ABAQUS 中梁板壳单元的弯曲问题beam_plate_shell

ABAQUS 中梁板壳单元的弯曲问题beam_plate_shell
ABAQUS 中梁板壳单元的弯曲问题beam_plate_shell

ABAQUS中梁板壳单元的弯曲问题

曲哲

2007-4-3

一、Euler-Bernoulli梁与Timoshenko梁

在ABAQUS的单元库中,所有三次插值的梁单元(如B23,B33等),均为Euler-Bernoulli梁,而所

有线性和二次插值的梁单元(如B21,B22,B31,B32等),均为Timoshenko梁。

(1)细长梁与深梁

B23为2结点三次插值的Euler-Bernoulli梁。由于在形成单元刚度矩阵时等效载荷项的被积函数至少

是3次的,所以至少需要2个积分点才能达到完全的高斯积分。而在ABAQUS中,B23有3个积分点,

这意味着被积函数可以达到5次。总之B23是完全积分的单元。而B21和B22分别为2结点线性插值和3

结点二次插值的Timoshenko梁,并且默认的采用减缩积分来避免剪切锁死。B22只有2个积分点,B21

只有1个积分点,它们都只能达到1次的插值精度。

表1:集中力作用下悬臂梁的自由端挠度(mm)

细长梁(l/h=10)深梁(l/h=3)

材力解 1 2 4 材力解

4

2

单元个数 1

0.1080

0.1080

4.000 4.000 4.000

0.10800.1080

B23(E-B梁) 4.000

B21(Timoshenko梁) 3.734 3.955 4.010 4.000 0.10860.1145 0.1160 0.1080

B22(Timoshenko梁) 4.028 4.028 4.028 4.000 0.11650.1165 0.1165 0.1080

表1比较了上述三种梁单元在应用于细长梁和深梁受弯时的表现。问题描述如图1所示,为端部受集

中载荷的悬臂梁。E-B梁B23完全忠实于材料力解的解答,不考虑剪切应变的影响,并且只用1个B23单

元就可以得到与材力解一致的结果。B21和B22考虑了梁的剪切变形,其分析得到的挠度略大于材力解。

同时可以看出,B21和B22用于细长梁时并没有发生剪切自锁。

图1:悬臂梁的构型图与截面图

图2:网格划分(2个单元)

(a)B23单元分析位移与应力结果

(b)B21单元分析位移与应力结果

(c)B22单元分析位移与应力结果

图3:悬臂梁在集中荷载作用下的位移与应力结果

图3显示了用上述三种单元分析得到的梁的变形结果和应力结果,模型均划分为2个单元(图2),且均为图1中的细长梁。需要注意的是,ABAQUS在后处理中并不显示梁内部的插值得到的位移,而只是以直线连接梁的各结点,所以即使B23是三次插值,其变形图看上去仍然像是线性插值。同时从图3 (b)中可以看到,由于B21单元只有一个积分点,所以单元内应力为常数。

(2)混合梁单元——轴力-弯矩耦合

ABAQUS中还有一种用于模拟轴向刚度远大于弯曲刚度的梁的混合单元(Hybrid element)。表2比较了混合单元B21H和一般的Timoshenko梁单元B21在压弯组合作用下的屈服荷载。构件与上节中一样,也是端部受集中载荷的悬臂梁,只是端部添加了恒定的轴力(图5)。这里采用理想弹塑性材料。网格划分如图4所示。由表2可见,两种单元均能反映中轴力对于梁的屈服弯矩的影响。对于各向同性的对称截面,拉、压对于屈服弯矩的影响也是相同的,表2中的结果也反映了这一点。由此可以看出ABAQUS中的Timoshenko梁并非是轴力杆和弯曲梁的简单叠加。

表2:压弯作用下悬臂梁的屈服荷载P y(N)

轴力(N)

-5000 0 5000

B21(Timoshenko梁)175.4 263.2 175.4

B21H(Hybrid单元)175.4 263.2 175.4

图4:网格划分(10个单元)

图5:压弯悬臂梁的构型图与截面图

二、非协调薄板与Mindlin 板

ABAQUS 中的板壳单元可以分为三类:(1)通用单元,包括轴对称壳单元SAX1,SAX2和SAX2T 等,三角形或四边形的三维壳单元S3,S4,S3R ,S4R ,S4RS ,S3RS ,S4RSW 等。(2)厚板单元,S8R 。(3)薄板单元,以Kirchhoff 假设为基础,包括三角形的STRI3,STRI65等和四边形的S4R5,S8R5,S9R5(每个结点有5个自由度的超参元)等以及轴对称壳单元SAXA 。这些单元都引入了DKT 约束。 (1)薄板与厚板

表3比较了上述三类板壳单元在应用于细长梁和深梁受弯时的表现。问题描述如图6所示,四边固支的正方形平板,中心受集中载荷,并根据对称性建立了1/4模型。当单元数目较多时,三种单元在薄板和厚板问题中都能给出比较接近的结果。

表3:四边固支矩形平板在集中力作用下的中点挠度(mm )

薄板(l /h =20)

厚板(l /h =4)

单元个数 1 4 16 1 4

16 S4(通用单元) 1.237 23.79 26.83 0.24690.4822 0.5705 S8R (厚板单元) 30.07 26.46 27.84 0.48450.5433 0.6102 S8R5(薄板单元) 29.95 27.75 28.01 0.5044

0.5554 0.6163

图6:集中力作用下的平板及其网格划分(1/4模型)

图7显示了三种单元分析得到的位移和应力结果。这些结果是基于薄板和图6所示的网格划分。三者的位移结果比较接近,而应力结果相差则比较大,尤其是S4单元与其它两个单元相比,板中的最大应力相差近一倍。

500kN

固支

固支

关于xz 平面对称的边界

关于yz 平面对称的边界

(a)S4单元模型位移与应力结果

(b)S8R单元模型位移与应力结果

(c)S8R5单元模型位移与应力结果

图7:不同单元建模的分析结果

(2)薄膜状态与弯曲状态的耦合

本节考察S4单元在处理板的压弯耦合时的表现。与上节相同,仍为四边固定的平板,采用4×4网格,全模型,中央受集中载荷(如图8所示)。板采用类似于钢材的理想弹塑性材料。在板内定义温度场,并在中央加载前首先升高温度使板均匀膨胀,以使板内达到125MPa的薄膜应力。然后再施加载荷。分析结果显示,该薄膜应力对板的屈服荷载没有影响。

表4:压弯作用下平板的屈服荷载P y(kN)

初始薄膜应力(

MPa)

-125 0 125

S4单元 76.6

76.6

76.6

图8:压弯作用下的平板(全模型)

P

然而这并不能说明S4单元没有考虑薄膜状态与弯曲状态的耦合。因为在上述模型中,由材料收缩或膨胀施加的薄膜应力并非恒定,当板发生平面外弯曲时,薄膜应力不断降低,所以上述模型并不能明确的反应薄弱应力的影响。为此将上述模型的固支边界条件改为简支,采用恒定荷载施加薄弱应力,分析结果如图9所示。可以明显看到薄膜应力对板的屈服荷载的降低作用。可见S4考虑了薄弱应力对平面外弯曲行为的影响。

图9:薄膜应力对板屈服荷载的影响(全模型)

三、轴对称壳单元与超参壳元

ABAQUS 中的壳单元在上节中已有描述,这里给出一个算例,比如轴对称模型与三维空间模型的表现。问题为顶部开有圆孔的半球壳。球半径50mm ,孔半径12mm ,球壳厚5mm ,

底部简支(仅约束竖向位移)。在壳顶的圆孔周圈施加竖向载荷。 (1)轴对称模型

采用SAX1建立如图10所示模型,网格划分如图11,共划分了9个单元。在模型顶部施加竖向载荷。注意这里施加的载荷应该等于圆孔周圈所受均匀载荷的合力,单位为力的单位。

图12、13显示了分析得到的位移和应力结果。由图12可以看出,壳在顶压作用下,开孔处向内收缩,壳底部略向外扩张。图13显示,孔口应力最大。

图10:开孔球壳的轴对称模型

图11:轴对称模型的网格划分

竖向支承

(1000×24π)Ν

图12:轴对称模型的变形图 图13:轴对称模型的应力分布

(2)超参壳元算例

采用S4R5建立如图14所示1/4模型。图15、16显示了分析得到的位移和应力结果。图16显示,孔口应力并非最大,最大应力出现在距孔口一定距离处。

图17比较了轴对称模型和1/4空间模型得到的沿母线的位移结果,可见无论是竖向位移还是水平位移,二者吻合得都非常好。然而在图18中,二者在母线上的应力结果却出现了较大的差别。在靠近孔口处,轴对称模型得到的应力明显高于空间模型,而在靠近壳底处轴对称模型的应力结果却较低。二者的应力分布趋势也明显不同。

图14:开孔球壳的1/4模型

图15:1/4模型的变形图 图16:1/4模型的应力图

竖向支承

关于yz 平面对称的边界

1000N/mm

关于xy 平面对称的边界

图17:轴对称模型与1/4模型位移计算结果的比较图18:轴对称模型与1/4模型应力计算结果的比较

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。其中基于traction-separation描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive

abaqus 中梁板壳单元的弯曲问题beamplateshell

ABAQUS中梁板壳单元的弯曲问题 曲哲 2007-4-3 一、Euler-Bernoulli梁与Timoshenko梁 在ABAQUS的单元库中,所有三次插值的梁单元(如B23,B33等),均为Euler-Bernoulli梁,而所 有线性和二次插值的梁单元(如B21,B22,B31,B32等),均为Timoshenko梁。 (1)细长梁与深梁 B23为2结点三次插值的Euler-Bernoulli梁。由于在形成单元刚度矩阵时等效载荷项的被积函数至少 是3次的,所以至少需要2个积分点才能达到完全的高斯积分。而在ABAQUS中,B23有3个积分点, 这意味着被积函数可以达到5次。总之B23是完全积分的单元。而B21和B22分别为2结点线性插值和3 结点二次插值的Timoshenko梁,并且默认的采用减缩积分来避免剪切锁死。B22只有2个积分点,B21 只有1个积分点,它们都只能达到1次的插值精度。 表1:集中力作用下悬臂梁的自由端挠度(mm) 细长梁(l/h=10)深梁(l/h=3) 材力解 1 2 4 材力解 4 2 单元个数 1 0.1080 0.1080 4.000 4.000 4.000 0.10800.1080 B23(E-B梁) 4.000 B21(Timoshenko梁) 3.734 3.955 4.010 4.000 0.10860.1145 0.1160 0.1080 B22(Timoshenko梁) 4.028 4.028 4.028 4.000 0.11650.1165 0.1165 0.1080 表1比较了上述三种梁单元在应用于细长梁和深梁受弯时的表现。问题描述如图1所示,为端部受集 中载荷的悬臂梁。E-B梁B23完全忠实于材料力解的解答,不考虑剪切应变的影响,并且只用1个B23单 元就可以得到与材力解一致的结果。B21和B22考虑了梁的剪切变形,其分析得到的挠度略大于材力解。 同时可以看出,B21和B22用于细长梁时并没有发生剪切自锁。 图1:悬臂梁的构型图与截面图 图2:网格划分(2个单元)

ABAQUS应用梁单元计算简支梁

ABAQUS应用梁单元计算简支梁 对于梁的分析可以使用梁单元、壳单元或是固体单元。Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。 注意: 因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。 简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。F=10kN,不计重力。计算中点挠度,两端转角。理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。 文件与路径: 顶部下拉菜单File, Save As ExpAbq00。 一部件 1 创建部件:Module,Part,Create Part, 命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。 2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。 3 退出:Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。 2 定义梁方向:Module,Property,Assign Beam Orientation, 选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。 3 定义截面力学性质:Module,Property,Create Section, 命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2), G=82.03e9,ν=0.28,关闭。

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量 E=2.1e6MPa,泊松比v=0.28。 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。 在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于ABAQUS2016,首先用梁单元分析了梁受力作用下的应 力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae, odb , inp 文件。不过要注意的是本文采用的是 ABAQUS2016 进行计算,低版本可能打不开,可以自己提交 inp 文件自己计算即可。可以到 小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件 下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径 D=180mm ,小直径d=150mm ,a=200mm , b=300mm , l=1600mm , F=300000N 。现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。材料采用 45#钢,弹性模量 E=2.1e6MPa,泊松比 v=0.28。 1.梁单元分析 ABAQUS2016 中对应的文件为 beam-shaft.cae , beam-shaft.odb , beam- shaft.inp 。 在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图 2所示 l b b a a A A C B A 图1简支梁结构简图

图2建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为 (0,0,-1)(点击图3中的n2, n 1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

Abaqus梁结构经典计算

Abaqus梁结构经典计算 一榀轻钢结构库房框架,结构钢方管构件,材质E=210GPa,μ=, ρ=7850kg/m3(在不计重力的静力学分 析中可以不要)。F=1000N,此题要计入重力。计算水平梁中点下降位移。 文件与路径 顶部下拉菜单File, Save As ExpAbq02。 一部件 创建部件,命名为Prat-1。 3D,可变形模型,线,图形大约范围20(m)。 选用折线绘出整个图示屋架。 退出Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 将截面(1)命名为Profile-1,选Box型截面,按图输入数据,关闭。直至完成截面(3)。 2 定义各段梁的方向: 选中所有立杆,输入截面主惯性轴1方向单位矢量(1,0,0),选中横梁和斜杆,输入截面主轴1方向单位矢量(0,1,0),关闭。还有好办法,请大家自己捉摸。

3 定义截面力学性质: 将截面(1) Profile-1命名为Section-1,梁,梁,截面几何形状选 Profile-1,输入E=210GPa,G=,ν=,ρ=7850,关闭。直至完成截面(3) Section-3。 4 将截面的几何、力学性质附加到部件上: 选中左右立柱和横梁,将各Section-1~3信息注入Part-1的各个杆件上,要对号入座。 5 保存模型: 将本题的CAE模型保存为。 三组装 创建计算实体,以Prat-1为原形,用Independent方式或Dependent生成实体。 四分析步 创建分析步,命名为Step-1,静态Static,通用General。 注释:无,时间:不变,非线性开关:关。 五载荷 1 施加位移边界条件: 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角。 选中立柱两脚,约束全部自由度。 2 创建载荷: 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力。 选中顶点,施加Fy=F2=-1000(N)。 六网格 对部件Prat-1进行。 1 撒种子: 针对部件,全局种子大约间距。 2 划网格: 针对部件,OK。 3 保存你的模型: 将本题的CAE模型保存为。

(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

Abaqus分析实例(梁单元计算简支梁的挠度)精讲 对于梁的分析可以使用梁单元、壳单元或是固体单元。Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。 注意: 因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。 简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。F=10k N,不计重力。计算中点挠度,两端转角。理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。 文件与路径: 顶部下拉菜单File, Save As ExpAbq00。 一部件 1 创建部件:Module,Part,Create Part, 命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。 2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。 3 退出:Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。 2 定义梁方向:Module,Property,Assign Beam Orientation,

选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。 3 定义截面力学性质:Module,Property,Create Section, 命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109N/m2), G=82.03e9,ν=0.28,关闭。 4 将截面的几何、力学性质附加到部件上:Module,Property,Assign Section, 选中两段线段,将Section-1信息注入Part-1。 三组装 创建计算实体:Module,Assembly,顶部下拉菜单Instance,Create, Create Instance,以Prat-1为原形,用Independent方式生成实体。 四分析步 创建分析步:Module,Step, Create Step,命名为Step-1,静态Static,通用General。注释:无,时间:不变,非线性 开关:关。 五载荷 1 施加位移边界条件:Module,Load,Create Boundary Condition, 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁左端,Done,约束u1、u2、u3、u R1、u R2各自由度。 命名为BC-2,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁右端,Done,约束u2、u3、u R1、u R2各自由度。 2 创建载荷:Module,Load,Create Load, 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力Concentrated Force,Continue。选中梁中点,Done,施加F y(CF2)=-10000(程序默认单位为N)。 六网格 对实体Instance进行。 1 撒种子:Module,Mesh,顶部下拉菜单Seed,Instance, Global Seeds,Approximate g lobal size 0.2全局种子大约间距0.2。 2 划网格:Module,Mesh,顶部下拉菜单Mesh,Instance,yes。 七建立项目 1 建立项目:Module,Job,Create Job,Instance,

悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。 ν 材料性质:弹性模量3 = E=,泊松比3.0 2e 均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

ABAQUS教材:第六章 梁单元的应用

第六章梁单元的应用 对于某一方向尺度 (长度方向)明显大于其它两个方向的尺度,并且以纵向应力为主的结构,ABAQUS用梁单元对它模拟。梁的理论是基于这样的假设:结构的变形可以全部由沿梁长度方向的位置函数来决定。当梁的横截面的尺寸小于结构典型轴向尺寸的1/10时,梁理论能够产生可接受的结果。典型轴向尺寸的例子如下: ·支承点之间的距离。 ·有重大变化的横截面之间的距离。 ·所关注的最高振型的波长。 ABAQUS梁单元假定梁横截面与梁的轴向垂直,并在变形时保持为平面。 切不要误解为横截面的尺寸必须小于典型单元长度的1/10,高度精细的网格可能包含长度小于横截面尺寸的梁单元,不过并不推荐这种方式,这种情况下实体单元更适合。 6.1 梁横截面的几何形状 可以给出梁横截面的形状和尺寸来定义梁的外形,也可以给出梁横截面工程性质(如面积和惯性矩)来定义一般梁的外形。 如果用梁横截面的形状和尺寸来定义梁的外形,ABAQUS提供了如图6-1所示的各种常用的梁横截面形式可资利用。使用其中的任意多边形横截面可以定义任意形状的薄壁截面梁。详情可参考ABAQUS/标注用户手册中15.3.9节。 图6-1梁横截面形状 在定义梁横截面的几何形状时,ABAQUS/CAE会提示输入所需尺寸,不同的横截面类型会有不同的尺寸要求。如果梁的外形与梁横截面的截面性质有关时,可以要求在分析过程中计算横截面的工程性质,也可以要求在分析开始前预先计算横截面的工程性质。当材料的力学特性既有线性又有非线性时(例如,截面刚度因塑性屈服而改变),可以选用第一种方式,而对线弹性材料,第二种方式效率更高。 也可以不给出横截面尺寸,而直接给出横截面的工程性质(面积、惯性矩和扭转常数),这时材料的力学特性既可以是线性的也可以是非线性的。这样就可以组合梁的几何和材料特性来定义梁对荷载的响应,同样,响应也可以是线性或非线性的。详情可参考ABAQUS/标准用户手册中15.3.7节。 6.1.1 截面计算点 梁横截面的几何形状和尺寸确定后,就要在分析过程中计算横截面的工程性质,

Abaqus悬臂梁分析实施报告

. Abaqus 课程报告 ——悬臂梁 一、问题描述 分析悬臂梁 悬臂梁简图如下,它由钢材制成,400mm 长,具有40mm×60mm 的横截 面。钢的弹性模量为200GPa,泊松比为0.3。 除了以上数据外,载荷位置,方向和大小也已标示在上图中;再无其它可利用的数据。 要求: 分析完成后要求写出完整的分析报告,分析报告包括模型,分析,分析结果的述,对模型、分析和分析结果的讨论以及结论这样几个部分。讨论中的问题论述要求有文献证据和直接证据,可能在报告的最后部分要附上参考文献。讨论中要包括理论解,模型的误差,分析的误差,不同分析方案的比较(如果有不同的.

. 分析方案的话)。使用不同的单元,(如梁单元B21、B31、B22 和B32;实体单元C3D8、C3D8R、C3D20、C3D20R、C3D8I、C3D8H、C3D8RH 和C3D20RH)和不同的单元划分等等对问题进行分析和比较。: 二、模型建立与求解 1.part 针对该悬臂梁模型,拟定使用3D实体梁单元。挤压成型方式 材料属性2. 0.3。200Gpa材料为钢材,弹性模量,泊松比截面属性3. homogeneoussolid截面类型定义为,。. .

4.组装 在本例中只有一个装配部件,组装时即可选择independent,也可选择dependent的方式。 5.建立分析步 在对模型施加荷载和边界条件之前或者定义模型的接触问题之前,必须定义分析步。然后可以指定在哪一步施加荷载,在哪一步施加边界条件,哪一步去定相互关联。 ABAQUS的各种载荷要分别加载在不同的分析步中,比如像竖向载荷、偏转角度、水平载荷要分别建立三个载荷步。常用的分析类型有通用分析(General)和线性摄动分析(Linear perturbation)两种。线性摄动分析是关于动态分析的分析步。本例只需用到通用分析(General)中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于悬臂梁,左端为固定约束,在Abaqus中约束类型为encastre,载荷类型为集中载荷,沿Y轴负向-2500N。图为施加边界条件与载荷后。 . . 7.网格划分

ABAQUS简支梁分析(梁单元和实体单元)

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae ,odb ,inp 文件。不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp 文件自己计算即可。可以到小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D =180mm ,小直径d =150mm ,a =200mm ,b =300mm ,l =1600mm ,F =300000N 。现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量E =2.1e6MPa ,泊松比v =0.28。 l a a b b F F C A B 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb ,beam-shaft.inp 。 在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

abaqus梁结构分析

玻璃舞台的受力有限元分析 1.工程介绍 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格x方向尺寸为1m,y方向尺寸为1m; 序号067,分格的列数(x向分格)=0×10+6+5=11,分格的行数(y向分格)=7+4=11。 钢结构的主梁(图二中截面单元)为高140宽120厚14的方钢管, 次梁(图三中管型单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为UxyzRxyz处。主梁和次梁之间是固接。玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷,如图4所示);试对在垂直于玻璃平面方向的4 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析(每分格面载荷对于每一支撑点的载荷可等效于1 的点载荷)。 2,有限元分析 (1)建立舞台模型,打开abaqus→在左上角module中选择part模块→create part(name:yxyzuoye,moding space:3D,type:deformable,shape:wire)→ X=11,Y=11 图一

(2)定义材料属性和截面形状, 在module中选择property模块→create material(Y=206Gpa,E=0.3) →create section 主梁截面形状及尺寸如图二 图二 次梁截面形状及尺寸如图三

图三 →赋予截面属性assign section →assign beam orientation→done (3)装配:进入assembly模块→create instance→点击ok完成装配。

在Abaqus中使用梁单元进行计算

在Abaqus中使用梁单元进行计算 在Abaqus中使用梁单元进行计算 (2012-03-26 11:28:00) 转载▼ 标签: 分类:ABAQUS abaqus 梁 杂谈 xiaozity助理工程师: 在练习老庄的Crane例题时,欲提取梁元的截面应力。反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。 (2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。 (3)Abaqus会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是: 1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等 2:为什么没有S22、S33、S12...... 下面分别说明: 1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力 2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,

相关主题
相关文档
最新文档