线性微分方程的一般理论

线性微分方程的一般理论
线性微分方程的一般理论

线性微分方程的一般理论

摘要:本文描述了线性微分方程的定义,齐次线性微分方程的解的性质与结构,以及非齐次线性微分方程与常数变易法,给读者展示了线性微分方程的一般理论和解法.

关键词:齐次线性微分方程; 朗斯基行列式;通解;基本解组;常数变易法

The General Theory of Linear Differential Equation Abstract :In this paper,we describe the definition of a linear differential equation, the properties and structure of the solutions of the homogeneous linear differential equation and nonhomogeneous linear differential equation,showing the readers the linear differential equation method of the general theory of reconciliation. KeyWords :

Homogeneous

linear

differential

equation;Lang

yankees

determinant;General solution;Basic set of solutions;Method of variation constant

前言

在微分方程的理论中,线性微分方程是很重要的一部分.线性微分方程是研究非齐次线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛的应用.因此学习线性微分方程的一般理论是非常有用的.

1. 引言

先讨论如下的n 阶线性微分方程

1111()()()()n n n n n n d x d x dx

a t a t a t x f t dt dt dt

---++++= , (1) 其中()(1,2,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数.

如果()0f t ≡,则方程(1)变为

1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt

---++++= , (2) 我们称它为n 阶齐次线性微分方程,简称齐次线性微分方程,而称一般的方程(1)

为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且通常把方程(2)叫做对应于方程(1)的齐次线性方程.

首先给出方程(!)的解的存在唯一性定理.

定理1[1] 如果()(1,2,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数,则对于任一[]0,t a b ∈及任意的0x ,()10x , ,()10n x -,方程(1)存在唯一解()x t ?=,定义于区间a t b ≤≤上,且满足初值条件

()00t x ?=,()()100d t x dt ?=, ,()()

1

100

1

n n n d t x dt ?---=. (3) 2. 齐次线性微分方程的解的性质与结构

首先讨论齐次线性微分方程

1111()()()0n n n n n n d x d x dx

a t a t a t x dt dt dt

---++++= . (2) 根据“常数可以从微分号下提出来”以及“和的倒数等于倒数之和”的法则,容易得到齐次线性微分方程的解的叠加原理.

定理2(叠加原理) 如果()1x t ,()2x t , ,()k x t 是方程(2)的k 个解,则它们的线性组合()()()1122k k c x t c x t c x t +++ 也是(2)的解,这里1c ,2c , ,k c 是任意常数.

特别地,当k n =时,即方程(2)有解

()()()1122n n x c x t c x t c x t =+++ (4)

它含有n 个任意常数.

考虑定义在区间a t b ≤≤上的函数()1x t ,()2x t , ,()k x t ,如果存在不全为零的常数1c ,2c , ,k c ,使得恒等式

()()()11220k k c x t c x t c x t +++≡

对于所有[],t a b ∈都成立,我们称这些函数是线性相关的,否则就成这些函数在所给区间上线性无关.

有定义在区间a t b ≤≤上的k 个可微1k -次的函数()1x t ,()2x t , ,()k x t 所

做成的行列式

()()()[]()

()()()

()()()()()()()()

1212'''1211112,,,k k k k k k k W x t x t x t x t x t x t x t x t x t W t x t x t x t ---????

≡≡

成为这些函数的朗斯基行列式.

定理3 若函数()1x t ,()2x t , ,()n x t 在区间a t b ≤≤上线性相关,则在[],a b 上它们的朗斯基行列式[]0W t ≡.

证明 有假设知,存在一组不全为零的常数1c ,2c , ,n c ,使得

()()()11220n n c x t c x t c x t +++≡ ,a t b ≤≤ (5)

依次对t 微分此等式,得到

()()()()()()()()()'''1122''

''''

1122(1)(1)(1)11

220,

0,

0.

n n n n n n n n n c x t c x t c x t c x t c x t c x t c x t c x t c x t ---?+++=?+++=??

??+++=?

(6) 把(6)和(7)看成关于1c ,2c , ,n c 的齐次线性代数方程组,它的系数行列式

()()()12,,,n W x t x t x t ???? ,于是由线性代数理论知道,要此方程组存在非零解,

则它的系数行列式必须为零,即[]0W t ≡()a t b ≤≤.定理证毕.

定理 4 如果方程(2)的解()1x t ,()2x t , ,()n x t 在区间a t b ≤≤上线性无关,则()()()12,,,n W x t x t x t ???? 在这个区间的任何点上都不等于零,即

[]0W t ≠()a t b ≤≤.

证明 采用反证法.设有某个0t 0()a t b ≤≤使得[]00W t =.考虑关于

1c ,2c , ,n c 的齐次线性代数方程组

()()()()()()()()()1102200'

''

1102200(1)(1)(1)11

0220000

0.

n n n n n n n n n c x t c x t c x t c x t c x t c x t c x t c x t c x t ---+++=??+++=??

??+++=?

(7) 其系数行列式[]00W t =,故(7)有非零解1c ,2c , ,n c .先在以这组常数构造函数

()()()()1122n n x t c x t c x t c x t ≡+++ ,a t b ≤≤,

根据叠加原理,()x t 是方程(2)的解.注意到(7),知道这个解()x t 满足初值条件

()()()(1)000'0n x t x t x t -==== , (8)

但是0x =显然也是方程(2)的满足初始条件(8)的解.有解的唯一性,即知

()0x t ≡()a t b ≤≤,即

()()()11220n n c x t c x t c x t +++≡ ,a t b ≤≤.

因为1c ,2c , ,n c 不全为零,这就与()1x t ,()2x t , ,()n x t 线性无关的假设矛盾.定理得证.

根据定理3和定理4可以知道,由n 阶齐次线性微分方程(2)的n 个解构成的朗斯基行列式或者恒等于零,或者在方程的系数为连续的区间内处处不等于零.

定理 5[2] n 阶齐次线性微分方程(2)一定存在n 个线性无关的解. 证明 线性微分方程(2)存在满足下列初始条件

()101y x =,()'100y x =, ,()(1)100n y x -=; ()200y x =,()'201y x =, ,()(1)200n y x -=; ()00n y x =,()'00n y x =, ,()(1)01n n y x -=

的n 个解

1()y x ,2()y x , ,()n y x ,[]0,,x x a b ∈.

又因10200[(),(),,()]10n W y x y x y x =≠ ,于是可知这n 个解在[],a b 上线性无关.

定理6[3](通解结构定理) 如果()1x t ,()2x t , ,()n x t 是方程(2)的n 个线性无关的解,则方程(2)的通解可表为

()()()1122n n x c x t c x t c x t =+++ , (9)

其中1c ,2c , ,n c 是任意常数.且通解(9)包括了方程(2)的所有解.

推论 方程(2)的线性无关解的最大个数等于n .因此可得结论: n 阶齐次线性微分方程的所有解构成一个n 维线性空间.

方程(2)的一组n 个线性无关解称为方程的一个基本解组.显然,基本解组不是唯一的.特别的,当[]01W t =时称其为标准基本解组.

3.非齐次线性微分方程与常数变易法

考虑n 阶非齐次线性微分方程

1111()()()()n n n n n n d x d x dx

a t a t a t x f t dt dt dt

---++++= , (1) 易见方程(2)是它的特殊形式,首先容易验证如下两个简单性质:

性质1 如果_

()x t 是方程(1)的解,而()x t 是方程(2)的解,则()_

()x t x t +也是方程(1)的解.

性质2 方程(1)的任意两个解之差必为方程(2)的解. 有如下定理:

定理7 设()1x t ,()2x t , ,()n x t 是方程(2)的基本解组,而_

1()x t 是方程(1)的某一解,则方程(1)的通解可表为

()()()_

1122()n n x c x t c x t c x t x t =++++ , (10)

其中1c ,2c , ,n c 是任意常数.而且这个通解(10)包括了方程(1)的所有解.

证明 根据性质1易知(10)是方程(1)的解,它包含有n 个任意常数,像定理6的证明过程一样,不难证明这些常数是彼此独立的,因此,它是方程(1)的通解.现设()x t ≈

是方程(1)的任一解,则由性质2,_

()()x t x t ≈

-是方程(2)的解,根据定理6,必有一组确定的常数1c

,2c , ,n c

,使得

()()()_1122()()n n x t x t c x t c x t c x t ≈-=+++

,

()()()_

1122()()

n n x t c x t c x t c x t x t ≈=++++

这就是说,方程(1)的任一解

()x t

可以由(10)表出,其中1c ,2c , ,n c 为相应

的确定常数,由于()x t

的任意性,这就证明了通解表达式(10)包括方程(1)的所有解.定理证完.

设()1x t ,()2x t , ,()n x t 是方程(2)的基本解组,因而

()()()1122n n x c x t c x t c x t =+++ (11)

为(2)的通解,把其中的任意常数1c 看作t 的待定函数()i c t (1,2,,)i n = ,这(11) 变为

1122()()()()()()n n x c t x t c t x t c t x t =+++ . (12) 将它代入方程(1),就得到()1c t ,()2c t , ,()n c t 必须满足的一个方程,但待定函数有n 个,即()1c t ,()2c t , ,()n c t ,为了确定它们,必须再找出1n -个限制条件,在理论上,这些另加的条件可以任意给出,其法无穷,当然以运算上简便为宜,考虑下面的1n -个条件.

对t 微分等式(12)得

()()()()()'''''''11221122()()()()()()()n n n n x c t x t c t x t c t x t x t c t x t c t x t c t =+++++++ , 令

()()'''1122()()()()0n n x t c t x t c t x t c t +++= , 1(13)

得到

()()()''''1122()()()n n x c t x t c t x t c t x t =+++ . 1(14)

对t 微分等式(12),并像上面一样做法,令含有函数'()i c t 的部分等于零,我们又得到一个条件

()()''''''1122()()()()0n n x t c t x t c t x t c t +++= 2(13)

和表达式

()()()''''''''''1122()()()n n x c t x t c t x t c t x t =+++ . 2(14)

继续上面做法,在最后一次我们得到第1n -个条件.

()()(2)'(2)'(2)'1122()()()()0n n n n n x t c t x t c t x t c t ---+++= 1(13)n -

和表达式

()()()(1)(1)(1)(1)1122()()()n n n n n n x c t x t c t x t c t x t ----=+++ 1(14)n -

最后,对t 微分1(14)n - 得到

()()()()()()()()()1122(1)'(1)'(1)'1122()()()()()()()

n n n n n n n n n n n x c t x t c t x t c t x t x t c t x t c t x t c t ---=+++++++ (14)n

现将(12), 1(14) , 2(14), ,(14)n 代入(1),并注意到()1x t ,()2x t , ,()n x t 是方程(2)的解,得到

()()(1)'(1)'(1)'1122()()()()()n n n n n x t c t x t c t x t c t f t ---+++= (13)n

这样,我们得到了含n 个未知函数'()i c t (1,2,,i n = 的n 个方程

1(13),

2(13), ,(13)n 它们组成一个线性代数方程组,其系数行列式就是()()()12,,,n W x t x t x t ???? ,它不等于零,因而方程的解可以唯一确定,设求得

'()()i i c t t ?=,1,2,,i n = ,

积分得

'()()i i i c t t dt ?γ=+? 1,2,,i n = ,

这里i γ是任意常数.将所得'()i c t (1,2,,)i n = 的表达式代入(11)即得方程(1)的解

1

1

()()()n

n

i i i i i i x x t x t t dt γ?===+∑∑?.

显然,它并且是方程(1)的通解.为了得到方程的一个解,只需给常数

i γ(1,2,,)i n = 以确定的值.例如,当取0i γ=(1,2,,)i n = 时,即得解

1()()n

i i i x x t t dt ?==∑?.

从这里可以看出,如果已知对应的齐次线性微分方程的基本解组,那么非齐次线性微分方程的任一解可由求积得到.因此,对于线性微分方程来说,关键是求出齐次线性微分方程的基本解组.

例1 求方程''1

cos x x t

+=的通解,已知它的对应齐次线性微分方程的基本解组为cos t ,sin t .

解 应用常数变易法,设12()cos ()sin x c t t c t t =+为齐次方程的解. 则1()c t ,2()c t 满足下列方程组:

''12''

12()cos ()sin 01()(sin )()cos cos c t t c t t c t t c t t t ?+=??-+=

??

解之得

'1sin ()cos t

c t t

=-

,'2()1c t = 积分得

1()ln cos c t t =,2()c t t =

所以原方程的通解为

cos ln cos sin x t t t t =+

参考文献

[1] 王高雄,周之铭,朱思铭,王寿松.常微分方程第三版[M ],北京:高等教育出版社,2006. [2] 焦宝聪,王在洪,时红延.常微分方程[M ],北京:清华大学出版社,2008.

[3] 王高雄,周之铭,朱思铭,王寿松.常微分方程第三版[M ],北京:高等教育出版社,2006.

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

二阶线性微分方程解的结构

二阶线性微分方程解的结构

————————————————————————————————作者: ————————————————————————————————日期: ?

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于

'()y p x y =- 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A .2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -????=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5)

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

微分方程习题及解答

第十二章 微分方程 §12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .

2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5.'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2 sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解: 3*.设连续函数20()d ln 22x t f x f t ?? =+ ????,求()f x 的非积分表达式. 答:()ln 2x f x e =?.

阶线性微分方程解的结构

阶线性微分方程解的结 构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方 程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= () 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(),则称其为常微分方程()在 I 上的一个解。,()f x 称为方程()的自由项,当自由项()0f x ≡时方程()称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. () 当()0f x ≡,方程退化为 '()0y p x y +=, ()

假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而()的通解为 ()d ()p x x y x Ce -?= ( ) 对于非齐次一阶线性常微分方程(),在其两端同乘以函数()d p x x e ? 注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程()的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ () 其中C 是任意常数。 观察()式和()式,我们发现一阶线性非齐次常微分方程()的解等于一阶线性齐次常微分方程()的通解()d p x x Ce -?加上函数 ()d ()d *()()d p x x p x x y x e e f x x -??=? 。容易验证,*()y x 是方程()的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

相关文档
最新文档