()22a d b c bc ad +-+=-,(1) 由||||a d b c -<-得222222a ad d b bc c -+<-+,(2) 将(1)代入(2)得2222bc ad bc ad -<-+,即44bc ad <,∴ad bc >. 6.如果关于x 的不等式250x a -≤的非负整数解是0,1,2,3,那么实数a 的取值 范围是( ). A .4580a ≤< B .5080a << C .80a < D .45a > 6.A 250x a -≤,得≤,而正整数解是1,2,3,则34≤<. 7.设,,1a b c >,则log 2log 4log a b c b c a ++的最小值为( ).

高三数学第二轮复习教案 不等式的问题 人教版

高三数学第二轮复习教案不等式问题的题型与方法三 (3课时) 一、考试内容 不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式 二、考试要求 1.理解不等式的性质及其证明。 2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。 3.掌握分析法、综合法、比较法证明简单的不等式。 4.掌握简单不等式的解法。 5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。 三、复习目标 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.四、双基透视 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的. 6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点. 7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

不等式选讲内容题型大全不看后悔

不等式选讲内容题型大全不看后悔 1.绝对值不等式的解法 一.简单的去绝对值情形 1.不等式:32-x ≤1的解集是_______ ___. 2.不等式:1-x ≥3的解集是_______ _ _. 3.解不等式:312>-+ x x 的解集是_______ _ _. 4.(2008·山东高考题)若不等式4|3|<-b x 的解集中的整数有且仅有1、2、3,则b 的取值范围为 。 5.设集合{}1,A x x a x = -<∈R ,{}2,B x x b x =->∈R .若A B ?,则实数,a b 必满足( ). A.3a b +≤ B.3a b +≥ C.3a b -≤ D.3a b -≥ 6. 不等式: 123-<+x x 的解集是_______ _ _. 7.(2007广东,14)(不等式选讲选做题) 设函数)2(,3|12|)(-++-=f x x x f 则= ;若5)(≤x f ,则x 的取值范围是 。 8.(2011年高考江苏卷21)选修4-5:不等式选讲(本小题满分10分) 解不等式:|21|3x x +-< 9. (2011年高考全国新课标卷理科24)(本小题满分10分) 选修4-5不等选讲 设函数0,3)(>+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集; (2)如果不等式0)(≤x f 的解集为{}1-≤x x ,求a 的值。 二.只涉及两个绝对值,不再有其它项时,用平方法去绝对值 例:1. 不等式130x x +--≥的解集是___ ___. 2.(2011年高考广东卷理科9)不等式 130x x +--≥的解集是______. 3. (2009广东14)不等式1| 2||1|≥++x x 的实数解为 . 4.若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

《选修4-5 不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|0)?-a

高三数学一轮复习 18 基本不等式及其应用学案 文

学案18 基本不等式及其应用 班级________姓名________ 【导学目标】 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 1.基本不等式 ab ≤ a +b 2 (1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式 (1)a 2+b 2≥__________(a ,b ∈R ). (2)b a +a b ≥____(a ,b 同号). (3)ab ≤? ?? ?? a + b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________; 基本不等式可叙述为:________________________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大). 5.一个结论:11 02; 0 2.x x x x x x >+ ≥<+≤-当时,则当时,则 【自我检测】 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 2.已知t >0,则函数y = t 2-4t +1 t 的最小值为________.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

不等式选讲大题及答案

选修4-5 :不等式选讲 不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式, 包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。 1. ( 2013 全国I 24 .)已知函数f(x) |2x 1| |2x a|, g(x) x 3。 (i)当a 2时,求不等式f(x) g(x)的解集; a 1 (n)设a 1,且当x [ 2,2>时,f(x) g(x),求a的取值范围。 2. (2014 全国1 24 )若a 0,b 1 1 0,且丄丄 ,ab a b (I )求a3b3的最小值; (II )是否存在a,b,使得2a 3b 6 ?并说明理由 3. (2015全国1 2 4.)已知函数f x x 1 2 x a ,a 0 (I )当a 1时求不等式f x 1的解集; (II )若f x 图像与x轴围成的三角形面积大于6,求a的取值范围

4. (2013全国II 24 .)设均为正数,且, 证明:(i);(n) 1 |X a |(a 0) 5. (2014 全国II 24.)设函数f(x) |X | a (1)证明:f(x) 2 ; (2)若f (3) 5,求a的取值范围 6. ( 2015 全国II 24. )设均为正数,且. 证明:(I )若,则; (ll )是的充要条件

1 2x 2 x 3,则 y x 2 - x 1, 2 3x 6,x 1. 其图像如图所示 从图像可知,当且仅当 x (0,2)时,y<0,所以原不等式的解集是 x 0 x 2 a 1 (II )当 x , f (x) 1 a.不等式 f (x) W g(x)化为 1+a w x+3. 2 2 所以x > a-2对x 二丄都成立,故 a a 4 2 ,即a ,所以a 的范围 2 2 2 3 3 __ 1 1 2.解:(I )由,ab ,得 ab 2 , 且当a b .. 2时等号成立. a b '一 ab 故 a 3 b 3 2 a 3b 3 4、、2 ,且当 a b .2 时等号成立. 所以a 3 b 3的最小值为412 .……5分 (II )由(I )知,2a 3b 2.6 . ab 4,3. 由于4 .3 6,从而不存在a,b ,使得2a 3b 6. ……10分 3. x 1 2a, x 1 (n)由题设可得, f (x) 3x 1 2a, 1 x a , x 1 2a, x a 所以函数f (x)的图像与x 轴围成的三角形的三个顶点分别为 2a 1 2 A( ,0) , B(2a 1,0), C(a,a+1),所以△ ABC 的面积为三(a 1)2. 1 ?解: (1 )当 a 2时,不等式 f (x)

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

高三数学考前复习——第2讲 不等式选讲(大题)

高三数学考前复习——第2讲 不等式选讲(大题) 热点一 含绝对值不等式的解法 1.用零点分段法解绝对值不等式的步骤 (1)求零点. (2)划区间、去绝对值符号. (3)分别解去掉绝对值的不等式. (4)取每个结果的并集,注意在分段时不要遗漏区间的端点值. 2.用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法. 例1 (2019·四川调研)已知函数f (x )=|x -2|-|x -1|. (1)若正数a ,b 满足a +2b =f (-1),求2a +1 b 的最小值; (2)解不等式f (x )>1 2 . 解 (1)由题意得a +2b =f (-1)=1, 又a >0,b >0, 所以2a +1b =????2a +1b ×(a +2b )=4+4b a +a b ≥4+24=8. 当且仅当a =12,b =1 4时等号成立. 所以2a +1 b 的最小值为8. (2)f (x )=|x -2|-|x -1|. ①当x ≤1时,f (x )=2-x -(1-x )=1, 由f (x )>1 2 ,解得x ≤1;

②当11 2, 即3-2x >12,解得x <5 4, 又11 2, 此时不等式无解. 综上,不等式f (x )>1 2的解集为????-∞,54. 跟踪演练1 设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =3时,不等式f (x )≥5x +1, 即|2x -3|+5x ≥5x +1, 即|2x -3|≥1,解得x ≥2或x ≤1, ∴不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}. (2)由f (x )≤0,得|2x -a |+5x ≤0, 即????? x ≥a 2,7x -a ≤0或????? x 0, ∴不等式f (x )≤0的解集为? ????? x ?? x ≤-a 3, 由题意得-a 3 =-1,解得a =3. 热点二 含绝对值不等式恒成立(存在)问题 绝对值不等式的恒成立(存在)问题的求解策略 (1)分离参数:根据不等式将参数分离,化为a ≥f (x )或a ≤f (x )的形式. (2)转化最值:f (x )>a 恒成立?f (x )min >a ;f (x )a 有解?f (x )max >a ;f (x )a 无解?f (x )max ≤a ;f (x )

不等式选讲大题及答案()

选修4-5:不等式选讲 不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式,包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。 1.(2013全国I 24.)已知函数()|21||2|f x x x a =-++,()3g x x =+。 (Ⅰ)当2a =-时,求不等式()()f x g x <的解集; (Ⅱ)设1a >-,且当1[,)22 a x ∈-时,()()f x g x ≤,求a 的取值范围。 2.(2014全国I 24)若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由. 3.(2015全国I 2 4. )已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集; (II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 4.(2013全国II 24.)设,,a b c 均为正数,且1a b c ++=, 证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 5.(2014全国II 24.)设函数1()||||(0)f x x x a a a =++-> (1)证明:()2f x ≥; (2)若(3)5f <,求a 的取值范围. 6.(2015全国II 24. )设,,,a b c d 均为正数,且a b c d +=+. 证明:(I )若ab cd > ,> (II )>a b c d -<-的充要条件.

相关文档
最新文档