微带传输线的特性分析

微带传输线的特性分析
微带传输线的特性分析

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

传输线反射以及终端电阻

传输线反射以及终端电阻 传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器 ,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻 R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

形状参数分布特性_图文(精)

方数据 万 86农业机械学报 来自东北农业大学种子站,小麦籽粒的各项指标:小麦籽粒的容积质量及千粒质量由种子站给出,含水率自行测定,测定含水率时使用的仪器为 KANEK0DIGITAL PERCENTER DP一5型快速水分测量仪。试验样品的容积质量、干粒质量、含水率如表1所示。 1.2试验方法 将各种小麦籽粒分别装入密闭塑料袋中,放入冰箱,冰箱内的温度为6℃。 试验时取出适量小麦籽粒,去掉病粒、畸形粒后每个品种随机抽样75粒,使其回升至室温后进行试验。将小麦籽粒的尾毛去掉,并作适当净化处理,使其颜色变浅,以便进行图像处理时能够获得较好的图像分割效果。图像摄入计算机后,以BMP 文件存在硬盘内,以便随时调用。图像摄取之后,对每粒籽粒进行称量,电子天平的型号为HANGPING JA5003(精度1/1ooo g。 表1试验样品的物理特性 Tab.1Physicm propenies oftk experimental s蛐ples 2小麦籽粒形状参数分形特性研究 2.1网格法的基本原理 将欧氏空间R”分为尽可能细的△网格,当正规等测度分割时,即作以维以△ 为、间隔的分割,将集合x离散为数字点集,用Ⅳa表示离散空间(间距为△上的集合x的计点数。将△网格逐次放大为 K△网格,而Ⅳ"表示离散空间(间距为K△上的集

合x的计点数。得到愚个不同网格宽度上的计点数Ⅳ砧,愚一1,2,…,K。二维空间的数字点集分割过程见图1。 衄- 图1数字点集分割 Fig.1Segment of digital assembly 设zl—lg愚,弘一lgⅣm则点集(z^,挑所构成直线的斜率的绝对值就是其分形维数[5]。 2.2分形特性研究 应用上述理论及方法研究小麦粒形分型特性, 在长度、宽度、厚度、粒质量等参数间,对每次任选的两个参数,绘制其散点图,利用网格法计算其咒、 h,求点集(冠,h所构成直线斜率绝对值,作为这两个参数间的分形维数。 以东农99—6501小麦籽粒为例,样品数为60粒时其宽度与长度间的计点数M 及兄、n、的值见表2。X^、K的线性回归方程为K=一o.3774冠+ 5.076,相关系数R2一o.9292,方程显著相关。由图2看出,回归方程曲线拟合较好。东农99—6501小麦籽粒的宽度与长度之间的分形维数为o.3774。其他参数间的分形维数计算方法相同。4种小麦籽粒各参数间的分形维数值见表3。 表2东农鲫一6501小麦籽粒宽度长度分形维数 Tab.2 Fractu聆mme瑚iOn betw∞n稍d也眦d Ie唧恤 for wheat kerneb Of n蛆u 99—6501 5.O 4.8 蕾4.6

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

传输线的特性阻抗分析

传输线的特性阻抗分析 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段l可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。

传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。 单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下: ?? 与迹线到参考平面的距离(介质层厚度)成正比 ?? 与迹线的线宽成反比

同轴线的特征阻抗

任健201520000114 李晶201520000115 同轴线特性阻抗测量方法综述 一.前言 微波工程中复杂截面传输线已经广泛用于微波滤波器、定向耦合器、阻抗变换器以及振荡电路等场合。求解这类传输线的特性阻抗由于其结构特点,要分析其各种特性参数和场分布,一般都不能用常规解析法进行直接求解目前,采用的方法大致有近似解析法、保角变换法、多极理论法等,这篇文章将对几种方法进行简单的介绍。二.数值计算法 数值计算方法具有较好的通用性,但由于圆形传输线的边界是曲线,为获得较高的计算精度一般都要采用样条拟合的方法进行求解,数学处理比较复杂,所以数值计算方法的使用需要较高的专业技能,且对计算机资源要求较高。 三.有限元法 有限元法是以变分原理剖分差值为基础的方法,它不仅具有变分方法的优点,而且兼有差分方法的灵活性。它在40年代初就已提出,随着高速电子计算机的出现和发展,它的技术日趋成熟,应用也越来越广泛。 由于TEM传输线的横向场型比拟于相同截面结构的二维静电场型,所以我们可以应用静电场的方法求解特性阻抗由静电场所满足的

一定边界条件下的拉普拉斯方程求出电位分布后,根据传输线单位长度静电场储能和单位长度静电电容、电位差的关系,求得静电电容,再根据静电电容和特性阻抗的关系,得到传输线的特性阻抗。 [2]基于Matlab PDE工具箱的有限元算法,引用静电场计算方法,计算了内圆外正N边形、外圆内正N边形正多边形、外矩内圆、矩形、外椭圆内圆柱、偏心圆等各种复杂面低损耗同轴传输线的特性阻抗并与各种文献结果进行了比较。 由于传输线的横向场型比拟于相同截面结构的二维静电场型,设由导体面Sa. Sb。构成的两分立导体间的电位差值为Uo、并设导体表面Sb。上为参考零电位,则可写出电位函数的狄利克雷问题。如果解出边界条件U|xa=Uo和U|xb=0下的电位u的分布值,根据传输线单位长度静电场储能和单位长度静电电容、电位差的关系,可推得,静电电容c的计算式 式中X为同轴传输线绝缘材料的相对介电常数,真空或空气中的X为Xo传输线的特性阻抗为:

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

围岩强度和变形参数的分布特征及可靠性分析

2010年11月 Rock and Soil Mechanics Nov. 2010 收稿日期:2010-05-12 基金项目:国家自然科学基金资助项目(No. 40872178);上海市重点学科建设项目资助(No. B308)。 第一作者简介:闫春岭,男,1975年生,博士研究生,讲师,主要从事岩土力学及工程地质方面的研究与教学。 文章编号:1000-7598 (2010)增刊2-0349-06 围岩强度和变形参数的分布特征及可靠性分析 闫春岭1, 2,丁德馨3,唐益群1, 2,毕忠伟3 (1. 同济大学 岩土及地下工程教育部重点实验室,上海 200092,2. 同济大学 地下建筑与工程系,上海 200092; 3. 南华大学 核资源与安全工程学院,湖南 衡阳 421001) 摘 要:从康家湾铅锌金矿Ⅲ-1号矿体上盘围岩取大量岩样,分别加工制作了50个压缩和拉伸试验的试样。利用RMT-150B 伺服试验系统对试样进行单轴抗压、抗拉试验,各获得了50个试验结果。采用假设检验法,分别对50个单轴抗压强度和50个抗拉强度进行检验,结果表明,它们分别服从正态分布和对数正态分布;对50个E 、μ和50个C 、?,进行不放回抽样,组成50组E 、μ、C 、?。利用FLAC 计算软件,对硐室围岩中的应力进行了计算,分别获得了50个最大主应力和50个最小主应力;采用同样假设检验法,证明它们分别服从对数正态和正态分布;根据单轴抗压、抗拉强度及围岩中的最大主应力、最小主应力概率密度函数,计算了硐室围岩不发生拉伸破坏和压缩破坏的可靠度;并对硐室围岩抗剪强度的校核,得出了该地下硐室围岩稳定的结论。 关 键 词:可靠性;围岩;力学参数;概率分布 中图分类号:TU 458 文献标识码:A Probability distribution of strength parameters and deformation parameters of surrounding rock and reliability analysis YAN Chun-ling 1, 2,DING De-xin 3,TANG Yi-qun 1, 2,BI Zhong-wei 3 (1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University ,Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. School of Nuclear Resources and Safety Engineering, University of South China, Hengyang, Hunan 421001, China) Abstract: Cores were taken from hanging wall of the Ⅲ-1 ore body at Kangjiawan Lead ,Zink and Gold Mine. 50 samples for compression tests and 50 samples for tension tests were fabricated. And 50 compressive strength values and 50 tensile strength values were obtained by using the electro-hydraulic and servo-controlled testing system RMT-150B. The probability distributions for the compressive strength and tensile strength were tested by using the obtained compressive strength values and tensile strength values and the hypothesis test method. It is shown that the uniaxial compressive strength follows normal distribution; and uniaxial tensile strength follows the lognormal distribution. It composes of 50 groups of E , μ, C , ? by random sampling to 50E , μand 50 C , ? without replacement. The stress of surrounding rock was calculated by using FLAC and 50 maximum values and 50 minimum values were respectively gained. The results show the former follows lognormal distribution and the latter follows normal distribution. The reliability of surrounding rock without tensile and compression failure was calculated under uniaxial compressive, tensile strength and probability density function of maximum and minor principal stress. Shear strength and the stability of surrounding rock were checked. Key words: reliability; surrounding rock mass; mechanical parameters; probability distribution 1 引 言 岩土工程的可靠度研究开始于20世纪50年代后期[1]。1956年Casagrande [2]提出了土工和基础工程中计算风险的问题,在岩土工程领域中最早论述了风险问题,直到60年代才有较多的人注意这方面 的研究。大量的报导出现在70年代,可靠度研究取得了很大的进展,Meyerhof 、Lumo 和Wu 等[3]都研究了岩土工程中安全系数与失效概率的关系,讨论岩土变异性对失效概率的影响;松尾稔[4]系统地论述了可靠度设计的现状和发展可靠度设计需要解决的问题;Harr 在他所著的Mechanics of Particulate

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

实验1 理想微带传输线特性阻抗模拟

實驗一理想微帶傳輸線特性阻抗模擬 ㄧ、原理說明 一般常見的電子電路都是以集總模式(lumped mode)來描述電路的行為,主要的假設是電路的工作波長遠大於實際電路尺度的大小,在頻率很低時可以得到相當正確的近似。然而電路工作頻率變高時,也就是說工作波長與實際電路尺度大小差不多時,以集總模式來描述電路的行為其誤差相當大,因此必須以分散式模式(distributed mode )來考慮電路的行為,分散式模式的做法是將電路分成很小的片段,每一小片段可用電阻、電容及電感代表小片段的電路的行為,將每一小片段整合起來即為整個電路的行為。圖1.1為傳輸線的等效電路圖,根據此圖可列出電壓在x+ x與x處的電壓差方程式,配合 圖1.1 傳輸線的等效電路圖

RLCG 元件可得出公式(1-1),同理可得出電流方程式(1-2)。 兩邊同時除以?x ,可得公式(1-3)及(1-4) 兩邊對x 微分,得公式(1-5)及(1-6) 將公式(1-4)及(1-6)代入公式(1-5),得 以極座標向量(phasor notation)表示電壓電流 可得到頻率領域的表示式 (,)(,)(,)(,)()(,)() (1-1) (,) (,)(,)(,)()(,)() (1-2) i x t v x x t v x t v x t R x i x t L x t v x x t i x x t i x t i x t G x v x x t C x t ?+?-=?=-?-???+?+?-=?=-?+?-??(,)(,)(,) (1-3)(,)(,) (,) v x t i x t Ri x t L x t i x t v x t G v x t C x t ??=--????=--?? (1-4) 2 2 22 2 2 (,)(,)(,) (1-5)(,)(,)(,) v x t i x t i x t R L x x x t i x t v x t v x t G C t x t t ???=--???????=--???? (1-6) 2 2 22 2 2 2 2 (,)(,)(,)()(,)0 (1-7) (,)(,)(,)() (,)0 (1-8) v x t v x t v x t RC LG LC RG v x t x t t i x t i x t i x t RC LG LC RG i x t x t t ???-+--=??????-+--=???(,)Re[()] (1-9) (,)Re[()] jwt jwt v x t V x e i x t I x e == (1-10)

集总参数和分布参数

集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式 λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

传输线特性阻抗基知识

什么叫传输线的特性阻抗? 传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。 传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。

单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下:与迹线到参考平面的距离(介质层厚度)成正比 与迹线的线宽成反比 与迹线的高度成反比 与介电常数的平方根成反比 单端传输线特性阻抗的范围通常情况下为25Ω至120Ω,几个较常用的值是28Ω、33Ω、50Ω、52.5Ω、58Ω、65Ω、75Ω。 差分传输线路 下图为典型的差分(通常称为平衡式)传输线电路。 差分传输线适用于对噪声隔离和改善时钟频率要求较高的情况。在差分模式中,传输线路是成对布放的,两条线路上传输的信号电压、电流值相等,但相位(极性)相反。由于信号在一对迹线中进行传输,在其中一条迹线上出现的任何电子噪声与另一条迹线上出现的电子噪声完全相同(并非反向),两条线路之间生成的场将相互抵消,因此与单端非平衡式传输线相比,只产生极小的地线回路噪声,并且减少了外部噪声的问题。 这是一个平衡线路的示例-- 信号线和回路线的几何尺寸相同。平衡式传输线不会对其他线路产生噪声,同时也不易受系统其他线路产生的噪声的干扰。 差分模式传输线的特性阻抗(也就是通常所说的差分阻抗)指的是差分传输线中两条导线之间的阻抗,它与差分传输线中每条导线对地的特性阻抗是有区别的,

(完整word版)传输线理论

实验一:传输线理论* (Transmission Line Theory) 一.实验目的: 1.了解基本传输线、微带线的特性。 2.利用实验模组实际测量以了解微带线的特性。 3.利用MICROWA VE软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 微带线模组1组RF2KM1-1A, 3 50ΩBNC 连接线2条CA-1、CA-2 (粉红色) 4 1MΩBNC 连接线2条CA-3、CA-4(黑色) 5 MICROWA VE软件1套微波电路设计软件 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R、L、G、C等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z轴的方向,则由基尔霍夫电压及电流定律可得下列二个传输线方程式: 此两个方程式的解可写成: ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z V LG RC j z V LC RG dz z V d ω ω ) ( ) ( ) ( ) ( ) (2 2 2 = + - - -z I LG RC j z I LC RG dz z I d ω ω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I -分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++ ≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

相关文档
最新文档