恒压变量泵系统的电液数字控制研究

恒压变量泵系统的电液数字控制研究
恒压变量泵系统的电液数字控制研究

恒压变量泵系统的电液数字控制研究

Ξ

刘 忠1,杨襄璧1,伍劲松2,张 新3

(11中南工业大学机电工程学院液压工程机械研究所,长沙市410083;21株洲工学院;31长沙矿山研究院)

摘要:本文研究了一种基于高速开关阀控制的恒压变量泵系统,通过理论与试验研究表明,这种系统具有结构简单、响应迅速、控制精确等特点,为今后液压系统电液数字控制的发展提供了理论基础和技术指导。

关键词:恒压变量泵;高速开关阀;变量机构;压力控制系统;数字控制

0 恒压变量泵的工作原理

系统压力p 作用于滑阀右端,与其左端的调压弹簧相平衡,当压力因负载变化使平衡破坏时,若压力作用大于调压弹簧的调定力,便使滑阀向左偏离平衡

位置,压力油液进入变量缸的大端,移动泵的斜盘机构,减少泵的输出流量,因而使负载压力即系统压力

p 降低,该压力反馈至滑阀右端,直至达到重新平衡,

即阀口关闭为止。反之,如果压力作用小于弹簧的调定力,则滑阀由弹簧作用而向右偏移,将液压缸大端泄压,由小端压力作用使泵的斜盘机构反向移动,增加泵的输出流量,因而系统压力上升,直至使滑阀与调压弹簧相平衡为止。这种自动调压过程会使系统压力p 不随负载变化而保持一个恒定值(即调定值p t )。当泵的工作压力p 不超过其调定压力p t 时,泵以最大流量Q max 工作,如特性曲线AB 段;当泵的工作压力

p b =p t 时,泵可以在Q =0至Q =Q max 任意流量下工

作,如特性曲线BC 段;当负载过大,要求p 超过p t 时,泵便停止输出流量,不能在p >p t 下工作。恒压变量泵工作原理如图1所示

:

(a )液压原理(b )压力流量特性

图1 恒压变量泵工作原理图

1 恒压变量泵电液控制系统

要实现恒压变量泵的自动调节,必须满足其输出压力在模拟电信号控制下的无级变化输出。电液伺服

阀、电液比例阀和高速开关阀控制系统均能实现无级调节输出控制。电液伺服阀是一种应用历史较长的高精度控制阀,在电液伺服控制中,能达到很高的控制精度,但工作环境要求苛刻,要求油液清洁度相当高,其价格也很昂贵;电液比例阀是60年代发展起来的一种电液控制阀,其控制精度能满足一般比例控制要求,价格较伺服阀便宜,但需要各种复杂的比例放大电路,对油液清洁度也有较高要求;高速开关阀是近年来美

国、日本、德国等国研究开发出的一种新型电液控制阀,它是通过脉冲宽度调制(PW M )信号(一般由计算机或PW M 放大器产生)来控制阀的开启和关闭时间,即通过控制调制率(D =T on /T c )的大小来实现流量或压力的比例控制。它的控制方式较伺服阀、比例阀简单得多,特别适合于计算机控制,是实现电液数字控制的最佳方式之一。它的显著优点还有对油液清洁度要求不苛刻、抗污能力强、响应速度快、结构紧凑、工作可靠、重复性好、寿命长以及价格便宜等,因此具有广阔的应用前景。本文把高速开关阀应用于恒压变量泵输出压力的控制系统中,泵的输出流量则由其与负载的耦合特性决定。恒压变量泵的电液控制系统原理如图2所示

11恒压变量泵 21溢流阀 31压力传感器41压力传感器 51高速开关阀 61油源

图2 泵的电液控制系统原理图

在上述系统中,以高速开关阀作为先导控制阀,压力传感器3、4采样得到的压力信号通过数据采集卡(带A/D 、I/O )传输给计算机,计算机(单片机)经过比较计算产生的PW M 矩形调制波控制高速开关阀,高速开关阀的产生的先导压力信号又直接作用于恒压变量泵的调压变量机构,因此,可根据其输出先导压力的不同来达到调节恒压变量泵的输出压力的目的。由于高速开关阀压力控制回路具有比例控制的功能,通过简单的电液数字控制系统就能够实现对其压力的比例控制,并且高速开关阀具有数模(D/A )转换的功能,因此,应用它作为接口元件,计算机就可以直接控制恒压变量泵的输出压力,实现恒压变量泵输出压力的无级变化调节以满足不同液压控制系统的工作要求。

Ξ

本谭题获国家自然科学基金资助(批准号:59875085)

2 高速开关阀控制的恒压变量泵系统数学模型根据上述控制原理,参看图1、图2和图3,可构建阀控泵系统的力学模型,在这个模型中,高速开关阀和经过改造后的调压缸构成一个半桥式液压控制系统,高速开关阀的输出压力通过调压活塞作用于恒压泵的调压变量机构,根据工作需要,无级调节恒压变量泵的压力输出。为简化分析,作如下假设:

①高速开关阀的供油压力p s为常量;

②系统中小管道油液的非连续性影响忽略;

③恒压泵输油的不连续只影响泵的高频压力脉动,而不涉及恒压泵的瞬态响应过程;

④流量扰动足够小,斜盘在约束边界以内运动。

阀控泵系统数学模型如下:

(1)高速开关阀压力流量特性方程

q1=Ca1

2(p1-p k)

ρ

q2=Ca2

2(p k-p2)

ρ

a1=

πd

1h0x i(1+x i/(2h0))

(d1/2)2+(h0+x i)2

a2=

πd

1h0(x m-x i)(1+

x m-x1

2h0

) (d1/2)2+(h0+x m-x i)2 h0=R20-(d1/2)2

(2)调压腔流量连续性方程

q1-q2=V k d P k E d t

(3)控制阀力平衡方程

由牛顿定律,可分别导出控制阀芯和调压活塞力平衡方程式:

m1d2x

d t2

+B1

d x

d t

+K1x=A1p

m2d2x

d t2

+B2

d x

dt

-K1x=-A2p k

(4)变量活塞运动学方程

y=K q A d

x

K q=0165πd3gp ρ

(5)恒压变量泵输出流量方程

Q=π

4

d22ωR1

zy

πL

(6)恒压变量泵输出压力方程

Q-Q f-C L p=V

d p

d t

C L=C s q T max 2πμ0

以上各式中:

q1,(q2%)—阀从P→A(A→T)的流量(m3/s);p1(p2)—进(回)油管路压力(MPa);p k—控制腔压力(MPa);C—阀的流量系数;ρ—油液密度(kg/m3); d1—阀孔座直径(m);a1—阀P→A的开口面积(m2);a2—阀A→T的开口面积(m2);x i—阀芯位移(m);V k—控制腔体积(m3);E—油液的体积弹性系数(N/m3);R—钢球半径(m);m1—控制阀和弹簧的当量质量(kg);m2—调压活塞质量(kg);K1—调压弹簧刚度(N/m);A1—控制阀受压端面积(m2); A2—调压活塞受压端面积(m2);x—控制阀开口量(m);B1—控制阀粘性阻尼系数;B2—调压活塞粘性阻尼系数;p—泵的输出压力(MPa);p k—控制腔压力(高速开关阀的输出压力)(MPa);y—变量缸活塞位移(m);K q—滑阀的流量增益;d2—滑阀直径(m);g—重力加速度(m/s2);d3—柱塞直径(m);

A d—变量活塞大端面积(m2);Q—恒压变量泵输出流量(m

3/s);z—柱塞个数;R

1

—柱塞分布圆直径(m);ω—泵的转速(rad/s);Q f—负载流量(m3/s); V—变量活塞压力腔及排油管容积(m3);L—销轴中心至斜盘转动轴线的最短距离(m);EΣ—油液及敏感腔总弹性系数(N/m3);C s—层流漏损系数;C L—变量缸漏损系数;q T max—泵的最大排量(m3/r);μ0—油液粘度(Pa1s)。

3 实验研究

本实验采用邵阳液压件厂生产的80PCY14-1B型恒压变量泵,对其调压变量机构进行了简单的改造,将其手动调压螺钉去掉,利用现有的调压螺纹接口,设计一个带有调压活塞的螺纹接头与之联接,通过胶管引入高速开关阀的控制压力油直接作用于调压活塞,使作用于活塞上的液压力与调压弹簧力等价,从而满足通过计算机控制高速开关阀进而直接控制恒压变量泵输出压力之目的。经改造的恒压变量泵调压变量机构如图3所示。

11调压接头21调压活塞31调压弹簧41调压阀体51弹簧座

图3 改造后的泵的调压变量机构

实验中应用的高速开关阀是由贵州红林机械厂研制的HS V-3143C2型二位三通常闭式高速开关阀,其

主要性能参数如表1所示。

表1 高速开关阀技术性能参数表

指标性能参数单位额定压力10MPa

额定流量2~9L/min

内泄漏0L/min

调制率20%~80%

最高切换频率200H z 最大功率10~50W

额定功率3~15W

开启时间315ms

关闭时间215ms

重复精度0105ms

工作温度(40~+135℃

工作寿命1×109次 高速开关阀的输出压力计算公式为:

p k=

D2

D2+(1-D)2

p s

式中,D为调制率,p s为控制油源压力。

基于此,可导出恒压变量泵的输出压力与高速开关阀控制压力(或调制率)的对应关系,如表2所示。

表2

泵输出压力p s(MPa)高速开关阀控制压力

p k(MPa)

调制率

D

000 1421950150 1531320153 1631710156 17

41100160

1841600164

 注:表中参数是根据某实际液压系统的压力要求而导出的,此系统控制油源p s为6MPa。

实验中,高速开关阀的控制口可交替地与供油口和回油口相通,若要使控制压力升高,就让控制口与供油口相通;反之,则让控制口与回油口相通。控制口压力值通过压力传感器和数据采集卡(带A/D、I/ O)反馈到计算机,计算机将反馈值与目标值比较后,将相应的控制信号经放大器送到高速开关阀,根据程序指令,产生PW M控制信号,使高速开关阀的控制口与供油或回油口相通时间的长短不同,从而控制高速开关阀的输出压力大小,同时,将此压力信号通过胶管引入经改造后的恒压变量泵的调压变量机构,如图2所示。这样,计算机就可以通过控制高速开关阀而直接控制恒压变量泵的输出压力,实现恒压变量泵的电液数字控制,满足液压系统的工作要求。采集记录各不同控制指令(PW M调制率)下对应的高速开关阀控制压力曲线和恒压变量泵输出压力曲线如图4所示。

图4 阀控恒压变量泵系统实验曲线

根据实验研究可知,高速开关阀在PW M控制信号作用下具有数模(D/A)转换的功能,可直接进行数字控制,因而在高速开关阀控制的恒压变量泵电液控制系统中,计算机可直接控制恒压变量泵的输出压力,不同的调制率对应不同的输出压力,从实验曲线可以看出:恒压变量泵的输出压力较好的跟踪了控制压力,其压力稳定时间不超过014秒。实验结果表明,本研究所设计的恒压变量泵电液控制系统,能够通过计算机实现泵的输出工作参数快速、精确的无级调节。

4 结论

恒压变量泵是一种高效、节能、大功率的液压动力源,它广泛应用于工程机械、机床工业、航空航天工业等液压系统领域。本文提出了一种恒压变量泵系统的电液数字控制理论和方法,通过引入高速开关阀(一种数字阀),运用脉冲宽度调制(PW M)技术,实现了对恒压变量泵输出工作参数的无级调节,这对于提高液压控制系统的性能、降低系统成本、便于实现电液数字控制具有重要意义。

参考文献

【1】路甬祥?电液比例控制技术?北京:机械工业出版社, 1988111

【2】苗建中?螺纹插装式高速开关阀?液压与气动,1993(6): 29~30

【3】赵怀文?液压与气动?北京:石油工业出版社,198815【4】刘 忠?基于高速开关阀的多档液压冲击器工作参数的计算机调节研究?中南工业大学硕士学位论文,1998.7

作者简介:刘 忠?博士研究生?主要研究方向:电液控制技术、液压冲击机械理论与控制

收稿时间:2000-04-30

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨 发表时间:2019-06-04T15:53:29.007Z 来源:《电力设备》2019年第2期作者:康晓华[导读] 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。 (山西兴能发电有限责任公司山西省太原市古交市 030206) 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。另外,随着汽轮机的运行功率越来越大,对参数的控制要求也不断提升,采用先进的热工自动化技术是提高机组安全、经济运行最有效的措施之一。本文对数字电液控制技术进行详细分类描述,便于更好的理解和应用此技术。 关键词:数字电液控制技术汽轮机电液伺服控制 1引言 随着电子技术和计算机技术的发展,电厂汽轮机的调节方式也发生了重大的变化,汽轮机最初的调节模式是机械液压调节,逐渐过渡到基于电子模拟技术的模拟电调模式,最后发展到如今的基于计算机技术的数字电液调节模式。数字电液调节模式以汽轮机为控制对象,运用计算机技术、自动控制技术、液压控制技术完成对汽轮机的控制过程。 2 DEH控制系统概述 数字式电液控制技术(DEH)是由两个部分组成,分别为计算机控制技术和EH电液控制技术。由于DEH基于上述两个组成部分,因此其控制技术也就依赖于计算机控制技术(数字控制技术、网络技术)和液压伺服控制技术。随着集成电路技术的快速发展,计算机及网络技术的发展,使得数字电子技术的安全性和可靠性有了较大的发展。另外,液压伺服控制技术也有了快速发展,其中包括电液比例阀、伺服阀等的广泛使用。综合计算机技术和液压伺服控制技术,形成了适合电厂汽轮机运行控制的技术-数字式电液控制技术。 2.1计算机控制系统 通过DEH技术,可以实现汽轮机高中压阀门的控制精度,能够实现机组的协调控制,并且提升整个机组的运行稳定性和安全性。 2.2EH液压系统 EH油系统包括供油系统、执行机构和危急遮断系统,供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,执行机构响应从DEH送来的电指令信号,以调节汽轮机各蒸汽阀开度。危急遮断系统由汽轮机的遮断参数控制,当这些参数超过其运行限制值时,该系统就关闭全部汽轮机进汽门或只关闭调速汽门。 DEH 是汽轮机的数字化电液调节系统是汽轮机组的心脏和大脑。DEH 汽轮机综合控制系统是结合先进的计算机软、硬件技术,吸取了国内外众多同类系统的优点, 系统结构充分考虑了系统的先进性、易用性、开放性、可靠性、可扩展性、兼容性和即插即用等特性,结构完整、功能完善。数字电液控制系统可以实现自动系统控制。随着大容量汽轮机的发展和电网峰谷差的不断增大,对机组的调峰和调频要求越来越高。因此,降低成本,改善机组运行的经济性、可靠性、可调性。数字电液控制系统可以部分完成各种控制回路、控制逻辑的运算。随着大型联合电网和现代大功率汽轮发电机组的发展,为了适应电站自动化的需要,要求装备比以往采用的液压机械式调节系统更为迅速,更加精确的控制系统。同时大容量汽轮机的发展,使老机组将面临调峰和调频,加上原来纯液压调节系统存在控制精度低、稳定性差等陷已不能满足电站自动化的需要。 3汽轮机电液伺服技术电液伺服技术可以分为高压抗燃油系统自容式系统,两种控制技术都有各自的适用性和特点。 3.1高压抗燃油系统 随着西屋汽轮机技术的引进,高压抗燃油系统逐渐被认知和使用。对于传统的液压调节控制技术的缺陷,高压抗燃油系统利用灵活的控制策略以应对多种不同工况自动化控制要求,从而实现汽轮机机炉协调控制。在300MW及以上的大型机组控制系统上,高压燃油控制系统主要有以下控制特点: (1)控制精度高,反映速度快。 (2)系统复杂,体积较大,制造和运行成本高。 (3)对于油质的清洁度要求高,油品需循环再生使用,运行成本高。 (4)能够实现对阀门的管理。 高压抗燃油系统主要包含供油系统、伺服执行机构、危急遮断保护系统组成,其中供油系统主要负责为控制系统提供高压抗燃油,其压力可达到14Mpa,高压抗燃油驱动伺服执行机构,执行机构响应从DEH送来的电控指令信传输到各个阀门,控制阀门的相应动作。危急遮断保护系统由汽轮机的遮断参数进行控制,如果运行参数超过上限值,该系统直接对阀门进行控制,以保证机组运行的安全性。 3.2自容式系统 通过将油源站和伺服系统集成在一起,形成了自容式液压伺服控制系统,通过优化技术,实现了油动机的动态性能与高压抗燃油系统相当,采用小流量容积泵和蓄能器满足了油动机稳态流量很小和动态流量大的特点。伺服系统主要由伺服器、液控单向阀、油缸和电磁阀等构成。 伺服机构主要由油缸、伺服阀、液控单向阀、电磁阀和插装阀等组成。油源站过来的压力油进入集成块直接作用在油动机的上腔,这形成一个固定的油压和一个作用面积。活塞的下腔通过伺服阀进行控制,这样形成一个差动回路,压力油通过伺服阀引入到活塞下腔因为上下腔面积不同,压力不同,会把油动机往上推。 4 DEH电控技术 4.1伺服方法技术 在DEH电控技术中,要完成对某些电液伺服器的控制,需要对电液伺服信号进行放大处理,使用专门的伺服控制模块。早期的伺服控制模块采用模拟放大的电路,采用比例P、积分I来实现电位器的调节控制,存在调试不便的情况。随着数字技术的不断发展,逐渐可以通过数字伺服控制模块来实现控制,采用可编程阵列来管理转换器,通过转换器,传输信号功率被放大后传输到伺服器,达到控制目的。此方法具有响应速度快、控制精度高等特点。 4.2快速反馈调节技术

恒压供水控制器说明书

恒压供水控制器说明书

一、系统概述 VC-3200系列微电脑变频供水/补水控制器是专为变频恒压供水系统和锅炉及换热系统补水而设计的微电脑控制器,可与各种品牌的变频器配套使用。具有压力控制精度高、压力稳定、第二消防压力(动压)设定、系统超压泄水自动控制、设定参数密码锁定等多项功能。 二、主要性能指标 1.可编程设定多种泵工作方式,最多可拖五台泵(1变频+4工频); 2.具有压力测量值防抖动补偿控制功能; 3.参数调整和设定具有密码锁定及保护功能; 4.采用人工智能模糊控制算法,设定参数少,控制精度高,内带看门狗电路,采用数字滤波及多项抗干扰措施。 5.可接无源远传压力表、有源电压及电流型压力变送器; 6. D/A输出控制频率电压为DC 0-10V, 也可设定为DC 0-5V; 7.具有压力传感器零点和满度补偿功能; 8.具有定时自动倒泵功能; 9.具有第二压力(消防压力)设定和控制功能; 10.具有缺水自动检测保护功能和外部输入停机保护功 能; 11.系统补水控制时,具有超压自动泄水控制功能; 12.具有供水附属小泵控制功能,可设定小泵变频或工频 模式; 13.具有可选的定时自动开、关机控制功能; 14.具有小流量水泵睡眠控制功能; 15.具有手操器功能,可手动调节输出电压来控制变频器的频率; 16.可代替电接点压力表进行上、下限压力控制; 17.具有可选分时分压供水控制功能,最多有六段时间控制; 三、安装和配线端子说明 1.控制器外形尺寸: 160mm×80mm×80mm(AC-3200) 160mm×80mm×90mm (AC-3200) 2.控制柜面板开口尺寸152mm×76mm,面板卡入式安装。 3.使用环境为:无水滴、蒸汽、腐蚀、易燃、灰尘及金属微粒的场所; 4.使用环境温度:-20℃~50℃ 5.相对湿度:<95%; 6.额定工作电压:AC220V±10%; 7.控制器额定功耗:<=AC 5W; 8.控制器接线端子输出容量:3A/ AC220V

基于单片机恒压供水系统的设计

毕业设计论文 论文题目:基于单片机恒压供水系统的设计 系部电子通信工程系 专业通信技术 班级 学生姓名 学号 指导教师 2012年5月5日

目录 摘要................................................................................................................................I Abstract.......................................................................................................................... II 第1章绪论 .. (1) 1.1 关于恒压供水系统 (1) 1.2 变频恒压供水系统主要特点 (1) 1.3 恒压供水技术实现 (1) 第2章变频恒压调速供水系统的工作原理 (3) 2.1 系统工作过程 (4) 2.2 变频调速的基本调速原理 (6) 2.3 水泵变频调速节能分析 (7) 2.4 本章小结 (8) 第3章变频恒压调速供水系统硬件设计 (9) 3.1 硬件总体说明 (9) 3.2 555定时器复位电路 (9) 3.3 LED数值显示 D/A数值采集 D/A数值反馈 (11) 3.3.1 LED数值显示模块 (11) 3.3.2 数据采集A/D转换电路 (11) 第4章变频恒压调速供水系统软件设计 (13) 4.1 编程软件 (13) 4.1.1 C051编译器介绍 (13) 4.1.2 KEIL编译器 (13) 4.2 单片机资料 (13) 4.3 软件的程序设计图 (14) 致谢 (18) 参考文献 (19) 附录1 (20) 附录2 (24)

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

恒压供水系统设计

目录 1 摘要 (1) 1.1 引言 (1) 1.1变频恒压供水系统理论分析 (2) 1.1.1变频恒压供水系统的原理 (2) 1.1.2 变频恒压控制理论模型....................... 错误!未指定书签。 1.2恒压供水控制系统构成............................. 错误!未指定书签。 2 变频恒压供水系统设计................................. 错误!未指定书签。 2.1 设计任务及要求................................... 错误!未指定书签。 2.2 系统主电路设计.................................. 错误!未指定书签。 2.3 系统工作过程.................................... 错误!未指定书签。 3 器件的选型及介绍..................................... 错误!未指定书签。 3.1 变频器简介...................................... 错误!未指定书签。 3.1.1 变频器的基本结构与分类.................... 错误!未指定书签。 3.1.2 变频器的控制方式.......................... 错误!未指定书签。 3.2 变频器选型...................................... 错误!未指定书签。 3.2.1 变频器的控制方式.......................... 错误!未指定书签。 3.2.2 变频器容量的选择.......................... 错误!未指定书签。 3.2.3 变频器主电路外围设备选择.................. 错误!未指定书签。 3.3 可编程控制器() .................................. 错误!未指定书签。 3.3.1 的定义及特点.............................. 错误!未指定书签。 3.3.2 的工作原理................................ 错误!未指定书签。 3.3.3 及压力传感器的选择........................ 错误!未指定书签。 4 编程及变频器参数设置................................. 错误!未指定书签。 4.1 的接线图......................................... 错误!未指定书签。 4.2 程序............................................ 错误!未指定书签。 4.3 变频器参数的设置................................ 错误!未指定书签。 4.3.1 参数复位.................................. 错误!未指定书签。 4.3.2 电机参数设置.............................. 错误!未指定书签。总结.................................................... 错误!未指定书签。参考文献................................................ 错误!未指定书签。

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

基于三菱PLC控制的恒压供水系统设计(互联网+)

摘要 本设计是专门对日常用水而设计的恒压供水控制系统。根据国内外的研究现状以及系统的控制要求,制定出了一套适合此系统的控制方案。控制方案中,硬件设计主要对可编程控制器(PLC)机型、变频器机型以及电机泵组的机型做出了选择,同时还对系统的输入输出点进行了规划和分配。在软件设计部分,针对控制要求画出了系统的流程图,并且还对每一部分的流程图进行了功能的解释,使读者能更加轻松的了解整个系统的软件设计情况。在此课题中,还采用了MCGS组态软件,对控制系统进行监视与模拟运行,很直观的再现了现场的实际情况。最后,还对整个系统进行了运行调试,运行结果表明该系统具有水压稳定、硬件组成简单、运行可靠和操作方便等优点。 关键词:恒压供水;可编程控制器;变频器;组态软件

Abstract This design is specially designed for water constant pressure water supply control system. According to the requirements of the current research at home and abroad and the system control, develop a set of control scheme suitable for the system. In the control scheme, the hardware design is mainly to the programmable logic controller (PLC) model , frequency converter and motor pump set model made a choice, but also on the system input and output points of planning and allocation. In software design part, according to draw the flow chart of the system, and the required control and flow chart of every part of the function of explanation, so that readers can more easily understand the software design of the whole system. In this topic, also adopted the MCGS configuration software, to monitor and control system’s simulate, intuitive reproduce the actual situation of the scene. Finally, the debugging of the whole system running, the results on the surface of the system has stable pressure, simple structure, reliable operation and convenient operation. Key words: Constant pressure water supply;Programmable logic Controller;Inverter;Configuration software

恒压供水PLC控制系统设计

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

恒压供水控制系统的设计

天津理工大学 自动化学院专业设计报告 题目:恒压供水控制系统的设计 -------------系统硬件设计 学生姓名周延学号 届 2011 班级电气07-2 指导教师杨顺峰专业电气工程及其自动化

说明 1. 专业设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成专业设计工作,合 作完成的专业设计,要在设计报告概述中明确说明分工。 3. 设计报告内容建议主要包括:设计概述、设计原理、设计方案分析、软硬件具体设计、调试分析、总结以及参考资料等内容,不同类型的设计可有所区别。 4. 设计报告字数应在3000-4000字,图纸设计应采用电子绘图、且 符合相应国标,文字规范借鉴参考毕业设计要求。 5.专业设计成绩由平时成绩(50%)、报告成绩(30%)和答辩成绩(20%) 组成。专业设计应给出适当的评语。 专业设计评语及成绩汇总表

目录 第一章绪论 (1) 绪论 (1) 变频恒压供水系统的研究现状 (3) 本课题的主要研究内容 (4) 第二章系统的理论分析及控制方案的确定 (5) 变频恒压供水系统的理论分析 (5) 变频恒压供水系统理论方案的确定 (5)

第三章系统的硬件设计 (7) 系统主要设备的选型 (7) 系统主电路分析及其设计 (9) PLC的I/O端口分配及外围接线图……………………10第四章 系统的软件设计 (13) 系统的软件设计分析 (13) PLC程序设计 (15)

第一章绪论 绪论 随着社会的发展和进步,城市建筑的供水问题日益突出,一方面要求提高供水质量,不要因为压力的波动造成供水障碍;另一方面要求供水的可靠性和安全性,在发生火灾时能够可靠供水。针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。恒压供水包括生活用水的恒压控制和消防用水的恒压控制—即双恒压系统。恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。 传统的供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下: (1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。 (2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求

西诺尔DHC-8000系列恒压供水控制器说明书

全新一代 DHC–8000系列微机供水控制器 使用说明书 沈阳西诺尔电气有限公司 SIENLE ELECTRIC CO.,LTD.

目录一、概述 1.1DHC-8X00 系列微机供水控制器特点 1.2DHC-8X00 系列微机供水控制器功能 1.3技术指标 二、安装和配线 2.1安装方法 2.2安装注意事项 2.3端子接线图 2.4与常用变频器的连接表 2.5标准二台泵一用一备方式接线图 2.6标准二台泵循环软起方式接线图 2.7标准三台泵循环软起方式接线图 三、功能码 四、面板操作说明 五、显示项目及故障说明 六、选型指南 七、A型三泵变频循环起动原理图 八、A型二泵一用一备方式原理图 九、B型二泵变频循环软起原理图

一、概述 1.1DHC-8000系列微机供水控制器特点 DHC-2000系列微机供水控制器由于具有功能强大、可靠性高、简单易用等特点,多年以来备受广大用户的信赖。最新一代的DHC-8000系列微机供水控制器是DHC-2000系列的升级换代产品,其功能更加强大,可靠性更高,电源适用范围更宽,体积小巧,重量减轻。本控制器和变频器组合在一起,即可构成民用、工业、消防等行业适用的微机控制变频调速恒压供水系统。 1.技术先进:采用先进的SMT(表面贴装)工艺和开关电源技术。抗干扰能力更强,电源适用范围更宽。 2.功能强大:定时换泵,定时开关机,附属小泵变频等功能,使整套设备能 满足不同用户要求。 3.配置灵活:该控制器具有一用一备、一用一补(即可带附属小泵)、两泵 循环软起、三泵循环软起的功能。 4.使用方便:面板表卡式安装,安装使用方便。防尘,防水工业面板,CE 标准设计。 5.可靠性高:PID参数自整定,采用WATCHDOG(看门狗)故障复位,每秒钟 微机自动循检一次,软件上引入容错概念和去干扰算法。另外,微机内部带有屏蔽层隔离,从而在硬件上增强了抗干扰的能力。 1.2 DHC-8000系列微机供水控制器功能 ●一至三泵工作可编程设定。 ●工作泵全软起动,以先起先停为原则。 ●无加泵需要时可定时换泵工作。 ●可设定上限保护压力。 ●可接受(0-5V)或(4-20mA)输入。 ●可补偿传感器误差。 ●远传人工控制起停功能。 ●锅炉补水时,采用动静压方式。 ●设定压力和实时压力显示。 ●变频器频率显示和实时压力显示。 ●具有变频器故障、远传表故障或欠压超时和水位报警指示。 ●具有实时时钟(带电池)功能(标签上带有/T字样的具有此功能)。 ●可编程每日6段高低压供水及开关机(T型有此功能)。 ●具有两种节能模式,休眠功能和带附属小泵功能。 ●可编程工作期限。 ●完善的密码功能。 1.3 技术指标 使用电源:AC 220V +15% 功耗: < 6W 触点容量:5A / 250 AC 5A / 30V DC 使用温度:-10°C ~ 50°C 相对湿度:20 ~ 90 RH 在箱体安装的开孔尺寸:(外形①)A型宽152mm,高76mm

变频恒压供水控制系统设计完整

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示:

PLC 图1 恒压供水变频控制系统原理图 三、系统设备选型 1主要电气元件参数指标 水泵:35KW,三相异步电动机 恒压设定点:1.0Mpa 压力变送器:0-1.6Mpa,两线制,4-20mA电流输出 变频器:VVVF变频器 (1)水泵 根据设计要求水泵正常供水20m3/小时,最大供水量35m3/小时,扬程45m。参考相关资料选择型号为IS50-32-125(扬程50m,流量50 m3/小时)的水泵即可满足要求。 (2)远传压力表 由于远传压力表具有价格低、有数据读取表盘等优点,结合具体

汽轮机数字电液控制系统DEH介绍及控制方式讨论(4)讲解

汽轮机数字电液控制系统DEH 介绍及控制方式讨论 一、DEH系统介绍 1、DEH系统各部分介绍 1.1、DEH系统慨述 汽轮机数字电液控制系统(Digital Electric-Hydraulic Control System,以下简称DEH)是当今汽轮机特别是大型汽轮机必不可少的控制系统,是电厂自动化系统最重要的组成部分之一。现代DEH系统由于采用计算机控制技术为核心的分散控制系统结构,提高了控制精度,并且能够方便地实现各种复杂的控制算法。其执行部分由于采用了液压控制系统,具有响应快速、安全、驱动力强的特点。 1.2 、DEH系统计算机控制部分硬件配置 (1)基本控制计算机柜 主要由电源、1对冗余DPU、3个基本控制I/O站、1个OPC超速保护站及1个伺服控制系统站组成,完成对汽轮机的基本控制功能。转速测量卡(MCP卡)、模拟量测量卡(AI卡)、开关量输入卡(DI卡)、回路控制卡(LC卡)、开关量输出卡(DO卡)组成基本控制的信号输入部分。输入I/O卡件及重要信号均采用三选二冗余配置。由三块测速卡(MCP卡)和OPC卡组成超速保护控制功能块,基本控制DPU软件中,同时也具有OPC控制功能,达到硬件、软件的双重保护。由多块阀门控制卡(VCC卡)组成阀门伺服控制系统部分,每一块VCC卡用于一个阀门的控制,相互独立,在VCC卡件的设计上保证了即使在主机故障情况下,也能通过后备手操盘,手动控制机组阀门开度。 DPU主控制机是2台完全相同的、互为冗余的计算机组成。 DPU的整机面板如下图所示: 每台计算机有五个指示灯和一个电源钥匙开关,说明如下: 电源指示灯:接上电源,该灯亮,否则暗。 主控指示灯:当系统正常运行时,此时电源灯和运行灯都亮,如该机处于主控状态,主控灯亮;如处于跟踪和初始状态,主控灯暗。 运行指示灯:当计算机正在运行应用程序时,该灯亮。

基于plc的恒压供水系统的设计

PLC 基于 plc 的恒压供水系统的设计 (恒压供水系统的原理及电气控制要求。Plc 在机电系统中的应用和工作原理。西门子变频 器的工作原理 MM440。Plc 编程原理及程序设计方法。电器原理图,接线图。) 一.恒压供水系统的原理 1.系统介绍 生产生活中的用水量常随时间而变化,季节、昼夜相差很大。用水和供水的不平衡集 中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。以前大多采用传 统的水塔、高位水箱 或气压罐式增压设备 容易造成二次污染,同时也增大了水泵的轴功 率和能量损耗。随着电力电子技术的发展 变频调速技术广泛应用于送水泵站、加压站、工 业给水、小区和高楼供水等供水等领域。相对于传统的技术而言,它具有节能效益明显、 保护功能完善 、控制灵活方便等优点 。 恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成 控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的 闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是总 管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入 CPU 运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速, 从而达到给水总管压力稳定在设定的压力值上。 恒压供水系统由 PLC 控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软 启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图 1 所示。 水 压 水 位 压力变送器 水位变送器 变频器 触摸屏显示器 软启动器 控制回路 水泵电机 图 1 恒压供水系统示意图 电机保护装置 2.系统构成 系统采用了 S7-200 型 PLC (14 个输人点,10 个输出点)、MM440 型变频器、压力传

相关文档
最新文档