基于catia和adams的麦弗逊悬架运动分析

基于catia和adams的麦弗逊悬架运动分析
基于catia和adams的麦弗逊悬架运动分析

摘要

悬架系统是汽车最重要的零部件之一,悬架的运动学特性直接影响到汽车操作稳定性和使用性能,悬架运动学的研究是汽车研究开发中最重要课题之一。

本文介绍了汽车悬架系统运动学的研究现状,并对独立悬架系统做了详细的分类和对比分析,选取麦弗逊悬架系统最为本文的研究对象,详细分析了麦弗逊悬架系统的结构组成、布置形式及运动特性,并利用CATIA软件建立了麦弗逊悬架的三维模型,并通过装配设计,完成了麦弗逊悬架系统模型的装配。最后,通过机械系统动态仿真软件ADAMS,对麦弗逊悬架进行运动仿真分析,模拟在车轮上下跳动的运动激励下,测定出麦弗逊悬架的定位参数特性曲线,并对其做一个简单的分析。

关键词:麦弗逊悬架;运动学仿真;CATIA;车轮定位参数

Abstract

The suspension is one of the most vital components of a vehicle. The kinematics characteristic is directly related to handing and stability, and use performance of the automobile. And the study of suspension kinematics is one of the most important subjects of research of vehicle design.

The paper describes the current research status of the kinematics of automotive suspension system, through the specific classification and analysis of the automotive independent suspension system, Macpherson suspension system was chosen to be analyzed, through the analysis of the structure, arrangement and dynamic characteristics of the Macpherson suspension, a virtual prototype model was accomplished by the assembly design of the 3D models of this suspension system, by using the software ADAM. In the end, the Macpherson suspension is analyzed by multi-body system dynamics software ASAMS. The Macpherson suspension mechanism was driven by the up and down movement of the wheel, the determination of the positional parameter characteristic of the McPherson suspension, and making a simple analysis.

Keywords: McPherson suspension; kinematics simulation; CATIA; wheel alignment parameters

目录

1 绪论 .................................................................................................... 错误!未定义书签。

1.1 悬架的概述 (6)

1.2 悬架的结构 (6)

1.2.1 弹性元件 (2)

1.2.2 减振器 (3)

1.2.3 导向机构 (4)

1.3 国内外悬架发展趋势 (4)

2 麦弗逊悬架概况 (6)

2.1 麦弗逊悬架简介 (6)

2.1.1 麦弗逊悬架发展史 (6)

2.2 麦弗逊悬架结构特点 (6)

2.2.1 麦弗逊悬架的优缺点 (7)

2.3 麦弗逊悬架的研究现状和实际应用 (8)

2.3.1 研究现状 (8)

2.3.2 实际应用 (8)

3 麦弗逊悬架模型的建立 (9)

3.1 CATIA V5R17软件简介 (9)

3.2 建模思路 (9)

3.3减震器和螺旋弹簧模型的建立 (10)

3.3.1 减震器模型的建立 (10)

3.3.2 螺旋弹簧模型的建立 (11)

3.4 A型架模型的建立 (13)

3.5 轮毂和轮胎三维模型的建立 (15)

3.5.1 轮毂模型的建立 (15)

3.5.2 轮胎三维模型的建立 (17)

3.6 横向稳定杆及连接杆模型的建立 (18)

3.6.1 横向稳定杆模型的建立 (18)

3.6.2 连接杆 (21)

3.7 转向机构模型的建立 (22)

3.7.1 转向盘模型的建立 (22)

3.7.2 转向轴及转向万向节模型的建立 (24)

3.7.3 转向器总成模型的建立 (26)

3.8 悬架其它零部件的三维模型 (29)

3.9 零部件的装配设计 (30)

4 麦弗逊悬架的运动分析 (31)

4.1ADAMDS和SimDesigner软件简介 (31)

4.1.1 ADAMS软件简介 (31)

4.1.2 SimDesigner软件简介 (31)

4.2 悬架模型的输出过程 (32)

4.3 导入ADAMS及仿真过程 (33)

5 悬架的运动分析 (35)

5.1 车轮定位参数变化曲线的测定 (35)

5.1.1 车轮定位及定位参数的定义 (35)

5.1.2 主线内倾角变化曲线的测定 (35)

5.1.3 主销后倾角变化曲线的测定 (36)

5.1.4 前轮外倾角变化曲线的测定 (37)

5.1.5 前轮前束变化曲线的测定 (38)

5.2 车轮侧向及纵向位移变化曲线的测定 (39)

5.2.1 车轮侧向位移变化曲线的测定 (39)

5.2.2 车轮纵向位移变化曲线的测定 (40)

5.3 前悬架特征曲线的测定及分析 (41)

5.3.1 主销内倾角与车轮跳动量变化曲线的分析 (42)

5.3.2 主销后倾角与车轮跳动量变化曲线的分析 (43)

5.3.3 车轮外倾角与车轮跳动量变化曲线的分析 (43)

5.3.4 车轮前束角与车轮跳动量变化曲线的分析 (44)

5.3.5 轮距的变化量与车轮跳动量变化曲线的分析 (44)

6 总结 (46)

致谢 (47)

参考文献 (48)

附录A (49)

附录B (55)

底盘-10-麦弗逊式悬架的构造及拆装实训

底盘-10-麦弗逊式悬架的构造及拆装实训

汽修专业理实一体教案 课题项目七麦弗逊式悬架的结构、工作原理及拆装实训 教学目标一、知识目标 了解麦弗逊式悬架的工作原理原理二、技能目标 拆卸安装悬架 三、情感目标 培养团队合作能力 培养不怕脏不怕累的劳动精神 教学重点一、实训车间的行为规范 二、悬架及减震的工作原理 教学难点一、悬架的运动原理 二、规范的使用各种工具 教学准备一、转向系统实训台 二、拆装作业台 三、120件套工具箱 作业布置一、作业 二、实训报告 教学考核一、现场提问(30%) 二、现场实践操作(70%)

教学反思 教学内容或教学流程教法设计 一、课前三分钟 1.强调车间内不允许玩手机,督促班干部收缴手机 2.保持车间干净整洁,不准带入饮料零食等物 3.未经老师允许,不得擅自操作各个机械 4.检查教材、笔记本、笔 二、复习旧知与导入新课 1.复习旧知 底盘构成 2.导入新课 颠簸路面上,车辆如何减少震动,吸收能量? (1)弹簧延时,缓冲 (2)减震吸收能量 三、悬架的结构

『悬挂在汽车底盘安放位置的示意 图』 ●悬挂的概念和分类 首先让我们来了解一下什么 是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减

震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

CATIA__DMU机构运动分析

DMU 机构运动分析

目录 1产品介绍 (3) 2图标功能介绍(基本概念、基本界面介绍) (3) 2.1DMU运动仿真(DMU Simulation)工具条 (3) 2.2DMU运动副创建工具条(Kinematics Joints) (3) 2.3DMU Generic Animation (3) 2.4机构刷新(DMU Kinematics Update) (3) 2.5干涉检查模式工具条(Clash Mode) (3) 2.6DMU 空间分析(DMU Space Analysis) (3) 3功能详细介绍 (3) 3.1DMU运动仿真(DMU Simulation)工具条 (3) 3.1.1用命令驱动仿真(Simulating with Commands) (3) 3.1.2用规则驱动仿真(Simulating With Laws) (3) 3.1.3仿真感应器(Sensors) (3) 3.1.4机构修饰(Mechanism Dressup) (3) 3.1.5创建固定副(Fixed Part) (3) 3.1.6装配约束转换(Assembly Constraints Conver) (3) 3.1.7测量速度和加速度(Speeds and Accelerations) (3) 3.1.8机构分析(Mechanism Analysis) (3) 3.2DMU运动副创建工具条(Kinematics Joints) (3) 3.2.1创建转动副(Creating Revolute Joints)点击 (3) 3.2.2创建滑动副(Creating Prismatic Joints) (3) 3.2.3同轴副(Creating Cylindrical Joints) (3) 3.2.4创建球铰连接(Creating Spherical Joints) (3) 3.2.5创建平动副(Creating Planar Joints) (3) 3.2.6创建刚性副(Rigid Joints) (3) 3.2.7点-线副(Point Curve Joints) (3) 3.2.8曲线滑动副(Slide Curve Joints) (3) 3.2.9点-面副(Point Surface Joints) (3) 3.2.10万向节(Universal Joints) (3) 3.2.11CV连接(CV Joints) (3) 3.2.12创建齿轮副(Gear Joints) (3) 3.2.13滑动-转动复合运动副(Rack Joints) (3) 3.2.14滑动-滑动复合运动副(Cable Joints) (3) 3.2.15用坐标系法建立运动副(Creating Joints Using Axis Systems) (3) 3.3DMU Generic Animation工具条 (3)

CATIA 机械运动分析与模拟实例

前言 CATIA软件是法国达索飞机制造公司首先开发的。它具有强大的设计、分析、模拟加工制造、设备管理等功能。其设计工作台多达60多个,就足以说明软件功能的强大。 本书是作者在出版系列CATIA软件功能介绍后,专门针对某一项功能写的实例教程。在讲解示例的过程中,作者也注意了将某些快捷功能插入进来,进行讲解。比如在装配设计工作台对零件进行重新设计,比如在装配图中直接导入或者插入新的零件。在同类的图书中,很难涉及到这些快捷功能。 本书是基于CATIA V5 R16写成的,在完成本书时,已经有R17版本了,读者在更高的版本上也可以使用此书。读者在阅读本书,使用软件时,需要反复练习,才能熟练运用本书所讲解的一些功能。可以根据本书的步骤,做一些自己学习和工作中遇到的模型,也可以拿机械设计的标准件来做练习实例。 本书适合做机械设计的专业人员和机械相关专业的学生使用。本书也同样适合想学习CATIA软件的其他读者。本书前面20章都是讲解某一项铰的设计方法,最后一章是综合前面各章内容做的一个实例。本书编写过程中考虑到了初学者可能对CATIA机械零件设计的功能还不是很熟悉,因此,对于各章所涉及到的零件,模型建立方法都做了详细的介绍。对于已经熟悉CATIA基本设计功能的读者,可以略读这部分内容,直接阅读各章最后一节的内容。对于只想了解CATIA 机械零件设计的读者,可以仔细阅读每章前面各节的内容,把本书作为机械设计的详细教程,未尝不可。 感谢我的家人,他们给了我很大的支持,使我能抽出时间完成此书。感谢我的单位领导对工作的支持,特别是反应堆结构室的领导和各位同仁,他们的鼓励和帮助,使我坚持下来完成此书,并使我受益匪浅。 本书由盛选禹和盛选军主编。 冯志江老师参加了本书第1、第2、第3章的编写工作。王存福同志参加了第6、第7、第8章的编写工作 参加本书编写工作的还有张宏志,王玉洁,孙新城,盛选贵,曹京文、陈树青、王恩标、于伟谦、盛帅、候险峰、盛硕、陈永澎、盛博、曹睿馨、张继革、刘向芳、富晶、孟庆元、宗纪鸿、唐守琴。 由于时间比较仓促,认识水平有限等,不能避免有错误出现,读者在阅读时发现错误,请通知编者,不胜感激。也希望就CATIA软件的问题和广大读者继续探讨。作者联系电子邮件:xuanyu@https://www.360docs.net/doc/5610937437.html,。 编者 2006年12月于北京

CATIA_V5_运动仿真分析1

第16章 CATIA 运动分析 16.1 曲轴连杆运动分析 四缸发动机曲轴、连杆和活塞的运动分析是较复杂的机械运动。曲轴做旋转运动,连杆左做平动,活塞是直线往复运动。在用CATIA作曲轴、连杆和活塞的运动分析的步骤如下所示。 (1)设置曲轴、连杆、活塞及活塞销的运动连接。 (2)创建简易缸套机座。 (3)设置曲轴与机座、活塞与活塞缸套之间的运动连接。 (4)模拟仿真。 (5)运动分析。 16.1.1 定义曲轴、连杆、活塞及活塞销的运动连接 1.新建组文件 (1)点击“开始”选取“机械设计”中的“装配件设计”模块,如图16-1所示。 图16-1 进入“装配件设计”模块 (2)进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/huo-sai-xiao.CATPart、huo-sai.CATPart 、lianganzujian.CATproduct、quzhou.CATpart”,将这些零件体载入到Product1中。 (3)此时,零件体载入后重合到一起,点击分解图标,出现分解对话框如图16-2所示。然后点击模型树上的Product1,点击确定,此时弹出警告对话框,如图16-3所示,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。

图16-2 分解对话框 图16-3 警告对话框 (3)由于连杆体零件是装配体,各部分之间存在约束,点击“全部更新”按钮,我们会发现连杆体组件恢复装配后的样子。 (4)点击“约束”工具栏中的“相合约束”图标,分别选择活塞销中心线及活塞 孔中心线,如图16-4所示。然后点击“约束”工具栏中的“偏移约束”图标,选择活塞销的一个端面及活塞孔一侧的凹下去细环端面,如图16-5所示,此时出现“约束属性”对话框,如图16-6所示。将对话框中的“偏移”一栏改为“3.75mm”,点击“确定”按钮, 完成活塞销端面和活塞内凹孔细环端面之间的偏移约束关系。点击“全部更新”按钮,完成活塞与活塞销之间的约束,如图16-7所示。自此完成添加零部件工作。

麦弗逊式悬架的课程设计概要

前言: 悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,因此悬架与车辆的行驶平顺性、操控稳定性具有极大的关系。悬架设计的好坏直接影响到整车的性能。因此开发出高品质的悬架是车辆工程师的一项重要任务。而悬架部分涉及的专业知识也比较高深,本文期望通过对悬架进行初级设计以达到对悬架有进一步了解的目 的。 关键词:悬架;减震器;弹簧计算 1

1悬架 1.1悬架的功用 汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力;保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 1.2 悬架的组成 一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。 1.弹性元件 弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧等,这里我们选用螺旋弹簧。 2.减振器 减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。 3.导向机构 导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。

CATIA_DMU机构运动分析

第五章DMU 机构运动分析  1 第五章CATIA V5 DMU 机构运动分析

目录  1产品介绍 (4) 2图标功能介绍(基本概念、基本界面介绍) (4) 2.1DMU运动仿真(DMU Simulation)工具条 (4) 2.2DMU运动副创建工具条(Kinematics Joints) (4) 2.3DMU Generic Animation (5) 2.4机构刷新(DMU Kinematics Update) (6) 2.5干涉检查模式工具条(Clash Mode) (6) 2.6DMU 空间分析(DMU Space Analysis) (6) 3功能详细介绍 (7) 3.1DMU运动仿真(DMU Simulation)工具条 (7) 3.1.1用命令驱动仿真(Simulating with Commands) (7) 3.1.2用规则驱动仿真(Simulating With Laws) (9) 3.1.3仿真感应器(Sensors) (10) 3.1.4机构修饰(Mechanism Dressup) (12) 3.1.5创建固定副(Fixed Part) (12) 3.1.6装配约束转换(Assembly Constraints Conver) (13) 3.1.7测量速度和加速度(Speeds and Accelerations) (15) 3.1.8机构分析(Mechanism Analysis) (17) 3.2DMU运动副创建工具条(Kinematics Joints) (19) 3.2.1创建转动副(Creating Revolute Joints)点击 (19) 3.2.2创建滑动副(Creating Prismatic Joints) (20) 3.2.3同轴副(Creating Cylindrical Joints) (21) 3.2.4创建球铰连接(Creating Spherical Joints) (22) 3.2.5创建平动副(Creating Planar Joints) (23) 3.2.6创建刚性副(Rigid Joints) (24) 3.2.7点-线副(Point Curve Joints) (24) 3.2.8曲线滑动副(Slide Curve Joints) (25) 3.2.9点-面副(Point Surface Joints) (26) 3.2.10万向节(Universal Joints) (26) 3.2.11CV连接(CV Joints) (27) 3.2.12创建齿轮副(Gear Joints) (28) 2 第五章CATIA V5 DMU 机构运动分析

前轮最常见悬挂形式 麦弗逊独立悬挂详解

前轮最常见悬挂形式麦弗逊独立悬挂详解 2010年10月14日 15:11:14 来源: Che168 麦弗逊悬挂(macphersan),是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。麦弗逊悬挂最大的特点就是体积比较小,有利于对比较紧凑的发动机舱布局。不过也正是由于结构简单,对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。下面就为大家详细的介绍一下麦弗逊悬挂的构造以及性能表现。 麦弗逊悬挂的历史: 麦弗逊式悬挂是应前置发动机前轮驱动(ff)车型的出现而诞生的。ff车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。

麦弗逊(Macphersan)是这套悬挂系统发明者的名字,他是美国伊利诺伊州人,1891年生。大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入通用汽车公司的工程中心。30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬挂。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。 麦弗逊悬挂的构造: 麦弗逊悬挂构造图 麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预

CATIA_DMU机构运动分析

第五章DMU 机构运动分析 1 第五章CATIA V5 DMU 机构运动分析

目录 1产品介绍 (4) 2图标功能介绍(基本概念、基本界面介绍) (4) 2.1DMU运动仿真(DMU Simulation)工具条 (4) 2.2DMU运动副创建工具条(Kinematics Joints) (4) 2.3DMU Generic Animation (5) 2.4机构刷新(DMU Kinematics Update) (6) 2.5干涉检查模式工具条(Clash Mode) (6) 2.6DMU 空间分析(DMU Space Analysis) (6) 3功能详细介绍 (7) 3.1DMU运动仿真(DMU Simulation)工具条 (7) 3.1.1用命令驱动仿真(Simulating with Commands) (7) 3.1.2用规则驱动仿真(Simulating With Laws) (9) 3.1.3仿真感应器(Sensors) (10) 3.1.4机构修饰(Mechanism Dressup) (12) 3.1.5创建固定副(Fixed Part) (12) 3.1.6装配约束转换(Assembly Constraints Conver) (13) 3.1.7测量速度和加速度(Speeds and Accelerations) (15) 3.1.8机构分析(Mechanism Analysis) (17) 3.2DMU运动副创建工具条(Kinematics Joints) (19) 3.2.1创建转动副(Creating Revolute Joints)点击 (19) 3.2.2创建滑动副(Creating Prismatic Joints) (20) 3.2.3同轴副(Creating Cylindrical Joints) (21) 3.2.4创建球铰连接(Creating Spherical Joints) (22) 3.2.5创建平动副(Creating Planar Joints) (23) 3.2.6创建刚性副(Rigid Joints) (24) 3.2.7点-线副(Point Curve Joints) (24) 3.2.8曲线滑动副(Slide Curve Joints) (25) 3.2.9点-面副(Point Surface Joints) (26) 3.2.10万向节(Universal Joints) (26) 3.2.11C V连接(CV Joints) (27) 3.2.12创建齿轮副(Gear Joints) (28) 2 第五章CATIA V5 DMU 机构运动分析

基于ADAMS的麦弗逊式独立悬架的运动仿真设计说明

本科毕业设计设计说明 题目:1.8MT轿车前悬架运动学仿真及设计 学院: 专业: 班级: 学号: 学生姓名: 指导老师: 提交日期: 2011年 4 月 11 日

初始说明: 1.设计原始参数: 满载质量:1579kg,前轴荷:799kg ,后轴荷:780kg ,前轮距:1470 mm ,后轮距:1470mm,轴距:2610 mm,前悬架弹簧刚度:24.7N/mm,后悬架弹簧刚度16.56N/mm,轮胎型号205/50 R16。 2.ADADS建模硬点数据: 初始: loc_x loc_y loc_z hpl_arm_front -200.0 -400.0 225.0 hpl_arm_out 0.0 -700.0 200.0 hpl_arm_rear 200.0 -390.0 240.0 hpl_spring_lower 0.0 -650.0 500.0 hpl_strut_lower 0.0 -650.0 450.0 hpl_strut_upper 0.0 -600.0 800.0 hpl_tierod_inner 200.0 -400.0 300.0 hpl_tierod_outer 150.0 -690.0 3000.0 hpl_wheel_center 0.0 -800.0 300.0 优化后: loc_x loc_y loc_z hpl_arm_front -200.0 -400.0 205.0 hpl_arm_out -30.0 -700.0 180.0 hpl_arm_rear 200.0 -390.0 220.0 hpl_spring_lower 0.0 -650.0 500.0 hpl_strut_lower 0.0 -650.0 450.0 hpl_strut_upper 0.0 -600.0 800.0 hpl_tierod_inner 200.0 -400.0 287.0 hpl_tierod_outer 180.0 -720.0 270.0 hpl_wheel_center 0.0 -800.0 300.0

麦弗逊悬架设计

轿车前悬架设计 姓名:学院: 指导老师:学号:

目录 一?设计任务 1.1整车性能参数 1.2具体设计任务 二?悬架的结构形式分析 2.1对悬架提出的设计要求有 2.2悬架分类 2.1.1非独立悬架的结构特点以及优缺点 2.1.2独立悬架的结构特点以及优缺点 2.1.3独立悬架的分类 2.1.4捷达轿车前悬架的选择 三?悬架主要参数的确定 3.1悬架的静挠度 f c 3.2悬架的动挠度 f d 3.3悬架的弹性特性 3.4悬架侧倾角刚度及其在前?后轴的分配四?弹性元件的设计 4.1弹簧参数的计算选择 4.2空载时的刚度 4.3满载时计算刚度 4.4螺旋弹簧的选择及校核 五?麦弗逊式独立悬架导向机构的设计5.1对前轮独立悬架导向机构的设计要求 5.2对后轮轮独立悬架导向机构的设计要求 5.3麦弗逊式独立悬架导向机构的布置参数 5.3.1侧倾中心 5.3.2侧倾轴线 5.3.3纵倾中心 5.3.4抗制动纵倾性(抗制动前俯角) 5.4麦弗逊式独立悬架导向机构设计 5.4.1导向机构受力分析 六?减振器 6.1分类 6.2相对阻尼系数

6.3减振器阻尼系数δ的确定 6.3.1减振器阻尼系数s cm ψδ2= 6.3.2麦弗逊式独立悬架减振器如图6.3.2.1所示,按照如图安装时,其阻尼系数δ 6.3.3阻尼系数δ的确定 6.4最大卸荷力o F 的确定 6.4.1卸荷速度x ν的确定 6.4.2最大卸荷力o F 的确定 6.5筒式减振器工作缸直径D 的确定 七?悬架结构元件 7.1三角形下控制臂长度GB=362mm 7.2减振器长度 7.3螺旋弹簧的长度,自由高度0H 八?悬架结构元件的尺寸 8.1三角形下控制臂 8.2减振器 8.3固定架 九?悬架装配图 十?参考文献

底盘麦弗逊式悬架的构造及拆装实训

汽修专业理实一体教案 授课时间:2013年月日第周星期课时: 6 节

(2)减震吸收能量 三、悬架的结构 『悬挂在汽车底盘安放位置的示意图』 ●?悬挂的概念和分类 ??? 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异

却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 ????非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性和舒适

性均要明显好于选用非独立悬挂的汽车。 『多连杆悬挂是独立悬挂的典型代表』????悬挂把车架与车轮弹性地联系起来,关系到汽车的多种使用性能,是汽车最重要的三大总成之一(其它两个分别是:发动机和变速箱)。从结构上看,汽车悬挂仅是由一些杆、筒以及弹簧等简单构件组成,但汽车悬挂却是一个非常难达到完美要求的汽车总成,这是因为悬架既要满足汽车操纵稳定性的要求,又要保证汽车的舒适性要求,而这两方面又是相互矛盾的。为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及严重侧倾偏向,不利于汽车的转向,容易导致汽车操纵不稳定等。

麦弗逊悬架设计说明书

目录 摘要 (2) ABASTRACT (3) 第一章前言 (4) 第二章设计任务 (5) 第三章悬架的结构分析及选型 (6) 3.1悬架的分类 (6) 3.2非独立悬架与独立悬架优缺点分析 (6) 3.3独立悬架结构形式分类及分析 (7) 第四章方案论证 (8) 4.1 悬架结构方案分析 (8) 4.2弹性元件 (9) 4.3减震元件 (10) 4.4传力构件及导向机构 (10) 4.5横向稳定器 (11) 第五章前悬架系统的主要参数的确定及对整车性能的影响 (11) 5.1悬架的静扰度 (11) 5.2悬架的动扰度 (12) 5.3悬架的弹性特性 (12) 5.4前悬架主销侧倾角与后倾角 (13) 第六章弹性元件的计算 (14) 6.1 螺旋弹簧的设计 (14) 第七章减震器机构的类型及主要参数的选择计算 (15) 7.1减震器分类 (15) 7.2相对阻尼系数 (15) 7.3减震器阻尼系数的确定 (14) 7.4最大卸荷力的确定 (17) 7.5减震器工作缸直径的确定 (18) 结论 (19) 参考文献 (20)

摘要 为了提高汽车行驶的平顺性和稳定性, 本课题进行了产品名称为QF1020货车前后悬架的设计。通过对课题内容的分析, 并结合相关设计手册,进行了方案设计与比较, 设计了麦弗逊前悬架, 钢板弹簧后悬架。在设计中,首先,分析了麦弗逊独立悬架的组成和功用;其次,进行悬架的上各零部件强度的校核;第三,详细考虑各部件之间的连接关系;最后在此基础上进行悬架自然振动频率,悬架静挠度和动挠度以及悬架弹性特性的计算。在分析麦弗逊悬架的组成和作用以及各零部件的尺寸确定的基础上,再利用CAD软件进行二维制图。此次的设计进行了准确的计算和详细的结构分析,为麦弗逊悬架的结构优化提供了依据,从而在运动学和动力学方面提高汽车的性能。 关键词:麦弗逊悬架;汽车;设计;

CATIA_DMU运动分析解析

1 产品介绍 DMU机构运动分析(Kin )是专门做DMU装配运动仿真的模块。针对大型产品如整车、飞机、 轮船等的机构运动状态进行评价。 2 图标功能介绍(基本概念、基本界面介绍) 2.1DMU运动仿真(DMU Simulation)工具条 命令驱动仿真(Simulating with Commands) 规则驱动仿真(Simulating With Laws) 机构修饰(Mechanism Dressup) 创建固定副(Fixed Part) 装配约束转换(Assembly Constraints Conver) 测量速度和加速度(Speeds and Accelerations) 机构分析(Mechanism Analysis) 2.2DMU运动副创建工具条(Kinematics Joints) 创建转动副( Creating Revolute Joints) 创建滑动副(Creating Prismatic Joints) 创建同轴副(Creating Cylindrical Joints) 创建球铰连接(Creating Spherical Joints) 1 第五章CATIA V5 DMU 机构运动分析

2 第五章 CATIA V5 DMU 机构运动分析 创建平动副(Creating Planar Joints ) 创建刚性副(Rigid Joints ) 点-线副(Point Curve Joints ) 曲线滑动副(Slide Curve Joints ) 点-面副(Point Surface Joints ) 万向节(Universal Joints ) CV 连接(CV Joints ) 创建齿轮副(Gear Joints ) 滑动-转动复合运动副(Rack Joints ) 滑动-滑动复合运动副(Cable Joints ) 用坐标系法建立运动副(Creating Joints Using Axis Systems ) 2.3 DMU Generic Animation 创建运动仿真记录(Simulation ) 生成重放文件(Generate Replay ) 重放(Replay ) 仿真播放器(Simulation Player ) 编辑序列(Edit Sequence )

增强型麦弗逊式前独立悬架系统

增强型麦弗逊式前独立悬架系统 C5应用特殊技术加强了麦弗逊式前独立悬架系统。悬架与高强度的副车架连接,具备卓越的舒适性能和操控稳定性。 新C5的前悬架与普通的麦弗逊悬架相比: 1) 三角臂采用非调质钢锻造工艺,强度超过了铝合金、铸铁或钢板焊接件。 天籁:铝合金 迈腾:铸铁件 凯美瑞:冲压钢板焊接 2) 三角臂与副车架连接处的橡胶衬套采用液压减振技术,抑制高频和低频 振动。而天籁、迈腾和凯美瑞都采用普通橡胶块,只能吸收高频振动,无法避免低频振动对车身的冲击。 弹簧与托盘一体化设计 前副车架:进口双面镀锌高强度钢板 液压减振 橡胶套

3) 弹簧上托盘与轴承采用整体设计,提高了与弹簧支撑的可靠性。 4) 独立悬挂的横向稳定杆与紧固橡 胶块经硫化处理成为整体,在其工 作时橡胶块与横向稳定杆是个整 体,消除了横向稳定杆与橡胶块的 摩擦噪音,提高了舒适性能和操控 稳定性。 多连杆后独立悬架系统 C5先进的多连杆式后悬架,代表欧系车后悬架的最高水平。主要包含了以下技术: ?分离式减震器 ?适应性可调节前束 ?矩形截面贯通式高强度后副车架 ?按照人体行走频率设计的弹簧 ?多级非线性阻尼减振器 ?整体式硫化橡胶横向稳定杆 分离式减震器 C5的悬架减振器固定在副车架上,避免减振器直接冲击座舱。其他车型将减振器直接固定在车身上,对车身的冲击很大,引起车身变形从而影响操控稳定性。

适应性可调节前束 车辆长期使用后,其车轮的“前束值”会发生变化,而普通车型的后悬架通常是不可调的,这就会造成轮胎滑移和不正常磨损。C5引入可调前束的后悬架系统,可以减少轮胎磨损,保持正常驾驶性能。 矩形截面贯通式高强度后副车架 新C5采用矩形横梁,与同级的中高级车比较起使用的钢板和结构最优,强度最好。可以良好吸收悬架和减震器的振动,极大地提高乘坐舒适性与操控稳定性。 竞品后副车架结构 分离式减震器 适应性可调节前束

麦弗逊式悬架设计说明书

| 前言 悬架是现代汽车的重要组成部分之一。虽然并非汽车在行进必不可少的装备,但如果没有悬架,将极大的影响汽车的操纵稳定性和平顺性。悬架对整车性能有着重要的影响。在汽车市场竞争日益加剧的今天,人们对汽车的性能的认识更多的靠更为直接的感观感受,而非他们不太懂得的专业术语。 因此,对汽车操纵稳定性﹑平顺性的提升成为了各大汽车厂商的共识。 与此关系密切的悬架系统也被不断改进,主动半主动悬架等具有反馈的电控系统在高端车辆上的应用日趋广泛。无论定位高端市场,还是普通家庭的经济型轿车,没有哪个厂家敢忽视悬架系统及其在整车中的作用。这一切,都是因为悬架系统对乘员的主观感受密切联系。悬架系统的优劣,乘员在车上可以马上感受到。 “木桶理论”,很多人都知道,整车就好比是个“大木桶”,悬架是它的一片木板。虽然,没有悬架的汽车还是可以跑动的,但是坐在上面是很不舒服的。坐过农用车货厢的人,对此应该是颇有些体会的,即便是较好的路况,在上面也是颠来颠去的。因为它的悬架很简单,对平顺性和操纵稳定性考虑的很少。只有当悬架这块木板得到足够重视,才能使整车性能得以提升。否则,只能是句空话。 正因为悬架在现代汽车上的重要重要作用,应该重视汽车悬架的设计。 只有认真,严谨的设计才能确保其与整车的完美匹配。而要做到这一点,就必须,查阅大量相关书籍,图册,行业和国家标准。 这些是对我们这些将来要从事汽车设计,制造工作的工科出身的大学毕业生的必须经历的一个必不可少的训练。没有经过严格的训练的洗礼,是不可能具备这种专业精神和素质的。 :

: — 目录 前言................................................ 错误!未定义书签。第一章悬架的功用 (3) 第二章悬架系统的组成.............................. 错误!未定义书签。第三章悬架的类型及特点............................. 错误!未定义书签。 §非独立悬架的分类及特点........................ 错误!未定义书签。 §独立悬架分类及特点............................ 错误!未定义书签。第四章匹配车型的选择............................... 错误!未定义书签。《 第五章悬架主要参数的确定.......................... 错误!未定义书签。 f.................................. 错误!未定义书签。 §悬架静挠度 c f................................ 错误!未定义书签。 §悬架的动挠度 d 第六章弹性元件的计算............................... 错误!未定义书签。

麦弗逊式独立悬挂

解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。 『悬挂在汽车底盘安放位置的示意图』 ●悬挂的概念和分类 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。

『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左 右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬 挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此 从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲 击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒 适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性 和舒适性均要明显好于选用非独立悬挂的汽车。

『多连杆悬挂是独立悬挂的典型代表』 悬挂把车架与车轮弹性地联系起来,关系到汽车的多种使用性能,是汽车最重要的三大总成之一(其它两个分别是:发动机和变速箱)。从结构上看,汽车悬挂仅是由一些杆、筒以及弹簧等简单构件组成,但汽车悬挂却是一个非常难达到完美要求的汽车总成, 这是因为悬架既要满足汽车操纵稳定性的要求,又要保证汽车的舒适性要求,而这两方面 又是相互矛盾的。为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计 得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及严重侧倾偏向, 不利于汽车的转向,容易导致汽车操纵不稳定等。 『迈腾原型车大众帕萨特B6前后悬挂示意图』 悬挂的构件虽然简单但参数的确定却相当的复杂,厂家不但要考虑汽车的舒适性,操控稳定性还要考虑到成本问题。基于这三个问题不同厂家有不同的倾向性策略。也就产 生了国内现在比较常见的五种悬挂:麦弗逊式独立悬挂、双叉臂式独立悬挂、单纵臂扭杆 梁式半独立悬挂、连杆支柱式独立悬挂、多连杆式独立悬挂。下面就让我们来逐一分析以 上五款国内常见悬挂,今天首先来介绍下使用最普遍的麦弗逊式独立悬挂。 ●麦弗逊式独立悬挂 麦弗逊式悬挂是当今世界用的最广泛的轿车前悬挂之一。麦弗逊式悬挂由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。主要结构简单的来说就 是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的

轿车前悬架(麦弗逊式)

<点击这里录入标题> <点击此处添加作者信息> <作者单位> 5 摘要:捷达轿车前悬架所使用的是麦弗逊式独立悬架。悬架是现代汽车上的重要总成之一, 它把车架(或车身)与车轴(或轮胎)弹性的连接起来。它的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的震动、保证乘员的舒适性、减小货物和车辆本身的动载荷。麦10 弗逊式独立悬架有着结构简单、紧凑、占用空间小等众多优点,在现代轻型汽车中得到了广泛运用。 本文主要讲的是捷达轿车的前悬架的设计,对其前悬架进行设计计算。并对悬架中关键零部件如:螺旋弹簧、横向稳定杆、减震器等的设计、选型校核。 关键词:捷达轿车;麦弗逊式悬架;设计计算 15 中图分类号: 20 Abstract:Jetta car used by the pre-suspension Macpherson independent suspension. Suspension is an important element of one of the modern automobile,it to the classis(or body ) and axle (or tires) flexibly link .It main role is the role of transmission in the body between the wheels and all the power and moment, such as support of system dynamics and driving force ,and easing the road to the whole body impact load ,decay resulting vibration,ensure the comfort of the crew,cargo and 25 vehicles reduce their moving load. Macpherson independent suspension. with simple structure, compact, small footprint, and many other advantages, in a modern light vehicles has been widely used. The main stress is front suspension design, Thecalculation of their front suspension design. Specifications set out the key suspension components such as:spiral springs, sway bar, shock 30 absorber such as design,selection and calibration. Key words: Jetta car; McPherson suspension; Design and calculation 0引言 悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轮弹性地连接起来。悬架需要传递作用在车轮和车身之间的一切力和力矩,缓和路面传给35 车身的冲击载荷,衰减由此引起的承载系统的振动,使汽车获得高速的行驶能力和理想的运动特性。悬架对于整车的意义重大。 现代轿车除了保证其基本性能,即行驶性、转向性和制动性之外,目前正致力于提高安全性与舒适性,向高附加价值、高性能和高质量的方向发展。对此,尤其作为提高操纵稳定性、乘坐舒适性的轿车悬架必须加以改进。舒适性40 是汽车最重要的使用性能之一。 与生产实际结合较紧密。通过对悬架系统中重要零部件的设计、计算和校核;各定位参数涵义及其对整车动力学性能影响的分析,初步达到介绍悬架设计全过程目的,具有很强的操作性,能够为标致轿车的生产实际提供一定意义上的指导。 45

相关文档
最新文档