失效分析在DRAM产品中的应用

天津大学

硕士学位论文

失效分析在DRAM产品中的应用

姓名:林兆莹

申请学位级别:硕士

专业:集成电路工程

指导教师:张世林;李日鑫

201006

电子产品失效分析大全

电子产品失效分析大全 继电器失效分析 1、样品描述 所送样品是3种继电器,其中NG样品一组15个,OK样品2组各15个,代表性外观照片见图1。委托单位要求分析继电器触点的元素成分、各部件浸出物的成分,确认是否含有有机硅。 图1 样品的代表性外观照片 2、分析方法 2.1 接触电阻 首先用毫欧计测试所有继电器A、B接点的接触电阻,A、B接点的位置见图2所示,检测结果表示NG样品B点的接触电阻均大于100 mΩ,而2种OK样品的A、B点的接触电阻均小于100 mΩ。 图2 样品外观照片

2.2 SEM&EDS分析 对于NG品,根据所测接点电阻的结果,选取B接点接触电阻值高的2个继电器,对于2种OK品,每种任选2个继电器,在不污染触点及其周围的前提下,将样品进行拆分后,用SEM&EDS分析拆分后样品的触点及周围异物的元素成分。触点位置标示如图3所示。所检3种样品共6个继电器的触点中,NG品的触点及触点周围检出大量的含碳(C)、氧(O)、硅(Si)等元素的异物,而OK品的触点表面未检出异物。典型图片如图4、图5所示。 图3 触点位置标识(D指触点C反面) 图4 NG样品触点周围异物SEM&EDS检测结果典型图片

图5 OK样品触点的SEM&EDS检测结果典型图片 2.3 FT-IR分析 在不污染各部件的前提下,将2.2条款中剩下的继电器进行拆分,并将拆分后的部件分成3组,即A组(接点、弹片(可动端子、固定端子))、B组(铁片、铁芯、支架、卷轴)、C组(漆包线),分别将A、B、C组部件装入干净的瓶中,见图6所示,处理后用FT-IR分析萃取物的化学成分,确认其是否含有有机硅。 图6 拆分后样品的外观照片 结果表明,所检3种样品各部件的萃取物中,NG样品B组(铁片、铁芯、支架、卷轴)和C 组(漆包线)检出有机硅,其他样品的部件未检出有机硅。典型图片见图7所示。

故障分析报告

关于柳州海事局远程视频监控系统的故障分析报告――2011年10月至2012年5月 一、故障基本信息 二、故障现象及处理过程 1、第一次故障 υ故障现象:2011年11月13日接到柳州海事的报障,无法 连接服务器,客户端无法ping通服务器IP。 υ处理过程:接到报障通知后,我公司立即组织人员进行处 理,局域网内可与前端设备通信,问题初步定为平台服务器 故障。次日测试人员到达现场;经过测试,发现平台服务器 操作系统崩溃;与设备厂商联系,于16日将平台系统及所有 前端系统进行重新布署,故障解决。 υ故障分析:经过系统测试工程对系统日志进行分析,于11 月12日晚,因多个IP地址向平台服务器发起的恶意重复登录 请求导致平台服务器处理超载,并造成操作系统文件损坏。 2、第二次故障 υ故障现象:2011年12月06日接到柳州海事的报障,三江 支线画面无法显示。 υ处理过程:当日经测试维护人员检查,由于三江支线的传

输线路中断所至,为此马上与传输机房进行故障确认,并告知协助处理,于次日中午故障解决。 υ故障总结:由于三江网络传输点断电,导致传输线路不断,经协调后解决。 3、第三次故障 υ故障现象:2012年3月26日接到柳州海事的报障,无法连接服务器,客户端无法ping通服务器IP。 υ处理过程:接到报障通知后,我公司立即组织人员进行处理,局域网内可与前端设备通信及平台服务器进行通信。故障定为网络传输质量问题。当时与传输机房联系协助排查故障;经过测试排查,发现由于网络传输出现波动或延时现象较为严重导致系统自动判定为网络中断,不断的向前端设备发送重启命令导致;通过机房对线路进行优化配置后重启系统后恢复。 υ故障总结:由于网络传输出现波动或延时现象较为严重导致系统自动判定为网络中断,不断的向前端设备发送重启命令导致。 4、第四次故障 υ故障现象:2012年4月13日接到柳州海事的报障,红花电站支线画面无法显示。。 υ处理过程:接到报障通知后,我公司立即组织人员前往红花现场排查问题。次日完成故障排除,系统恢复正常。

失效模式分析

失效模式分析(FMEA)控制程序 1.0 [目的] 通过对产品在设计及生产过程所采取的分析评估,消除存在或潜在的异常原因. 2.0 [适用范围] 适用于产品设计阶段及制造过程阶段使用. 3.0 [定义] 3.1 严重度(S):潜在失效模式发生时对下一工序或产品影响后果的严重程度的评鉴指标. 3.2 发生机率(O):实际上发生和造成失效模式之原因的机率. 3.3 风险优先数:是指严重度(S),发生机率(O),难检度(D)的乘积, 是用来评定事项处理的优先级. 3.4 顾客:在本程序中,一般是指"最终使用者",但也可以是后续的或下一制造或装配工序,以及服务工作. 4.0 [职责] 4.1 FMEA小组:由研发中心.工程部等相关人员组成 4.2 品管部FMEA成员:选定产品和工序、成效追踪评估及整理 4.3 工程部FMEA成员:失效模式效应分析、技术改善对策之提出 4.4 制造部FMEA成员:管理改善对策之提出、改善措施之执行 4.5 研发中心FMEA成员: 产品失效模式效应分析,产品特性改善对策之提出注:上述仅为部分事项之主办人员权责划分,但仍需其它部门成员共同商讨定案 5.0 [程序内容] 5.1 FMEA作业过程 5.1.1 成立FMEA小组 1). 由跨功能小组组成FMEA小组,成员以5-9人组成最佳. 2). 成员必需具备下述条件: a. 有确定措施或对策之权力; b. 有执行任务之能力; c. 有6个月以上之实际工作经验. 5.1.2 FMEA的主题选定 1).在《产品质量先期策划和控制计划程序》的《控制计划(QC工程表)》中, 跨功能小组需确定需要做PFMEA的机种. 5.1.3 FMEA编号:记录PFMEA文件的编号,以便查询, 5.1.4 确定项目名称:确定所分析的系统、子系统或零件的过程特性、名称、编号. 5.1.5 责任部门确定:确定失效模式产生的部门和小组. 5.1.6 确定权责人:填入负责准备FMEA工作的负责人. 5.1.7 确定项目:填入产品编号. 5.1.8 记录制作日期:填入编制FMEA原始稿的整理日期及最新修定的日期. 5.1.9 填入FMEA小组成员:将参加FMEA小组的成员名单予以记录. 5.1.10 确定工序和产品特性与功能 1).简单描述被分析的过程或工序产品特性,并尽可能简单地说明该工艺过程或工序的目的和该该产品特性和功能的目的. 2).如果工序过程产品特性和功能包括许多具有不同失效模式,那么可以把这些工序和产品特性及功能作为独立的过程列出.

金属--断裂与失效分析报告 刘尚慈

金属断裂与失效分析(尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大围屈服时,按弹塑性断裂力学提出的裂纹顶端开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界开位移) J积分判据:对一定材料在大围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,

潜在过程失效模式及后果分析(PFMEA)管理办法

Q/KJWX X X X X X X X X X X X公司企业标准 Q/KJWXG05006012019 代替:无 潜在过程失效模式及后果分析 (PFMEA)管理办法 2019 - 00 - 00发布2019 - 00 - 00 实施 XXXXXX公司发布

目次 前言............................................................................. I II 1 目的 (4) 2 范围 (4) 3 术语定义 (4) 3.1 FMEA (4) 3.2 PFMEA (4) 3.3 顾客 (4) 3.4 潜在失效模式 (4) 3.5 严重度 (4) 3.6 频度 (5) 3.7 探测度 (5) 4 职责 (5) 4.1 工艺部 (5) 4.2 试验部 (5) 4.3 售后部 (5) 4.4 品质保证部 (5) 4.5 生产制造部 (5) 4.6 标准化部 (5) 5 工作流程 (5) 5.1 PFMEA目的 (5) 5.2 PFMEA制定原则 (6) 5.3 PFMEA输入 (6) 5.4 PFMEA格式编写要求 (6) 5.5 PFMEA输出 (12) 5.6 PFMEA小组 (13) 5.7 PFMEA开始时机 (13) 5.8 PFMEA完成时机 (13) 5.9 PFMEA更新 (13) 5.10 PFMEA分析步骤 (13) 6 支持文件 (17) 7 记录 (17) PFMEA小组成员清单 (18) 潜在过程失效模式及后果分析表 (19) 潜在过程失效模式及后果分析检查表 (20)

电子产品失效模式分析

电子产品失效模式分析 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 01、失效分析流程 图1 失效分析流程 02、各种材料失效分析检测方法 1、PCB/PCBA失效分析

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 图2 PCB/PCBA 失效模式 爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段 无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?显微红外分析(FTIR)

?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(TOF-SIMS) 热分析: ?差示扫描量热法(DSC) ?热机械分析(TMA) ?热重分析(TGA) ?动态热机械分析(DMA) ?导热系数(稳态热流法、激光散射法) 电性能测试: ?击穿电压、耐电压、介电常数、电迁移 ?破坏性能测试: ?染色及渗透检测 2、电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式开路,短路,漏电,功能失效,电参数漂移,非稳定失效等

常用手段电测:连接性测试电参数测试功能测试 无损检测: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 制样技术: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 显微形貌分析: ?光学显微分析技术 ?扫描电子显微镜二次电子像技术 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(SIMS) 无损分析技术: ?X射线透视技术 ?三维透视技术 ?反射式扫描声学显微技术(C-SAM)

常规封装失效分析流程

常规封装失效分析流程1q5| `4q { H v 芯片设计版图芯片制造工艺制程封装测试,wafer,chip,ic,process,lay out,pack age,F A,QA G L g l ^ d 封装常规失效分析流程 1,接受上级或客户不良品信息反馈及分析请求,并了解客户相关信息。(指失效模式,参数值,客户抱怨内容,型号,批号,失效率,所占比例等,与正常品相比不同之处)芯片设计版图芯片制造工艺制程封装测试,wafer,chip,ic,process,lay out,pack age,F A,QA a/r m)_6D#X B 2,记录各项信息内容,以在长期记录中形成信息库,为今后的分析工作提供经验值。 3,收信工艺信息,包括与此产品有关的生产过程中的人,机,料,法,环变动的情况(老员工,新员工,班次,人员当时的工作状态,机台状况,工夹具,所采用的原材料,工艺参数的变动,环境温湿度的变动等) 通常有:装片机号,球焊机号,包封机号,后固化烘箱号,去飞边机号,软化线号,是否二次软化,测试机台,测试参数,料饼品种型号,引线条供应者及批号,金丝品种及型号,供应者等。https://www.360docs.net/doc/5d9930205.html,:? _ F8D8F 2F3J 半导体技术天地Semiconductor Technolo gy World] d ;R R;U R 4,失效确认,可用自已的测试机检测功能、开短路,以确认客户反映情况是否属实。 "s o v z4d*X | a;f 5,对于非开短路情况,如对于漏电流大的产品要彻底清洗(用冷热纯水或有机溶剂如丙酮)后再进行下述烘烤试验:125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试问题,对封装工艺要严查。https://www.360docs.net/doc/5d9930205.html, o*B\'d ~-M0j 6? n)z v ]3I/\\ y L8m 6,对于开短路情况,观察开短路测试值是开路还是短路,还是芯片不良,如是开路或短路,则要注意是第几脚开路或短路,待开帽后用万用表测量该脚所连的金丝的压区与脚之间的电阻,以判断该脚球焊是否虚焊。 4c\'{ J ` _ i a Y"U 7,对于大芯片薄形封装产品要注意所用材料(如料饼,导电胶)是否确当,产品失效是否与应力和湿气有关(125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后,门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试的问题,对封装工艺要严查,如检查去飞边方式,浸酸时间等。)芯片设计版图晶圆制造工艺制程封装测试,wafer,chip,ic,design,fabrication,process,lay out,pac age,test,A,RA,QA m } U Y$P b h9n"j&ZQ 半导体技术天地Semiconductor Technolo gy World]"?$Z u0Z4\\ 8,80倍以上显微镜观察产品外形特征,特别是树脂休是否有破裂,裂缝,鼓泡膨胀。(注胶口,脚与脚之间树脂体和导电物) 半导体技术天地Semiconductor Technolo gy World] n:m b q z4_ 9,对所有失效样品进行X-RAY检查,观察金丝情况,并和布线图相比较,以判断布线是否错误。如发现错误要加抽产品确认失效总数并及时反映相关信息给责任人。芯片设计版图晶圆制造工艺制程封装测试,wafer,chip,ic,design,fabrication,process,lay out,pack age,test,FA,RA,QA Q/p c k L 芯片设计版图晶圆制造工艺制程封装测试,wafer,chip,ic,design,fabrication,process,lay out,pac age,test,A,RA,QA0Y,\\-n+O H |2R v 10,C-SAM即SA T,观察产品芯片分层情况。判断规范另见。样品数量为10只以内/批。 g0@ N/~ P\'] ? M4P m 11,开帽:对于漏电流大的产品采用机械方式即干开帽形式,其它情况用强酸即湿开帽形式。切开剖面观察金丝情况,及金球情况,表面铝线是否受伤,芯片是否有裂缝,光刻是否不良,是否中测,芯片名是否与布线图芯片名相符。样品数量为5只/批。对于开短路和用不导电胶装片的产品要用万用表检测芯片地线和基岛之间电阻检查装片是否有问题。对于密间距产品要测量铝线宽度,确认所用材料(料饼,导电胶,金丝)是否确当开帽后应该再测试,根据结果进一步分析。芯片设计版图芯片制造工艺制程封装测试,wafer,chip,ic,process,lay out,pack age,A,QA G1R M9A } d G y#i%L U

潜在失效模式分析管理规定

潜在失效模式分析 管理规定 1

潜在过程失效模式及后果分析管理规定 (第A/3版) 编号: 编制: 审核: 批准: -12-01发布 -12-02实施

1.目的 用以规范PFMEA编制与管理。 2.适用范围 适用于本公司汽车零件PFMEA文件编制与管理。 3.职责 3.1 技术部负责组织项目组,项目组可由技术部、质量部、生产部、采购部、销售部等有关人员组成。如有必要,供应商和顾客代表也可参加。 3.2 项目组负责PFMEA编制,并将其应用于生产过程中。 3.3 生产部门负责执行PFMEA中已定义的预防或改进措施。 4.定义 4.1 PFMEA:是Process Failure Model and Effect Analysis的简称,中文翻译为”潜在过程失效模式及后果分析”,用以评价产品和过程中潜在失效管理,透过改进措施降低失效的频度或提高可侦测性来预防量产时所可能发生的产品及过程异常。 4.2 失效:零件在规定条件下不能完成其规定的功能,或参数不能保持在规定范围内,或操作者失误,造成产品功能失效,及因应环境力变化导致功能丧失。。 4.3 严重度(S):失效状况的等级,数字愈大,造成的损伤愈严重。 4.4 频度(O):失效模式的发生频率,数字愈小,表示发生率越低。 4.5 探测度(D):失效模式的可被侦测度,数字愈小,表示不合格愈容易被发现。 4.6 风险系数(RPN):即严重度(S)*频度(O)*探测度(D)。 4.6.1 S=5时,即意味着降低性能并持续衰退;O=5时,即意味着大约有0.05%的发生可能性;D=5时,即意味着可在流到下道工序或装运前检出;

失效分析

失效分析 第三章失效分析的基本方法 1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制 造缺陷分析(4)使用及维护情况分析 2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故 障树分析及应用 3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息 并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。 4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集 残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验 5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防 止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。 6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。② 确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。 7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的 失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹

故障分析报告

20XX年X月X日XX故障分析报告 XX有限公司 20XX年X月

文档说明及修改历史

目录

一、故障概述 XX。(具体故障发生时间,故障描述,故障恢复时间,整个故障历时)二、故障影响范围 XX。(需要说明影响系统的具体模块以及范围,是否影响业务) 三、故障处理过程 (关键具体发生时间点(如接到报障、故障定位、故障处理、业务抢通时间、故障恢复)、事件) X月X日XX点XX分:XX维护人员接到XX系统报障,接到报障后马上进 行影响范围确认,并将相关情况通知受影响业务系统及相关人员。 X月X日XX点XX分:经过检查XXXXX,定位故障是因为什么原因造成 X月X日XX点XX分:描述故障处理过程,做了哪些操作 。。。。。。。 X月X日XX点XX分:经过业务测试,故障恢复 四、故障原因及解决方案 故障现象分类:□系统无法访问□业务数据异常□系统功能异常 故障原因分类:□工程操作□人为误操作□系统bug□硬件问题□容量问题□外部原因(室内系统)□外部原因(非网管室)□硬件配置问题□ 原因不明

故障定位分类:□接口□主机□存储□网络□数据库□程序□链路 □中间件□负载均衡□操作系统 发生故障前是否有工程割接、升级改造:□有□无 (如果有请写明具体情况) 故障原因论述:(对故障现象、原因进行具体论述,有理有据。如容量问题:有日志记录的信息,cpu多少等等) 解决问题方案:(主要写明故障的具体的解决方法以及方案) 五、网管自监控 有无纳入自监控:□有□无 (如果有,请贴入告警信息;如果没有纳入,请填写上没有纳入自监控告警 原因以及计划) 六、下一步计划 故障抢通后,抢修的计划或待跟进的工作:有计划的时候需要填写具体的时间以及具体计划方案,如果有遗留问题需要填写上并给出优化的计划和具体时间 1. 七、故障处理过程分析 针对此次XX问题。。。。。。。从处理过程、处理时长、处理方案等方面分析是否可以提升

PCB失效分析技术与案例

PCB失效分析技术与典型案例 2009-11-18 15:10:05 资料来源:PCBcity 作者: 罗道军、汪洋、聂昕 摘要| 由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB出现了润湿不良、爆板、分层、CAF等等各种失效问题。本文首先介绍针对PCB在使用过程中的这些失效的分析技术,包括扫描电镜与能谱、光电子能谱、切片、热分析以及傅立叶红外光谱分析等。然后结合PCB的典型失效分析案例,介绍这些分析技术在实际案例中的应用。PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。 关键词| 印制电路板,失效分析,分析技术 一、前言 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。本文将讨论和介绍一部分常用的失效分析技术,同时介绍一些典型的案例。 二、失效分析技术 介于PCB的结构特点与失效的主要模式,本文将重点介绍九项用于PCB失效分析的技术,包括:外观检查、X射线透视检查、金相切片分析、热分析、光电子能谱分析、显微红外分析、扫描电镜分析以及X射线能谱分析等。其中金相切片分析是属于破坏性的分析技术,一旦使用了这两种技术,样品就破坏了,且无法恢复;另外由于制样的要求,可能扫描电镜分析和X射线能谱分析有时也需要部分破坏样品。此外,在分析的过程中可能还会由于失效定位和失效原因的验证的需要,可能需要使用如热应力、电性能、可焊性测试与尺寸测量等方面的试验技术,这里就不专门介绍了。 2.1 外观检查

《材料失效分析》实验教案2014上.

课程教案 课程名称:材料失效分析实验 任课教师:刘先兰 所属院(部):机械工程学院 教学班级: 2011级金属材料工程教学时间:2013—2014学年第二学期 湖南工学院

《材料失效分析》实验 实验课程编码: 学时:6 适用专业:金属材料工程 先修课程:材料科学基础、材料力学性能、金属塑性成型原理、现代材料检测技术等 考核方式: 一、实验课程的性质与任务 帮助学生进一步理解所学知识,加深对一般工程结构和机械零件失效分析的基础知识、基本方法和基本技能的掌握;能够利用所学的知识建立失效分析方法和思路(故障树);熟悉判断失效零件裂纹源的方法;熟知各类断裂件的断口形貌及断裂机制,分析各种断裂类型、起裂点及断裂过程。 二、实验项目 实验一材料失效中的金相分析法实验(2学时) 实验二零件失效的宏观分析法(2学时) 实验三静载荷作用下的金属材料断裂失效断口分析(2学时) 三、实验报告要求 每个实验均应写实验报告。按统一格式,采用统一封面和报告纸。实验报告内容应包括实验名称、目的、内容和理论基础、实验设备(名称、规格及型号)及材料名称,实验步骤、实验结果、结果分析。 四、其它要求 实验中,注重知识、能力、素质的协调发展,突出学生的创新精神与创新能力的培养。 五、教材和参考资料 1教材: 《材料失效分析》,庄东汉主编.华东理工大学出版社. 2.参考资料: [1]《机械零件失效分析》,刘瑞堂编,哈尔滨工业大学出版社.. [2]《材料成形与失效》,王国凡主编,化学工业出版社. [3]《材料现代分析方法》,左演声主编,北京工业出版社. [4] 《断口学》,钟群鹏主编,高等教育出版社. [5] 《金属材料及其缺陷分析和失效分析100例》,候公伟主编,机械工业出版社.

潜在失效模式及后果分析控制程序

1.目的: 确定与产品和过程相关的潜在的失效模式和潜在制造或装配过程失效的机理/起因,评价潜在失效对顾客产生的后果和影响,采取控制来降低失效产生频度或失效条件探测度的过程变量和能够避免或减少这些潜在失效发生的措施 2.围: 适用于公司用于汽车零组件的所有新产品/过程或修改过的产品/过程及应用或环境发生变更的原有产品/过程的样品试制和批量生产。 3.引用文件: 《文件和资料控制程序》 《质量记录控制程序》 《产品质量先期策划控制程序》 4 术语和定义: PFMEA:指Process Failure Mode and Effects Analysis(过程失效模式及后果分析)的英文简称。由负责制造/装配的工程师/小组主要采用的一种分析技术,用以最大限度地保证各种潜在的失效模式及其相关的起因/机理已得到充分的考虑和论述。 失效:在规定条件下(环境、操作、时间),不能完成既定功能或产品参数值和不能维持在规定的上下限之间,以及在工作围导致零组件的破裂卡死等损坏现象。 严重度(S):指一给定失效模式最严重的影响后果的级别,是单一的FMEA围的相对定级结果。严重度数值的降低只有通过设计更改或重新设计才能够实现。 频度(O):指某一特定的起因/机理发生的可能发生,描述出现的可能性的级别数具有相对意义,但不是绝对的。 探测度(D):指在零部件离开制造工序或装配之前,利用第二种现行过程控制方法找出失效起因/机理过程缺陷或后序发生的失效模式的可能性的评价指标;或者用第三种过程控制方法找出后序发生的失效模式的可能性的评价指标。 风险优先数(RPN):指严重度数(S)和频度数(O)及不易探测度数(D)三项数字之乘积。 顾客:一般指“最终使用者”,但也可以是随后或下游的制造或装配工序,维修工序或政府法规。 5.职责: 项目小组负责过程失效模式及后果分析(PFMEA)的制定与管理 6. 工作流程和容:

失效分析处理流程失效分析处理流程

Take the market need as the guidance,Take the technical innovation as the motive. 内容: ?失效分析处理流程 ?生产伙伴的失效分析设备 ?昊宏失效分析设备情况 ?仓库条件

生产控制分析(24小时) 芯片设计失效分析(24小时) QA 部门成立问题分析小组 (12小时) 接收客户投诉信息(24小时)要求流片、封装、测试公司做失效分析试验(由供应商控制) 客户 市场部补货发出(12小时) 初步失效分析(48小时) FAE 提供解决方案(72小时) 输出失效分析报告(12小时)方案一方案二 方案三 记录失效分析过程,给出明确的失效分析结论和改进措施 SOP5 SOP2 SOP3 SOP4SOP1 SOP6 解决芯片设计失效(根据设计周期确定) SOP7 } SOP8

接收客户投诉信息 SOP1 1.QA部收到客户正式的产品投诉后,应填写《产品失效信息表》 1.1投诉反馈内容必须完整,至少应包括以下内容 1.1.1填写投诉表序号、顾客名称/代号、产品的编号; 1.1.2投诉何种缺陷或问题; 1.1.3对应的出货日期及出货数量; 1.1.4不良率有多少(或提供批量及不良数); 1.1.5顾客方在什么环节发现该问题。 1.2必要时,须包括以下内容 1.2.1顾客是否对产品进行了试验或特殊处理; 1.2.2如果顾客有进行试验或特殊处理,须了解客户的试验条件及 处理过程; 1.2.3顾客的组装工艺。 1.3如有附件/样品,须在反馈表上注明 1.3.1“有附件/样品”字样; 1.3.2在附件/样品上标识相应的投诉序号; 1.3.3如分析后需要把样品返还顾客,请注明“需返还顾客”字 样,并注明返还流程。

过程失效模式分析控制程序

发行版本:A 修改码:0 过程失效模式分析控制程序 文件编码:XX/Q7.1-02 页码:1/7 ————————————————————————————— XX 股份有限公司程序文件 1、 目的 确定与产品生产过程相关的过程失效模式;评价和发现在各个生产工 序中失效的原因,确定减少失效发生或找出失效条件的过程控制变量;编制失效模式分级表,为采取纠正和预防措施提供对策. 2、 范围 适用于新产品、修改产品及材料、过程设备、模具、工艺变更时的样 件试制、批量生产。 3、 术语 无 4、 职责 4.1 质管部对PFMEA 活动进行跟踪监察. 4.2 技术部负责过程失效模式和后果分析的制定及实施. 5、 工作程序 5.1在APQP 过程中,由技术部门召集有关人员组成PFMEA 小组,报总工程师批准 5.2 PFMEA 分析小组依据工艺流程图,确定哪些过程是高风险的过程,填写<<过程流程图/风险分析表>>,然后针对这些高风险过程做PFMEA 分析. 5.3 PFMEA 分析小组对分析确定为高风险的工序步骤进行PFMEA,并记录于表格<<过程潜在失效模式冀后果分析(PFMEA)>>. 5.4 按下列要求填写PFMEA 表格: 5.4.1 FMEA 编号:按过程号编号. 5.4.2项目名称:填入所分析项目的名称.

5.4.3过程责任部门:填入生产部门名称和生产线名称 5.4.4产品名称:填入所分析产品的代号 5.4.5编制者:填入负责编制的人员姓名、电话及所在部门名称 5.4.6关键日期:填入初次FMEA预定完成日期,该日期不应超过计划开始生产的日期。 5.4.7编制日期:填入编制FMEA初稿的日期及最新修订的日期。 5.4.8主要参加人:填入执行此项工作的各责任部门和负责人(或参与人)5.4.9过程功能要求:简单描述被分析的过程或工序,说明该过程或工艺的目的;若工艺过程包括许多具有不同失效模式的工序,应把这些工序作为独立过程列出处理。 5.4.10潜在失效模式:是指过程中可能发生的不符合过程要求和/或设计意图的形式,是对具体工序不符合要求的描述,它可能是引发下道工序的潜在失效模式,也可能是上一道工序潜在失效的后果。 5.4.11潜在失效后果:是指失效模式预估的影响。当评价潜在失效后果时,应依据顾客可能注意到的或经历的情况来描述失效的后果。对最终用户来说失效的后果应一律用产品或系统的性能来描述(如噪音、工作不正常、发热、外观不良、不起作用、间歇性工作等);若顾客是下一道工序、后续工序或工位,失效的后果应用过程/工序性能来描述(如无法紧固、不匹配、无法安装、加工余量过大或过小、危害操作者、损坏设备等). 5.4.12 严重度(S):是指潜在的失效模式对顾客的影响后果的央中程度的评价指标,严重度仅适用于失效的后果.评价指标分为“1”到“10”级,按严重程度依次递增.评价准则见表1.

失效分析技术之基础知识篇

失效分析技术之基础知识篇 摘要:本文介绍失效分析与预防技术相关的概念、失效及失效分析分类、失效分析的目的、特点及作用,以及对失效分析实验室、人员和管理的要求等。 关键词:失效,失效分析,失效预防 1基本概念[1] 1.1失效 产品丧失规定的功能称为失效。 1.2失效分析 判断失效的模式,查找失效原因和机理,提出预防再失效的对策的技术活动和管理活动称为失效分析。 1.3失效模式 失效的外在宏观表现形式和规律称为失效模式。 1.4失效机理 失效机理是指引起失效的微观物理化学变化过程和本质。 1.5失效学 研究机电产品失效的诊断、预测和预防理论、技术和方法的交叉综合的分支学科。失效学与相关学科的边界还不够明确,它是一个发展中的新兴学科。 1.6风险 风险是失效的可能性与失效后后果的乘积,风险评估就是对系统发生失效的危险性进行定性和定量的分析。 1.7失效和事故 失效与事故是紧密相关的两个范畴,事故强调的是后果,即造成的损失和危害,而失效强调的是机械产品本身的功能状态,如由于涡轮叶片的疲劳断裂失效,

导致某型号的某某事故。失效和事故常常有一定的因果关系,但二者没有必然的联系。 1.8失效和可靠性 失效是可靠性的反义词。产品的可靠度R(t)是产品在规定的条件下、规定的时间内完成规定的功能的能力。失效率F(t)是指工作到某一时刻尚未失效的产品,在该时刻后,单位时间内发生失效的概率,即F(t)=1-R(t)。 1.9失效件和废品 失效件是指进入商品流通领域后发生故障的零件,而废品则是指进入商品流通领域前发生质量问题的零件。废品分析采用的方法常与失效分析方法一致。 1.10失效分析和状态诊断 失效分析是指事后的分析,而状态诊断是针对可能的主要失效模式、原因和机理方面事先的,即在线、适时、动态的诊断。 1.11失效分析和安全评定 失效分析是指事故后的失效模式、原因和机理诊断,而安全评定是指事故前,按“合于使用”原则的安全与否的评价。 1.12失效分析与维修 维修是维护和修理的总合,维护指将可能造成维修对象功能缺损的因素排除掉,修理指将维修对象缺损的功能恢复,主要是以替换失效件的方式进行。而失效分析是针对失效件的失效模式、原因和机理进行分析。维修主要是针对整机进行修复,而失效分析是对已经定位的失效构件或材料进行分析。 1.13痕迹[2] 主要指力学、化学、热学、电学等因素单独地或共同地作用于制件,而在制件上形成的各种印迹、颜色或材料粘结等。 1.14痕迹分析 对痕迹进行诊断鉴别,找出其形成和变化的原因,为失效分析提供线索和依据的过程。

过程失效模式及后果分析(PFMEA):制定项目风险管理计划的有效工具

过程失效模式及后果分析(PFMEA):制定项目风险管理计划的有效工具 2003年2月1日,美国东部时间上午9时(北京时间1日22时),即将返航的哥伦比亚号航天飞机在大约63 k m高空处与地面控制中心失去联系,在得克萨斯州中部地区上空爆炸解体,机上7名航天员全部遇难。 项目的失败,使人类付出了生命的代价! 那么,怎样去减少项目失败的风险呢? 项目风险是一种不确定的事件或条件,这种事件或条件一旦发生,就会对项目目标产生某种程度的影响,或者导致项目进度拖期、成本超支,或者引起质量事故、客户投诉,甚至引发项目执行不下去、系统瘫痪、机毁人亡的灾难。项目的风险事件或条件往往具有不确定性,但它发生后对项目的范围、成本、进度、质量性能等方面的影响却是肯定的。因此,项目管理人员必须具备“生于忧患,死于安乐”的意识,在执行项目之前就尽可能识别出项目的各种风险,并由此制定出周密的风险管理计划,以便能够在项目执行期间有效地监控和响应,从而消除风险事件对项目的影响或者将其影响降至最小,做到化险为夷。 过程失效模式及后果分析(Process Failure Modes and Effects Analysis,简称PFMEA)是一种综合分析技术,主要用来分析和识别工艺生产或产品制造过程可能出现的失效模式,以及这些失效模式发生后对产品质量的影响,从而有针对性地制定出控制措施以有效地减少工艺生产和产品制造过程中的风险。这项综合分析技术出现于上世纪60年代中期,最早应用在美国航空航天领域,如阿波罗登月计划,1974年被美国海军采用,再后来被通用汽车、福特和克莱斯诺三大汽车公司用来减少产品制造及工艺生产过程中出现的失效方式,从而达到控制和提升产品质量的目的。

失效分析程序简述

失效分析程序简述 机械失效常常会出现多个机件发生失效,特别是机械事故发生的时候,往往 有大量机件同时遭到破坏,情况相当复杂,而失效原因也错综复杂、多种多样。因 此,需要有正确的失效分析思路和合理的失效分析步骤。失效分析的实施步骤和 程序旨在保证失效分析顺利有效地进行,但是机械产品的失效常常是千变万化, 很难制定一个统一的失效分析程序。因此,其细节的制定应根据失效事件的具体 情况(失效设备的类型及其失效的严重性等)、失效分析的目的与要求(是为机理 研究、技术改进,还是为法律仲裁等)、以及有关合同或法规的规定来决定。 下面介绍一般通用的失效分析实施步骤和程序,原则上可供参考和引用。图1示 出了推荐的失效分析实施步骤和程序的流程图。 图1失效分析实施步骤和程序 1 1 . L r : U? ■■■ 制订先效分忻讣划 1 按荐先牧井析讣划 H ' ---- 垛合评定分靳銷果 暑 研陀补救描施和用骑描II 起型先效分松报皆 评审光融分祈擢吿 1 提出%鴉峥析探宵 各经济邹门、単产甜门.IW 侮门、顿育誣门凰社会公 金 " (化損餐为利益〉

1 保护失效现场保护失效现场的一切证据,维持原状、完整无缺和真实不伪, 是保证失效分析得以顺利有效地进行的先决条件。失效现场的保护范围视机械设备的类型及其失效发生的范围而定。 2 失效现场取证和收集背景材料失效现场取证应由授权的失效分析人员执行, 并授权收集一切有关的背景材料。失效现场取证可用摄影、录像、录音和绘图及文字描述等方式进行记录。 失效现场取证所应注意观察和记录的项目主要有: (1) 失效部件及碎片的名称、尺寸大小、形状和散落方位。 (2) 失效部件周围散落的金属屑和粉末、氧化皮和粉末、润滑残留物及一切可疑的杂物和痕迹。 (3) 失效部件和碎片的变形、裂纹、断口、腐蚀、磨损的外观、位置和起始点表面的材料特征, 如烧伤色泽、附着物、氧化物和腐蚀生成物等。 (4) 失效设备或部件的结构和制造特征。 (5) 环境条件(失效设备的周围景物、环境温度、湿度、大气和水质) 。 (6) 听取操作人员及佐证人介绍事故发生时情况(录音记录) 。 在观察和记录时要按照一定顺序, 避免出现遗漏。例如观察和记录时由左向右、由上向下、由表及里和由低倍到高倍等。 所应收集的背景材料通常有: (1) 失效设备的类型、制造厂名、制造日期、出厂批号, 用户、安装地点、投入运行日期、操作人员、维修人员、运行记录、维修记录、操作规程和安全规程。 (2) 该设备的设计计算书及图纸、材料检验记录、制造工艺记录、质量控制记录、验收记录和质量保证合同及其技术文件, 还有使用说明书。 (3) 有关的标准、法规及其他参考文献。 (4) 收集同类或相似部件过去曾发生过的失效情况。 3 制定失效分析计划 只有极少数的情况下, 通过现场和背景材料的分析就能得出失效原因的结论。大多数失效案例都需根据现场取证和背景材料的综合分析结果来制定失效分析计划, 确定进一步分析试验的目的、内容、方法和实施方式。

潜在失效模式分析管理规定

潜在失效模式分析管理规定 潜在过程失效模式和后果分析管理规定 (版本A/3) 号码: 汇编: 批准:批准: 2016年12月1日发布2016年12月2日实施 1.目的 规范全氟甲烷烃的制备和管理。2.适用范围 适用于公司汽车零部件PFMEA文件的编制和管理。 3.责任 3.1技术部负责组建项目组,可由技术部、质量部、生产部、采购部、销售部等相关人员组成。如有必要,供应商和客户的代表也可以参加。 3.2项目团队负责制备PFMEA并将其应用于生产过程。3.3生产部负责实施PFMEA中规定的预防或改进措施。 4.定义 4.1工艺失效模式和影响分析:工艺失效模式和影响分析的简称,中文翻译为“潜在工艺失效模式和后果分析”,用于评估产品和工艺中的潜在失效管理,并通过降低失效频率或通过改进措施提高可检测性来防止大规模生产过程中可能出现的产品和工艺异常。 在规定的范围内,或者操作者的错误,产品功能失效,并且由于环境力的变化而失去功能。。4.3严重性(S):故障条件的数量越多,损坏越

严重。4.4频率(O):故障模式数量越少,发生率越低。 4.5可检测性(d):故障模式的可检测性,数量越少,越容易发现不合格。 4.6风险因素(RPN):即严重程度(S)*频率(O)*检测程度(D)。 4.6.1当s = 5时,意味着性能将下降并继续下降;当0 = 5时,意味着有大约0.05%的可能性发生。D=5,这意味着它可以在流向下一工序之前或装运之前被检测到;客户指定应根据客户要求进行。如无指定,当RPN值≥125时采取措施,并纳入高风险项目清单,措施的有效性在换级、常规和临时评审时进行评审。 4.6.2如果S、O和D中的一个大于或等于9,则必须将其识别为高风险项目并列入高风险项目清单,并制定相应的防错措施以降低客户风险。措施的有效性应在等级变更、例行和临时审查期间进行讨论。4.2故障:零件不能完成其规定的功能或参数不能在规定的条件下保持5工作流程: 5.1讨论每个过程的故障模式?评估严重性?评估当前控制频率?评估当前措施的检测程度?米 计算风险因素?确定改进项目?采取改进措施?重新计算风险因素?关门了吗?包括在经验教训数据库中。 5.1.1当改进措施未能有效地将风险系数降至125以下时,应重新考虑该计划,直至合格。5.1.2每次FMEA评价前,应参考类似产品的经验教训数据库的数据,识别失效模式和风险因素。 5.1.3项目负责人每两周召开一次小组成员会议,审查FMEA的适宜性,立即重新审查难以实施或失败的故障模式的内容,及时做出变更,

相关文档
最新文档