耳机修理

耳机修理
耳机修理

公欲善其事,必先利其器!

工具一:万用表(50-1XXX元)

万用表在耳机的维修中,主要起到判断一款耳机线路以及耳机单元通断的作用。耳机内部的小秘密

耳机的驱动单元

去除耳壳的大口径驱动单元特写。

振膜以及音圈

振膜是塑料材质的,和音箱扬声器一样。为了提高低音的刚性,振膜上方有螺旋状的压槽,这种设计也曾被用于音箱的低音扬声器上。塑料材质的振膜很轻薄,很容易驱动。

中央部分的铜线圈就是音圈,它由一根引线引出,通过焊点和导线连接。引线使用胶水固定在振膜上,胶水的厚度会影响振膜的振动质量。

去掉振膜和音圈后的驱动单元,中间的部分是磁钢。外围的黑色塑料元件既是膜片支架也是磁钢固定件。磁钢中心的圆形槽就是容纳音圈的地方,这和音箱的高音扬声器几乎是完全一样的。

修理耳机前先诊断故障的原因

有故障的耳机会出现:耳机(单元)不响、左右声道不均衡、声音扭曲变形这三种情况。

耳机单元不响:

这种情况维修起来会比较麻烦,主要是因为耳机内部导线断裂、耳机插头导线断裂以及耳机单元内部音圈烧毁而造成。

声音扭曲变形:

这个问题最主要的现象是耳机出现“破音”或者发出的全是噪音。

一般“破音”很容易出现在高频和低频上。出现这种情况是因为用户在使用时将耳机的音量开的过大,让单元过载,从而造成磁钢移位。表现为在用耳机回放某一频段的高频信号时,会出现声音的破裂、失真。同样,在回放某一频段的低频也如此。

噪音(沙沙声、滋滋声),主要是因为耳机单元内部的音圈在振动时碰到了磁钢的边缘部分而产生的噪音。

维修进行时

诊断:

维修:首先把耳机的海绵套给摘下来。拆下作为装饰物的耳机外壳, 接下来我们要用电烙铁把损坏的耳机导线焊下来。

注意;两个耳机的左右方位不要搞错,每个耳机的正负极一定要分清,焊接时可以将耳机的开口位置朝着自己,这样左、右即分为正、负极(一般而言,红线或者绿线为正极,另外一根为负极),否则修好的耳机会出现音场错位的情况。

替换线材; 现在主流随身听耳机均采用OFC无氧铜作为线材的原料,以保证信号强度不会有太大衰减。

耳塞式耳机; 基本上,绝大多数的耳塞拆卸方式都是一样的,只需用一只手捏住耳塞柄,另外一只手捏住耳塞前端的部分,再用力一掰便可以将耳机分开了。不过要记住在掰的时候要逐渐用力,将耳壳部分慢慢取下。要注意的是,千万不要用力过猛,否则很有可能会令耳塞“伤上加伤”。

耳机电路

针对手机耳机:

为了解答该问题,我们将耳机插头上的四个极从插头顶端到靠近电线塑胶部分依次定义为:“A、B、C、D”。

一、一般品牌的手机耳机:

D为负极共用;

A接左喇叭正极,经过喇叭后到达D(D为负极共用);

B接右喇叭正极,经过喇叭后到达D(D为负极共用);

C接麦克风正极,经过喇叭后到达D(D为负极共用)。

二、苹果iPhone手机耳机:

C为负极共用;

A接左喇叭正极,经过喇叭后到达C(C为负极共用);

B接右喇叭正极,经过喇叭后到达C(C为负极共用);

D接麦克风正极,经过喇叭后到达C(C为负极共用)。

下面是普通的三极耳机(不含麦克风)的接线图,供您理解参考:

耳放制作HIFI耳机放大器 PCB 电路图 及全套设计资料

对于47耳放的完美改进制作高保真耳机放大器 之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。 虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。 所以,决定自己动手做一个耳放。 这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。便动手做了起来。 一、放大部分 47耳放是一位外国人设计的电路,电路如图。 因为电路中有较多以47为参数的元件所以称作47耳放。 传说中的47耳放结构其实是很简单的, 第一级运放进行负反馈控制放大倍数进行比例放大, 第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。 两个运放输出经过两个47欧匀流电阻输出致耳机。 因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。 曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。 于是,开工了。 首先线路图

电路没有添加音量电位器,只做了放大部分。这样一来功能比较独立,方便以后的各种组合。 47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。当然OPA2132的价格也是很高档的。我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。 由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。所以我在反馈电阻的位置串联了电容,也就是C03 C04两个电容,将直流反馈变为交流反馈,这样可以使输出中点控制在1MV以下。换成其他运放如果没有中点问题这个电容的位置可以直通。 反馈采样部分依然从输出取,并在R05 R06 上面并联了C05 C06,作用是超前补偿,不需要的话可以留空。 电源部分增加了两个退耦电解电容C07 C08,并习惯性的在两个电解上并联了小电容C09 C10。 最后增加伏地电阻R。伏地可以吸收一部分地线的干扰信号让信号地更加纯净。当然还有一个作用,那就是在布线的时候可以在视觉上隔离信号地与电源地,为合理布线带来方便。 线路做好了,接下来的工作就是布线了。 话说这个47耳放市面上卖的款式很多,但是在设计PCB的时候好像只注重外观而忽略了对布线的要求,最终导致一些电路声音不好,严重的甚至出现交流声。 吸取了别人的经验教训,所以在画这个板子的时候就注意了很多。 退耦电容两两一组,原则为电源经过退耦电容再连接至IC,这样可以有效吸收放大器工作时候产生的耦合信号,也可以避免由于电源线过长引起的干扰信号进入放大器。 简单说下地线。地线主要分为电源地和信号地,这两个地也可能是连在一起的,但是作用不同。电源地主要提供大电流电源,一般功率输

HIFI耳机放大电路大全

HIFI耳机放大电路大全 对音响发烧友来说,发烧音响就等于烧钱,对一些经济条件不十分宽裕的发烧族来说,玩耳机就是一个很好的不需要太多的钱的最佳发烧途径了,原因很简单,一般来说,花两三百块钱连市面上劣质的音响器材都难买下来,但是却能买到一副很不错的发烧耳机,而且耳机的频率响应和各项指标一点都不逊于高档的扬声器单元,这也是耳机放大器DIY在国内外流行的主要原因,耳机放大器中,一般优秀的分立元件电路在国内外网站上都见过不少,还有电子管制作的,但是对一般的爱好者来说就是元器件难以寻找,管子的配对也是一个头痛的问题,电子管制作主要的变压器难已解决。 下面应网友的要求,特找来一些易于制作的耳机放大电路,供动手能力好一点的爱好者参考制作,电路图的来源于国内外网站,以及电子杂志。如果有侵犯了你的版权,请通知我,我会删去。 LC-KING A(甲)类耳机放大电路 上图为电路图,电路很简洁,前级放大推动为NE5532或其它类型的OP,U2A为DC SERVER,用于稳定中点的电位,推动级2SD882为NPN型功率三极管,该管工作在甲类状态,因此发热量较大,流经的R11,R31的电流可以通过改变它的阻值来调整,在制作时三极管要加散热器。

LC-KING的AB类放大器电路 上图为LC-KING 的甲已类功率放大电路,后级的放大由对管2SD882(NPN)和2SB772(PNP)TL072为直流伺服电路,起稳定电位的作用。 LC-KING的放大电路比较简洁,制作上并不困难,可以用洞洞板来完成,后极的三极管也可以换成其它的管子。放大器的电源对音质的影响也很大,用洼田电源当然是很好的,也可以用伺服电源,原图的电源有一点复杂,关键是有些元器件很偏,因此没有放到网上。

TDA2822电路图详解

TDA2822详解,(后附电路图) 一般的集成功放电路外围元件较多且需要较大的散热器。本文介绍的功放电路简单,自制方便。TDA2822集成功放电路常用在随身听、便携式的DVD等音频放音用;功率不是很大但以可以满足您的听觉要求了,且有电路简单、音质好、电压范围宽等特点,是业余制作小功放的较佳选择。 制造商: STMicroelectronics TDA2822 产品种类: 音频功率放大器(Audio Power Amplifier) 产品类型: Class-AB(AB类音频功率放大器) 输出功率: 1.7W 输出类型: 1-Channel Mono or 2-Channel Stereo(桥接单声道或立体声双声道) 可用增益调整: 39 dB 总谐波失真+噪声(THD+N): 0.2 % @ 8 Ohm(Ω) @ 500 mW 电源电压(最大值): 15 V 电源电压(最小值): 1.8 V 电源类型: Single(单电源) 电源电流: 12 mA 最大功率耗散: 4000 mW 最小工作温度: - 40°C 最大工作温度: 85°C 封装/箱体: PDIP-16 封装: Tube 音频负载电阻: 8 Ohm(Ω) 输入偏流(最大值): 0.1 μA (Type,典型值) @ 6V 输入信号类型: Single 输出信号类型: Differential or Single 集成电路TDA2822M为8脚双列直插式封装,如果买不到可用TDA2822代替, TDA2822 TDA2822的封装与TDA2822M相同,它们区别在于:TDA2822M从3V到15V 均可工作,而TDA2822的最高工作电压只有8V。使用TDA2822必须把电压降到8V以下。R1的数值要求不拘,一般选用10k的碳膜电阻。C1可选用0.1uF的涤纶电容,C2为100uF/16V的电解电容。 使用时应注意:由于本功放为直接耦合,所以输入信号不能带直流成分。如果输入信号有直流成分则必须在输入端串接一只4.7-10uF左右的电容隔开,否则将有很大的直流电流流过扬声器,使之发热烧毁。在实

耳机中的基本电路知识

耳机中的基本电路知识 一. 常用的描述耳机性质的术语: 1)工作点:如把欲分析的电路划分成两个二端网络A和B,在同一坐标系下分别画出两个网络的伏-安特性曲线,两条曲线的交点称为工作点。工作点对应的电流和电压值,既是A的输出电流和输出电压,也是B的输入电流和输入电压。 2)阻抗匹配:计算实际电源的输出功率,电源的输出功率最大。此时对应的负载电阻为当负载电阻和电源内阻相等时,电源的输出功率最大,这就是阻抗匹配。在实际电路中,追求阻抗匹配的时候并不多,因为阻抗匹配时虽然输出功率最大,但是有一半的功率都消耗在内阻上了,效率太低。为了提高能量利用效率,也为了避免后端的负载对前端造成比较大的影响,后端的输入阻抗一般要比前端的输出阻抗大若干个量级。 3)音源:从电路的角度来看,音源是一个有源二端网络。如果假设声音信号频率固定,则音源是一个线性有源二端网络,可以用电压源等效模型来描述。为了尽量使音源的输出信号不受后端负载的影响,音源的输出阻抗相当低,一般都只有几欧姆甚至1欧姆以下,音源的伏-安特性曲线接近理想的电压源。 4)放大器:音源信号频率固定的前提下,可以把放大器看成一个线性有源四端网络。实际的放大器可以看成两个带有内阻、工作范围受限的电源,其中输出端的电压在一定范围内与输入端的电压成正比。需要注意的是对四端网络来说,从输入端看进去的阻抗可以和从输出端看进去的阻抗不一样。为了提高能量利用效率,同时减少对音源的影响,放大器的输入阻抗相当高,一般都有十几千欧甚至几十千欧。因此,放大器输入端的伏-安特性曲线接近理想的电流源。 放大器的输出阻抗原本也应该尽量小,但是由于需要调节音量,放大器的输出阻抗是可调的。调节输出阻抗的大小,就可以改变耳机音量。设输入端的电压为Uo,放大系数为A,则输出端的最大电压 为AUo。放大器输出端的伏-安特性曲线是经过Y轴上一个定点的一系列直线。 5)耳机:在假设音源信号频率固定的前提下,可以把耳机看成一个线性无源二端网络,等效为一个电阻。耳机的伏-安特性曲线和电阻的一样,是一条经过原点的直线。根据发声原理不同,耳机可以分成动圈式、压电式和静电式三种(静电耳机接触机会少,不作讨论)。动圈耳机的原理是将带电线圈放在磁场中,线圈在磁场中受力,从而带动振膜发声。带电线圈在磁场中受力的大小与流经线圈的电流成正比,电流越大,受力越大。压电耳机的原理是在压电材料的两面施加电压造成压电材料产生形变,从而带动振膜发声。压电材料的形变程度与两面的电压成正比,电压越大,形变越大。 二.一个完整的耳机系统。

TA7376组成的耳机放大电路

TA7376组成的耳机放大电路 用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。 本机称为超级广场效果。这种扣人心弦的力量,不亚于实况立体声。 电路原理 本机电路大致可分为下面三部分: 1.由电阻电容组成的低频增强电路。 2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。 3.利用功率放大器IC,组成头戴耳机的驱动电路。 从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。 立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。 用东芝TA7376P推动头戴式耳机。这种IC内藏两个通道,外接元件少,可在低电压下工作。负载阻抗较低时,可重放出动人效果的低频声音。 电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。 元件 所有元件没有什么特殊的。电阻均为1/8W。0.1UF和0.47UF的电容用独石电容,其它的用电解电容。电位器中,20K为双连电位器,50K用带开关电位器。插头用立体声插头。 制作 制作极其简单,即使是初学者,有一天的时间就足够了。要留心IC的脚和电解电容的极性。 电位器的接线比较凌乱,不要搞错了。若没有接线错误和焊接不良,一定会马到成功。 接入头戴式立体声耳机或普通耳机,装入电池,打开开关。若两个旋钮配合得好,收听音乐可得到极其感人的效果,。根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。 不用说,和小型音响,电视,CD相连会得到更佳的效果。 说明:电路原理图中,W1为双联电位器,用于低音增强,W2为调节混响效果。印刷电路板图中,A1,A2为左右声道输入。电位器W1和W2都固定在盒子的边缘,其中W2为带开关的电位器。 非常好我支持^.^ (0) 0.00%不好我反对 (0) 0.00%分享到:分享此文章到新浪微博分享此文章到开心网分享此文章到人人网分享此文章到豆瓣网分享此文章到腾讯微博加入收藏(1) + 推荐给朋友+ 挑错 相关阅读: [耳机电路图] 立体声耳机放大电路(带有关断功能) 2011-04-16 [功放技术] MAX97220 DirectDrive线路驱动器/耳机放大器2011-03-22 [音响技术] MAX97200 H类DirectDrive耳机放大器2011-03-18 [新品快讯] 首款集成G类耳机放大器模拟子系统PowerWise LM492 2011-02-25 [新品快讯] TI推出集成型低功耗G类耳机放大器2011-01-29 [功率放大器电路图]

从零开始DIY一台耳机放大器电路设计与分析

几个问题 现在喜爱听音乐的朋友是越来越多了,为了听到更好的声音,很多朋友都购买了品质比较高的音源,比如高档声卡或HiFi入门级的CD台机,但却还是无法得到心目中的高品质声音表现。问题到底出在哪里? 在音响店里聆听高档音响,留下了难以磨灭的印象,想来不少朋友都有过这样的经历吧。虽说一分钱一分货,但自己能否构建与之表现稍相近的系统呢? HiFi耳机的优异表现相信给过很多朋友以惊喜,但在很多地方都会留下一些底气不足的遗憾,这个问题应该怎么解决? 关注HiFi音响的朋友们如果见识过名厂或高手制作的胆机,观摩过那如镜光滑的机箱和灵性四溢的胆管,再聆听过柔美醇和的声音,可能都会不禁揣测一下内部的结构。如果打开外壳,见到内部并没有预想中的电路板,而是几根粗铜线纵横交错地搭成一个网状框架,各个元件都整齐地焊接在这个框架上,之间再用各色导线连接,不免会惊叹连连。高手会说,这样的手法叫做搭棚焊接,简称搭焊,既是最传统的,也是最好声和最艺术的手法。也许朋友们会想:我能不能拥有这样的一个艺术品呢? 希望在大家看完本文后,这些疑问能够得到有价值的回答。音响本是学无止境,笔者言语中若有不周或谬误,希望能与大家展开商榷和得到斧正。 下文的很多内容都涉及到DIY,如果要进行操作,请大家特别注意安全,在有经验的朋友的指导下进行。由于实际电路中变数甚多,所以只有严格仔细地跟随必要步骤并加以耐心细致的调整,才会得到尽量好的声音品质。由于具体情况有别且无法完全考虑到,所以请大家具体问题具体分析,笔者只尽量保证陈述的真实和贴切,而不对效仿操作的后果负责。 寻求解决 众所周知,自从真正被运用到计算机上以来,音频技术的发展不断为我们创造着惊喜,从8bit到44.1KHz/16bit再到96KHz/24bit、从单声道到立体声再到多声道、从MIDI 到MP3再到APE和FLAC,无一不在刺激着我们对听觉享受的渴望和对声音品质的追求。应该说随着“发烧级”声卡创新AWE64GOLD和帝盟MX200先后的横空出世,一群狂热的电脑音频发烧友开始形成,电脑也成了很多朋友的音乐欣赏中心。 对很多狂热地喜爱音乐的朋友来说,音频技术给他们带来实实在在的最大快乐是在APE 格式被广泛使用之时——来自中规中矩的44.1KHz、16bit、立体声和无损压缩(96KHz、24bit和多声道这样高指标虽然更加能吸引人们的眼光,但是我们能欣赏的音乐只能来自唱片公司,而SACD和DVD-Audio高高在上的价格是我们无法轻松负担的;实际上高手们

各种耳机放大器应用电路分析

各种耳机放大器应用电路分析 耳机放大器的要求 ---耳机放大器主要用于使携式音频装置中,它与其他便携式电子产品一样,要求器件具有低工作电压、低功耗、小尺寸封装。耳机放大器还有自身的技术参数要求,要求总谐波失真加噪声(THD+N)小、电源变动抑制率(PSSR)高、信噪比(SNR)高、效率高等。不同的放大器还有不同的附加功能,如内置数字音量控制、内置DAC等。具体性能指标如下。 ● 输出功率POUT ---耳机放大器输出功率较小,一般为20~100mW(实际输出功率与工作电压大小有关,并且与负载电阻大小及THD+N大小有关)。立体声耳机的负载电阻一般为16Ω或32Ω,负载电阻小的输出功率大一些。 ● THD+N ---THD+N的指标一般在0.01%~0.2%的范围内,Hi-Fi级则小于0.01%。该指标与负载电阻RL大小及输出功率POUT大小有关,若RL不同、POUT不同,则其指标有较大差别。例如,同一耳机放大器,在RL=32Ω,POUT=12mW,f=1kHz时,THD+N=0.006%;而在RL=16Ω、POUT=15mW,f=1kHz时,THD+N=0.015%。所以在比较不同耳机放大器的THD+N指标时,必须在基本条件相差不多时才有可比性。 ● SNR ---SNR一般在60~90dB范围内,其大小与POUT有关,有一些产品的SNR可达到100dB 左右。 ● PSRR ---PSRR高的耳机放大器,其性能受电源电压变动的影响小(PSRR高的放大器可以不需稳压电源供电)。PSRR一般为60~80dB,性能好的可达90dB。 降低工作电压 ---为减小便携式产品的体积和重量,最有效的办法是采用能量密度高、体积小的锂离子电池,但锂离子电池价格贵。采用1~2节碱性电池或充电电池来供电,则制造和使用成本会减少很多。近年来,一些厂商开发出仅用1节电池供电的耳机放大器(1节5#或7#碱性电池或镍氢、镍镉电池)更受到消费者欢迎,其工作电压为0.9V~1.8V,既可用1节碱性电池,也可用1节充电电池供电,使一些低档MP3播放机的成本大幅下降,销售量随之大增。 ---由于是单电源供电,耳机放大器输出的电压幅值受到工作电压的影响。虽然可采用输出满幅值(rail-to-rail)的放大器,但1V工作电压的输出总是小于1V。 ---为了降低工作电压,还要保证足够大的输出电压幅值,在耳机放大器中集成了一个电压反转的电荷泵电路,使输入的VDD转换成-VDD,则耳机放大器由单电源供电变成正负电源供电,输出电压幅值增大了一倍,。 减少外围元件的措施 ---德州仪器公司的TPA611xA2耳机放大器的典型应用电路。放大器内部的两个325kΩ电阻组成分压器,提供两个通道运放的偏置电压(1/2VDD),并有关闭控制(SHUTDOWN)端(低电平有效),实现关闭放大器,使耗电小于10μA。 ---减少外围元件,不但可节省印刷电路板面积,还能改善性能。图3所示是德州仪器公司2004年8月推出的耳机放大器TPA4411的内部结构及外围元件。TPA4411采用固定增益(AV=-1.5V/V),无需输出隔直电容器,简化外围元件,并且有如下的优点:减少PCB板面积;

最简单的三极管音频放大电路

最简单的三极管音频放大电路 最简单的三极管音频放大电路 调节R1大小,使在最大输出时信号不失真即可,减小R可输出更大的功率。如果有万用表,可将C极电压调为电源电压的1/2左右。 图一固定偏置,电源电压对偏置电流影响很大 基本的共发射极电路

图二偏置接入负反馈,放大倍会变小,电源电压对偏置电流影响较小。 电压负反馈接法,适应电压范围更宽。 此种属甲类放大类,效率最低,特点是简单。低电压电路中极少采用,因为输出功率太小,实际多用在功率推动电路,同时放大电压和电流。 这里介绍一个设计小巧、线路简单但性能不错的三管音频放大器。其电路见附图。也许你在一些袖珍晶体管收音机可以看到一些与此类似的电路。

原理分析: 电路如图所示,输入极(9014)的基极工作电压等于两输出极三极管的中点电压,一般为电源电压的一半,这个电压的稳定由输出三极管的基极的两个二极管控制。3.3欧姆电阻串联在输出三极管的发射极上,以稳定偏流。以减小环境温度、不同器件(如二极管、输出三极管)参数区别对电路的影响。当偏流增加时,输出三极管发射极与基极间电压会减小,以减小偏流。此电路输入阻抗为500欧姆,在使用8欧姆扬声器时,电压增益为5。 电路在不失真输出50mW的功率时,扬声器上有约2V左右的电压摆动。增加电源电压可提高输出功率,但此时应注意输出晶体管散热问题。在9V电源电压时,电路耗电约30mA。制作时要注意两个输出功率管放大倍数应接近。其它器件参数可以参考图示选择。此电路适合于制作成耳机放大器或其它小功率放大器用。由于它是一个很典型的功放电路,所以非常适合初学者学习功放电路原理之余,动手实践制作时的参考电路。

耳机放大器电路图

耳机放大器电路图 发布时间:2010-1-8 16:00 发布者:我爱电路图阅读次数:194 用头戴式耳机,尤其是小型耳机听音乐,总感到音乐味不够足,在低频段的效果更差。因此用本机增强耳机的低频特性,并采用立体声反相合成的办法,加上内藏简易矩阵环绕声电路,能获得强劲的低音和在较宽的范围内展宽音域。 本机称为超级广场效果。这种扣人心弦的力量,不亚于实况立体声。 电路原理

本机电路大致可分为下面三部分: 1.由电阻电容组成的低频增强电路。 2.利用功率放大器IC的反馈输入,组成立体声反相合成电路。 3.利用功率放大器IC,组成头戴耳机的驱动电路。 从输入端IC之间的电阻电容起到增强低频特性的作用,因为加有电位器,低频部分的增强量可在0--10倍之间连续可调。 立体声反相合成电路IC 2脚和8脚的直流耦合电容之后,由0.47UF和50K的电位器组成。在此电路中,把立体声的广场效果成分中的高音部分左右分别反相后合成,起到增强效果的作用。 用东芝TA7376P推动头戴式耳机。这种IC内藏两个通道,外接元件少,可在低电压下工作。负载阻抗较低时,可重放出动人效果的低频声音。 电源若改用5#电池,用四只串联,电压为6V,可直接驱动高输出的扬声器。若将三个200UF/10V的电容增加到1000UF左右,可获得更好的效果。 元件 所有元件没有什么特殊的。电阻均为1/8W。0.1UF和0.47UF的电容用独石电容,其它的用电解电容。电位器中,20K为双连电位器,50K用带开关电位器。插头用立体声插头。

制作 制作极其简单,即使是初学者,有一天的时间就足够了。要留心IC的脚和电解电容的极性。 电位器的接线比较凌乱,不要搞错了。若没有接线错误和焊接不良,一定会马到成功。 接入头戴式立体声耳机或普通耳机,装入电池,打开开关。若两个旋钮配合得好,收听音乐可得到极其感人的效果,。根据聆听的音乐和音源适当的调整,这就是本机的使用方法要点。 不用说,和小型音响,电视,CD相连会得到更佳的效果。 说明:电路原理图中,W1为双联电位器,用于低音增强,W2为调节混响效果。印刷电路板图中,A1,A2为左右声道输入。电位器W1和W2都固定在盒子的边缘,其中W2为带开关的电位器。

多种耳机放大器电路

多种耳机放大器电路 LC-KING 耳机放大电路 对音响发烧友来说,发烧音响就等于烧钱,对一些经济条件不十分宽裕的发烧族来说,玩耳机就是一个很好的不需要太多的钱的最佳发烧途径了,原因很简单,一般来说,花两三百块钱连市面上劣质的音响器材都难买下来,但是却能买到一副很不错的发烧耳机,而且耳机的频率附应和各项指标一点都不逊于高档的扬声器单元,这也是耳机放大器DIY在国内外流行的主要原因,耳机放大器中,一般优秀的分立组件电路在国内外网站上都见过不少,还有电子管制作的,但是对一般的爱好者来说就是元器件难以寻找,管子的配对也是一个头痛的问题,电子管制作主要的变压器难已解决。 下面应网友的要求,特找来一些易于制作的耳机放大电路,供动手能力好一点的爱好者参考制作,电路图的来源于国内外网站,以及电子杂志。如果有侵犯了你的版权,请通知我,我会删去。 LC-KING A(甲)类耳机放大电路 上图为电路图,电路很简洁,前级放大推展为NE5532或其它类型的OP,U2A为DC SERVER,用于稳定中点的电位,推展级2SD882为NPN型功率晶体管,该管工作在甲类状态,因此发热量较大,流经的R11,R31的电流可以透过改变它的阻值来调整,在制作时晶体管要加散热器。

LC-KING的AB类放大器电路 上图为LC-KING 的甲乙类功率放大电路,后级的放大由对管2SD882(NPN)和2SB772(PNP)TL072为直流伺服电路,起稳定电位的作用。 LC-KING的放大电路比较简洁,制作上并不困难,可以用万用板来完成,后极的晶体管也可以换成其它的管子。放大器的电源对音质的影响也很大,用洼田电源当然是很好的,也可以用伺服电源,原图的电源有一点复杂,关键是有些元器件很偏,因此没有放到网上。 用OPA2604等双运算放大器做的耳机放大器

耳机功放电路图原理介绍

一.耳机功率放大器 耳放耳机功率放大器,因为比较大的耳机阻抗很高,小的随身听是带不起来,推不动,就要耳放,有源的,接在音源和耳机中间。耳放这个词也是很多烧友经常谈论的词汇,耳放是放耳机的箱子嘛?当然不是,耳放是耳机功率放大器的简称,链接在耳机与音源之间,起到发挥耳机实力作用。在高端的耳机中分为两类,一种是高阻抗、低灵敏度的耳机,这类的耳机普通设备的耳机输出很难驱动。还有一类的耳机采用的低阻抗、高灵敏度的设计,这样的耳机对于电流输出的稳定性要求很高。针对这种情况,需要耳放来改善音源的耳机输出,来发挥耳机的效果。从体积上来分,耳放可以分为台式耳放,这种耳放一般体积较大,适合在家庭中使用。还有一种为便携耳放,体积小巧,可以和随身设备搭配。从使用的主要元器件,也可以分为胆机(电子管)和石机(晶体管)两种,声音趋向各不相同。在实际的使用中,根据自己的耳机耳塞添加合适的耳放设备,效果提升是十分明显的。 二.耳机功放电路图原理介绍 (1). 图1为耳机控制功能工作示意图,当没有耳机插头接入插孔时,R1-R2分压电阻使提供到HP-IN管脚(16脚)的电压近似为50mV,驱动Amp1B和Amp2B处于工作状态,使HWD2163工作于桥式模式。输出耦合电容隔离半供给直流电压,起到保护耳机的作用。

输入HP-IN管脚的电压为4V。当HWD2163工作于桥式模式时,实质上负载两端的电压为0V。因此甚至为理想状态下,难以引发放大器处于单终端输出的工作模式。耳机接入耳机插孔使得耳机插孔与-OUTA分离并使R1上接HP管脚的电压至VDD。这样耳机关断功能把Amp2A和Amp2B给关断且桥式连接的扬声器就不工作了,放大器便驱动输出耦合阻抗为R2和R3的耳机,当耳机阻抗为典型值32Ω时,输出耦合阻抗R2、R3对HWD2163输出驱动能力的影响可忽略不计。 图2也是耳机插孔的电性连接关系示意图,插孔为一组三线插头的设

分体式O T L 电子管耳机放大器

分体式O T L 电子管耳机放大器 任保华 大约在一个多世纪以前,科学家们已经发现电子能在真空中运动而形成电流,他们还知道热电极比冷电极更容易发射出电子。利用这些原理1904年世界上第一只电子管(Valve)生产出来了。这种被称为真空二极管的“灯泡”,除了灯丝之外在管内仅增加了一个电极(称屏极或板极),只能用来整流。直到具有放大作用的真空三极管(管内屏极与阴极之间又增加了一个电极,称栅极)的出现,在电子技术领域才真正引发出了一场革命。在以后的半个多世纪里电子管的发展进入了鼎盛时期,全世界每年生产的形形色色的电子管数以亿计。 但是好景不长,晶体管的出现彻底打破了电子管一统天下的格局,到了20世纪八、九十年代电子管已是“昨日黄花、风光不在”了。 尽管如此,由于电子管和晶体管传输电流的方法不同(电子管的电流是电子在真空中的电极间渡越所形成的,而晶体管等固态元件的电流则是荷电载流子在固体中的原子间运动形成的),使得它们产生了完全不同的特点。在声频放大器的应用中,一般来讲晶体管犹如宝石美丽而冷艳,电子管则犹如美玉华贵而润暖。这个差异使得电子管放大器(俗称“胆机”)至今仍以“胆味迷人”而著称。“胆机”也亦然是音乐爱好者和音响发烧友追逐的对象。

这里要给大家介绍的就是一款分体式O T L 电子管耳机放大器, 它是一个很 有特色的、声音好听的纯胆耳放,它具有很宽的频响、很高的瞬态和信噪比指标, 能够很好的驱动32欧姆―600欧姆的高保真耳机。 图1是它的电原理图。 主机部分由双管并联SRPP(Shunt Regu11ated Push Pull)前级和典型的阴极输出功率放大级组成。SRPP电路常被人们称其为“单端推挽放大”或“分流调整推挽放大电路。典型的SRPP输入级电路如图2所示。 对于V1来讲,信号从栅极输入,从屏极输出,是共阴极放大器。对于V2来讲信号从栅极输入,从阴极输出,是共屏极放大器(阴极输出器)。实质上它是一个共阴共屏组合电路的变形。 SRPP线路是一款精彩的设计, 在一些国内外成品机和爱好者们自制的放大器中常

相关文档
最新文档