生物化学讲义(7)

生物化学讲义(7)
生物化学讲义(7)

第七章糖代谢(10学时)

第一节概述

糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖与糖原都能在体内氧化提供能量。

食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。本章重点介绍葡萄糖在机体中血糖浓度动态平衡的维持和前五种主要代谢的途径、生理意义及其调节。

一、糖的主要生理功能

①氧化供能:糖类占人体全部供能的70%。 (1g糖可提供约16.7kJ的能量)

②构成组织细胞的基本成分:核糖:构成核酸;糖脂:生物膜成分

③转变为体内的其它成分:转变为脂肪;转变为非必需氨基酸一、糖酵解

二、糖的消化吸收

食物中的糖主要是淀粉,另外包括一些双糖及单糖。多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。

食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。淀粉的主要消化部位在小肠。糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。

三、糖代谢

是指葡萄糖在体内的复杂化学反应,葡萄糖吸收入血后,依赖一类葡萄糖转运体(glucose transporter, GLUT)而进入细胞内代谢。

第一节糖的无氧酵解(糖酵解)

当机体处于相对缺氧情况(如剧烈运动)时,葡萄糖或糖原分解生成乳酸和少量ATP的过程称之为糖

的无氧酵解。这个代谢过程常见于运动时的骨骼肌,因与酵母的生醇发酵非常相似,故又称为糖酵解。

糖的无氧酵解途径,亦称为EMP途径。因Meyerhof (M)、Embden (E)和Parnaas (P)的工作对阐明

糖酵解的关键步骤起着直接重要的作用,因此酵解途径也被称为MEP途径。

反应过程:参与糖酵解反应的一系列酶存在在细胞质中,因此糖酵解的全部反应过程均在细胞质中进行。根据反应特点,可将整个过程分为三个阶段,十步反应。

(一)糖酵解过程(Embden-Meyerhof Pathway,EMP)

1. 活化阶段

(1)葡萄糖磷酸化形成G-6-P

此反应基本不可逆,调节位点。以G-6-P形式将Glc限制在细胞内。催化此反应的激酶有,已糖激酶和葡萄糖激酶。

已糖激酶:专一性不强。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。

葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,

肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。

(2)G-6-P异构化为F-6-P

此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C

1移至C

2

,为C

1

位磷酸化作准备,同时保证C

2

上有

羰基存在,这对分子的β断裂,形成三碳物是必需的。

(3)F-6-P磷酸化,生成F-1.6-2P

此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶。

2.裂解阶段

(4)F-1.6-2P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)

该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。

(5)磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛

由磷酸丙糖异构酶催化。已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-2P的C

1-P、C

6

-P都变成

了3-磷酸甘油醛的C

3

-P。

3.放能阶段

(6)3-磷酸甘油醛氧化成1.3—二磷酸甘油酸(高能化合物)和NADH+H+

由磷酸甘油醛脱氢酶催化。此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)。

(7)1.3-二磷酸甘油酸转化成3-磷酸甘油酸和ATP

由磷酸甘油酸激酶催化,是酵解过程中的第一次底物水平磷酸化反应,也是酵解中第一次产生ATP的反应。一分子Glc产生二分子三碳糖,共产生2ATP。

(8)3-磷酸甘油酸转化成2-磷酸甘油酸

磷酸甘油酸变位酶催化,磷酰基从C

3移至C

2

(9)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)(高能化合物)

2-磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。

(10)磷酸烯醇式丙酮酸生成ATP和丙酮酸。

不可逆,调节位点。由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸。这是无氧酵解过程第二次生成ATP,产生方式也是底物水平磷酸化。由于是1分子葡萄糖产生2分子丙酮酸,所以在这一过程中,1分子葡萄糖可产生2分子ATP。

(11)EMP总反应式

1葡萄糖+2Pi+2ADP+2NAD+ → 2丙酮酸+2ATP+2NADH+2H++2H

2

O

(二)2分子丙酮酸还原为2分子乳酸

在无氧条件下,丙酮酸被还原为乳酸。此反应由乳酸脱氢酶催化,乳酸脱氢酶有多种同工酶(详见第四章),骨骼肌中主要含有LDH5,它和丙酮酸亲和力较高,有利于丙酮酸还原为乳酸,LDH5的辅酶是NAD+。还原反应所需的NADH+H+是3-磷酸甘油醛脱氢时产生,作为供氢体脱氢后成为NAD+,再作为3-磷酸甘油醛脱氢酶的辅酶。因此,NAD+来回穿梭,起着递氢作用,使无氧酵解过程持续进行。在有氧的条件下,3-磷酸甘油醛脱氢产生的NADH+H+从细胞质中通过穿梭系统进入线粒体经电子传递链传递生成水,同时释放出能量(详见“第八章”)。

(三)糖酵解过程的能量变化

1分子葡萄糖在缺氧的条件下转变为2分子乳酸,同时伴随着能量的产生,净产生2分子ATP;糖原开始1分子葡萄糖单位糖酵解成乳酸,净产生3分子ATP。

(四)糖酵解的生理意义

(1) 主要的生理功能是在缺氧时迅速提供能量

(2)正常情况下为一些细胞提供部分能量

(3) 糖酵解是糖有氧氧化的前段过程,其一些中间代谢物是脂类、氨基酸等合成的前体。

(五)糖酵解的调节

1.已糖激酶调节

别构抑制剂(负效应调节物):G-6-P和ATP;别构激活剂(正效应调节物):ADP。

2.磷酸果糖激酶调节(关键限速步骤)

抑制剂:ATP、柠檬酸、脂肪酸和H+,激活剂:AMP、F-2.6-2P;ATP。细胞内含有丰富的ATP时,此酶几乎无活性。高含量的柠檬酸是碳骨架过剩的信号。

3.丙酮酸激酶调节

抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP;激活剂:F-1.6-P。

共价修饰调节:

(六)丙酮酸的去路

1.进入三羧酸循环

2.生成乳酸

在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3-磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。

总反应:Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H

2

O

动物体内的乳酸循环(Cori)循环:肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。

3.生成乙醇

酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。

总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO

2+2ATP+2H

2

在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。

巴斯德效应( Pasteur effect):有氧氧化抑制生醇发酵(或糖酵解)的现象

4.进行糖异生

5.合成氨基酸

(七)其它单糖进入糖酵解途径

糖原降解产物G-1-P,D-果糖,D-半乳糖,D-甘露糖均转化为糖酵解的中间物。

第二节糖的异生作用

糖异生作用(gluconeogenesis)是指非糖物质如生糖氨基酸、乳酸、丙酮酸及甘油等转变为葡萄糖或糖原的过程。糖异生的最主要器官是肝脏。

糖异生起源于细胞线粒体内。由丙酮酸生成Glc是糖异生的主要途径。

一、糖异生反应过程

糖异生反应过程基本上是糖酵解反应的逆过程。由于糖酵解过程中由己糖激酶、6-磷酸果糖激酶1及丙酮酸激酶催化的三个反应释放了大量的能量,构成难以逆行的能障,因此这三个反应是不可逆的。①Glc到G-6-P ,②F-6-P到F-1.6-P ③PEP到丙酮酸。这三个反应可以分别通过相应的、特殊的酶催化,使反应逆行,完成糖异生反应过程。

(一)丙酮酸转变为磷酸烯醇式丙酮酸

丙酮酸生成磷酸烯醇式丙酮酸的反应包括丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化的两步反应,构成一条所谓“丙酮酸羧化支路”使反应进行。这个反应是糖酵解过程中丙酮酸激酶催化的磷酸烯醇式丙酮酸生成丙酮酸的逆过程。

1. 丙酮酸羧化生成草酰乙酸(线粒体内)

此反应由丙酮酸羧化酶催化,辅酶是生物素,ATP、Mg2+(Mn2+)参与羧化反应,CO2通过生物素使丙酮酸羧化生成草酰乙酸。此酶存在于线粒体中,故丙酮酸必须进入线粒体才能被羧化为草酰乙酸,这也是体内草酰乙酸的重要来源之一。

丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用。丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。

2.草酰乙酸脱羧生成磷酸烯醇式丙酮酸(PEP)(线粒体内)

此反应由磷酸烯醇式丙酮酸羧激酶催化,由GTP提供能量,释放CO2。

磷酸烯醇式丙酮酸羧激酶在人体的线粒体及胞液中均有存在。存在于线粒体中的磷酸烯醇式丙酮酸羧激酶,可直接催化草酰乙酸脱羧生成PEP,PEP从线粒体转运到细胞质,通过糖酵解逆行过程生成1,6-二磷酸果糖。

存在于细胞质中的磷酸烯醇式丙酮酸羧激酶,首先要使草酰乙酸从线粒体转运到细胞质中:由于草酰乙酸不能自由进出线粒体内膜,因此草酰乙酸先要在线粒体内还原生成苹果酸或经转氨基作用生成天冬氨酸;苹果酸、天冬氨酸都能自由进出线粒体内膜,可从线粒体到达细胞质;在细胞质中苹果酸可脱氢氧化、天冬氨酸可再经转氨基作用生成草酰乙酸,完成了将草酰乙酸从线粒体转运到细胞质的过程。然后,转运到细胞质中的草酰乙酸可在磷酸烯醇式丙酮酸羧激酶催化下脱羧生成PEP。

(二) F-1.6-2P → F-6-P

此反应由F-1.6-2P 酶催化进行。这个反应是糖酵解过程中F-6-P生成F-1.6-2P的逆过程。

F-6-P异构化为G-6-P。

(三) G-6-P转变为葡萄糖

此反应由葡萄糖-6-磷酸酶催化进行。这个反应是糖酵解过程中己糖激酶催化葡萄糖生成6-磷酸葡萄糖的逆过程。

二、生理意义

1.糖异生最重要的生理意义是在空腹或饥饿情况下维持血糖浓度的相对恒定

2.乳酸再利用:乳酸循环(Cori循环)。

乳酸大部分是由肌肉和红细胞中糖酵解生成的,经血液运输到肝脏或肾脏,经糖异生再形成葡萄糖,后者可经血液运输回到各组织中继续氧化提供能量。这个过程称为是乳酸循环或Cori循环(lactate cycle or Cori cycle)。在安静状态下产生乳酸的量甚少,此途径意义不大。但在某些生理或病理情况下,如剧烈运动时,肌糖原酵解产生大量乳酸,大部分可经血液运到肝脏,通过糖异生作用合成肝糖原或葡萄糖以补充血糖,而血糖又可供肌肉利用。乳酸循环可避免损失乳酸以及防止因乳酸堆积引起的酸中毒。

3.补充或恢复肝糖原储备的主要途径。

4.维持酸碱平衡。

三.糖异生途径的前体

1.三碳化合物(甘油、丙酮酸、乳酸等)。

2.生糖氨基酸(能转变为糖的氨基酸)。

3.柠檬酸循环的中间代谢物。

四.糖异生和糖酵解的代谢协调调控

糖异生和糖酵解在细胞中是两个相反的代谢途径,同时,又是协调的。

①高浓度G-6-P抑制已糖激酶,活化G-6-P酶,抑制酵解,促进异生。

②酵解和异生的控制点是F-6-P与F-1.6-2P的转化。糖异生的关键调控酶是F-1.6-2P酶,而糖酵解的关键调控酶是磷酸果糖激酶。ATP促进酵解,柠檬酸促进糖异生。F-2.6-P是强效应物,促进酵解,减弱异生。

③丙酮酸到PEP的转化在糖异生中是由丙酮酸羧化酶调节,在酵解中被丙酮酸激酶调节。

乙酰CoA激活丙酮酸羧化酶的活性,抑制丙酮酸脱氢酶的活性,因此乙酰CoA过量时,可促进Glc 生成。

④酵解与异生途径,一个途径开放,另一途径就关闭,可避免无数循环。无效循环指由不同酶催化的两个相反代谢,反应条件不一样,一个方向需ATP参加,另一方向则进行水解,结果使ATP水解,消耗能量,反应物无变化。这种无效循环只能产生热量供自身需要。

⑤激素对酵解和异生的调控

肾上腺素、胰高血糖素和糖皮质激素促进异生,胰岛素加强酵解。

五、血糖

血液中的葡萄糖,称为血糖(blood sugar)。体内血糖浓度是反映机体内糖代谢状况的一项重要指标。正常情况下,血糖浓度是相对恒定的。正常人空腹血浆葡萄糖糖浓度为3.9~6.1mmol/L(葡萄糖氧化酶法)。空腹血浆葡萄糖浓度高于7.0 mmol/L称为高血糖,低于3.9mmol/L称为低血糖。要维持血糖浓度的相对恒定,必须保持血糖的来源和去路的动态平衡。

一、血糖的主要来源及去路

血糖的来源:①食物中的糖是血糖的主要来源;②肝糖原分解是空腹时血糖的直接来源;③非糖物质如甘油、乳酸及生糖氨基酸通过糖异生作用生成葡萄糖,在长期饥饿时作为血糖的来源。

血糖的去路:①在各组织中氧化分解提供能量,这是血糖的主要去路;②在肝脏、肌肉等组织进行糖原合成;③转变为其他糖及其衍生物,如核糖、氨基糖和糖醛酸等;④转变为非糖物质,如脂肪、非必需氨基酸等;⑤血糖浓度过高时,由尿液排出。血糖浓度大于8.88~9.99mmol/L,超过肾小管重吸收能力,出现糖尿。将出现糖尿时的血糖浓度称为肾糖阈。糖尿在病理情况下出现,常见于糖尿病患者。二、血糖浓度的调节

正常人体内存在着精细的调节血糖来源和去路动态平衡的机制,保持血糖浓度的相对恒定是神经系统、激素及组织器官共同调节的结果。

神经系统对血糖浓度的调节主要通过下丘脑和自主神经系统调节相关激素的分泌。激素对血糖浓度的调节,主要是通过胰岛素、胰高血糖素、肾上腺素、糖皮质激素、生长激素及甲状腺激素之间相互协同、相互拮抗以维持血糖浓度的恒定。

从体外实验了解机体对血糖浓度的调节能力,可以通过葡萄糖耐量试验(glucose tolerance test,GTT )获得糖耐量试验曲线加以理解。

第三节糖的有氧氧化

有氧氧化(aerobic oxidation)是指葡萄糖生成丙酮酸后,在有氧条件下,进一步氧化生成乙酰辅酶A ,经三羧酸循环彻底氧化成水、二氧化碳及能量的过程。这是糖氧化的主要方式,是机体获得能量的主要途径。

一、反应过程

(一)糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH);

这一阶段和糖酵解过程相似,在细胞质中进行。在缺氧的条件下丙酮酸生成乳酸。在有氧的条件下丙酮酸进入线粒体生成乙酰辅酶A,再进入三羧酸循环。

(二)丙酮酸氧化脱羧生成乙酰CoA

在有氧条件下,丙酮酸从细胞质进入线粒体。在丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex)的催化下进行氧化脱羧反应,该反应不可逆。

1.丙酮酸脱氢酶系

丙酮酸脱氢酶复合体是由三种酶组成的多酶复合体,它包括丙酮酸脱氢酶,二氢硫辛酸乙酰转移酶及二氢硫辛酸脱氢酶。参与的辅酶有TPP,硫辛酸,FAD,NAD+,CoA、Mg2+。在多酶复合体中进行着紧密相连的连锁反应过程,反应迅速完成,催化效率高,使丙酮酸脱羧和脱氢生成乙酰辅酶A及NADH+H+。

2.反应步骤

(1)丙酮酸脱羧形成羟乙基-TPP

(2)二氢硫辛酸乙酰转移酶(E

2

)使羟乙基氧化成乙酰基

(3)E

2

将乙酰基转给CoA,生成乙酰-CoA

(4)E

3氧化E

2

上的还原型二氢硫辛酸

(5)E

3

还原NAD+生成NADH 3.丙酮酸脱氢酶系的活性调节(1)可逆磷酸化的共价调节

丙酮酸脱氢酶激酶(E

A )(可被ATP激活)和丙酮酸脱氢酶磷酸酶(E

B

)调节丙酮酸脱氢酶的磷酸化,

磷酸化的丙酮酸脱氢酶无活性,去磷酸化的丙酮酸脱氢酶有活性。

(2)别构调节

ATP、CoA、NADH是别构抑制剂,ATP抑制E

1,CoA抑制E

2

,NADH抑制E

3

(3)能量

1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH。脱氢生成的NADH+H+经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成2.5分子ATP。

(三)三羧酸循环(又称柠檬酸循环、Krebs循环),④呼吸链氧化磷酸化。

丙酮酸氧化脱羧生成的乙酰辅酶A要彻底进行氧化,这个氧化过程是三羧酸循环(tricarboxylic acid cycle,TCA cycle)。三羧酸循环是Krebs于1937年发现的。故又称Krebs循环。因为循环中第一个中间产物是柠檬酸,故又称柠檬酸循环(citric acid cycle)。乙酰辅酶A与草酰乙酸缩合生成含有3个羧基的柠檬酸,再经过一系列反应重新变成草酰乙酸完成一轮循环,其中氧化反应脱下的氢经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成ATP(见“生物氧化”章);而脱羧反应生成的二氧化碳则通过血液运输到呼吸系统而被排出,是体内二氧化碳的主要来源。

每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO

2

放出,分别发生4次氧化脱氢,共

释放10ATP。

1.三羧酸循环反应过程:

(1)乙酰辅酶A与草酰乙酸缩合生成柠檬酸

此反应由柠檬酸合酶(citrate synthase)催化,是三羧酸循环的关键酶,是重要的调节点。由于高能硫酯键水解时释出较多自由能,ΔG'0=-32.2kJ/mol,此反应不可逆。

(2)柠檬酸经顺乌头酸生成异柠檬酸

此反应由顺乌头酸酶催化,柠檬酸脱水、加水生成异柠檬酸。柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。

(3)异柠檬酸氧化、脱羧生成α-酮戊二酸和NADH

此反应在异柠檬酸脱氢酶作用下进行脱氢、脱羧,这是三羧酸循环中第一次氧化脱羧。异柠檬酸脱氢酶(isocitrate dehydrogenase)是三羧酸循环的限速酶,是最主要的调节点,辅酶是NAD+,脱氢生成的NADH+H+经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成2.5分子ATP。

(4)α-酮戊二酸氧化、脱羧生成琥珀酰辅酶A和NADH

此反应在α-酮戊二酸脱氢酶复合体(α-ketoglutarate dehydrogenase complex)的催化下脱氢、脱羧生成琥珀酰辅酶A,这是三羧酸循环中第二次氧化脱羧。α-酮戊二酸脱氢酶复合体是三羧酸循环的关键酶,是第三个调节点。α-酮戊二酸脱氢酶复合体是多酶复合体,其组成及反应方式都与丙酮酸脱氢酶复合体相似。脱氢生成NADH+H+,经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成2.5分子ATP。

由于反应中分子内部能量重排,产物琥珀酰辅酶A中含有一个高能硫酯键,此反应不可逆。ΔG'0=-33.5kJ /mol。

(5)琥珀酰辅酶A转变为琥珀酸和GDP

此反应由琥珀酸硫激酶(琥珀酰辅酶A合成酶)催化,琥珀酰辅酶A中的高能硫酯键释放能量,可以转移给ADP(或GDP),形成ATP(或GTP)。这是三羧酸循环中唯一的一次底物水平磷酸化,直接生成GTP,再转化为1分子ATP。

在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。

(6)琥珀酸脱氢转变为延胡索酸(反丁烯二酸)和FADH

2

此反应由琥珀酸脱氢酶催化,辅酶是FAD,脱氢后生成FADH2,经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成1.5分子ATP。琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。

(7)延胡索酸转变为苹果酸

此反应由延胡索酸酶催化,加水生成苹果酸。

(8)苹果酸脱氢生成草酰乙酸和NADH

此反应由苹果酸脱氢酶催化,辅酶是NAD+,脱氢后生成NADH+H+,经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成2.5分子ATP。

2. 三羧酸循环的特点:

(1)三羧酸循环是乙酰辅酶A的彻底氧化过程。草酰乙酸在反应前后并无量的变化。三羧酸循环中的草酰乙酸主要来自丙酮酸的直接羧化。

(2)三羧酸循环是能量的产生过程,1分子乙酰CoA通过TCA经历了4次脱氢(3次脱氢生成NADH+H+,1次脱氢生成FADH2)、2次脱羧生成CO2,1次底物水平磷酸化,共产生12分子ATP。

(3)三羧酸循环中柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体是反应的关键酶,是反应的调节点。

(二)三羧酸循环的生理意义

1.提供能量

线粒体外的NADH,可通过3-磷酸甘油穿梭和苹果酸穿梭机制,运到线粒体内,经呼吸链再氧化,这两种机制在不同组织的细胞中起作用。

(1)磷酸甘油穿梭机制

磷酸二羟丙酮+NADH+H+→3-磷酸甘油+NAD+,3-磷酸甘油进入线粒体,将2H交给FAD而生成FADH

2,FADH

2

可传递给辅酶Q,进入呼吸链,产生1.5ATP(3-磷酸甘油脱氢酶的辅酶是FAD)。

(2)苹果酸穿梭机制

胞液中NADH可经苹果酸酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸-α-酮戊二酸载体转运进入线粒体,由线粒体内苹果酸脱氢酶催化,生成NADH和草酰乙酸,NADH进入呼吸链氧化生成2.5个ATP。(苹果酸脱氢酶的辅酶是NAD+)。1分子Glc在肝、心中完全氧化,产生32ATP,在骨骼肌、神经系统组织中,产生30ATP。

2.三羧酸循环是糖、脂和蛋白质三大物质代谢的最终代谢通路。糖、脂和蛋白质在体内代谢都最终生成乙酰辅酶A,然后进入三羧酸循环彻底氧化分解成水、CO2和产生能量。

3.三羧酸循环是糖、脂和蛋白质三大物质代谢的枢纽。

一方面,TCA是糖、脂肪、氨基酸等彻底氧化分解的共同途径,另一方面,循环中生成的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是合成糖、氨基酸、脂肪酸、卟啉等的原料,因而TCA 将各种有机物的代谢联系起来。TCA是联系体内三大物质代谢的中心环节,为合成其它物质提供C架。

(三)三羧酸循环的代谢调节

1.柠檬酸合酶(限速酶)

ATP、NADH、琥珀酰CoA及脂酰CoA抑制此酶。乙酰CoA、草酰乙酸激活此酶。

2.异柠檬酸脱氢酶

NADH、ATP可抑制此酶,ADP可活化此酶,当缺乏ADP时就失去活性。

3.α-酮戊二酸脱氢酶复合体

受NADH和琥珀酰CoA抑制。

(四)TCA的回补反应

在TCA循环中,有些中间产物是合成其它物质的前体,如卟啉的主要碳原子来自琥珀酰CoA,Glu、Asp 可以从α-酮戊二酸和草酰乙酸衍生而成,一旦草酰乙酸浓度下降,则会影响TCA循环,因此这些中间产物必须不断补充,以维持TCA循环。

1.丙酮酸羧化酶催化丙酮酸生成草酰乙酸

丙酮酸羧化酶是一个调节酶,需要生物素为辅酶,乙酰CoA可增加其活性。

2.磷酸烯醇式丙酮酸羧化激酶催化磷酸烯醇式丙酮酸转化成草酰乙酸

在脑、心脏中存在这个反应。

3.Asp、Glu转氨可生成草酰乙酸和α-酮戊二酸

4.Ile、Val、Thr、Met也会形成琥珀酰CoA,最后生成草酰乙酸。

二、糖有氧氧化与糖酵解的相互调节

巴斯德效应(Pastuer effect)是指:在有氧的条件下糖有氧氧化抑制糖无氧酵解。这个效应是Pastuer 在研究酵母菌葡萄糖发酵时发现的:在无氧的条件下,糖无氧酵解产生的ATP的速度和数量远远大于有氧氧化,为产生ATP的主要方式。但在有氧的条件下,酵母菌的酵解作用受到抑制。这种现象同样出现在肌肉中:当肌肉组织供氧充分的情况下,有氧氧化抑制糖无氧酵解,产生大量量能量供肌肉组织活动所需。缺氧时,则以糖无氧酵解为主。

在一些代谢旺盛的正常组织和肿瘤细胞中,即使在有氧的条件下,仍然以糖无氧酵解为产生ATP的主要方式,这种现象称为Cratree效应或反巴斯德效应。

三、乙醛酸循环

某些植物和微生物除进行TCA外,还有一个乙醛酸循环,作为TCA的补充。乙醛酸循环是通过一分子乙酰CoA和草酰乙酸缩合成柠檬酸,经异柠檬酸,由异柠檬酸裂解酶裂解成乙醛酸和琥珀酸。琥珀酸经脱氢、水化、脱氢生成草酰乙酸,补偿开始消耗掉的草酰乙酸。乙醛酸与另一分子乙酰CoA缩合成苹果酸,脱氢生成草酰乙酸。过量的草酰乙酸可以糖异生成Glc,因此,乙醛酸循环可以使脂肪酸的降解产物乙酰CoA 经草酰乙酸转化成Glc,供给种子萌发时对糖的需要。

植物中,乙醛酸循环只存在于子苗期,而生长后期则无乙醛酸循环。哺乳动物及人体中,不存在乙醛酸循环,因此,乙酰CoA不能在体内生成糖和氨基酸。

总反应:2乙酰CoA + NAD+ + 2H

O →琥珀酸 + 2CoA + NADH + 2H+

2

第四节磷酸戊糖途径

磷酸戊糖途径(pentose phosphate pathway)是葡萄糖氧化分解的另一条重要途径,它的功能不是产生ATP,而是产生细胞所需的具有重要生理作用的特殊物质,如NADPH和5-磷酸核糖。这条途径存在于肝脏、脂肪组织、甲状腺、肾上腺皮质、性腺、红细胞等组织中。代谢相关的酶存在于细胞质中。

原子上直接氧化,通过一系列转化被分解,此也称磷酸已糖支路(HMS)。即反应开始,在G-6-P上的C

2

为磷酸戊糖途径

一、磷酸戊糖途径反应过程

磷酸戊糖途径是一个比较复杂的代谢途径:6分子葡萄糖经磷酸戊糖途径可以使1分子葡萄糖转变为6分子CO2。

反应可分为两个阶段:第一阶段是氧化反应,产生NADPH及5-磷酸核糖;第二阶段是非氧化反应,是一系列基团的转移过程。

第一阶段:氧化反应

6-磷酸葡萄糖由6-磷酸葡萄糖脱氢酶(glucose 6-phosphate dehydrogenase,G-6-PD)及6-磷酸葡萄糖酸脱氢酶的催化作用,NADP+是它们的辅酶,G-6-P在第一位碳原子上脱氢脱羧而转变为5-磷酸核酮糖,同时生成2分子NADPH+H+及1分子CO2。5-磷酸核酮糖在异构酶的作用下成为5-磷酸核糖。

在这一阶段中产生了NADPH+H+和5-磷酸核糖这两个重要的代谢产物。

第二阶段:非氧化反应--一系列基团的转移

在这一阶段中磷酸戊糖继续代谢,通过一系列的反应,循环再生成G-6-P。5-磷酸核酮糖经异构反应转变为5-磷酸核糖或5-磷酸木酮糖,三种形式的磷酸戊糖经转酮醇酶催化转移酮醇基(—CO-CH20H)及转醛醇酶催化转移醛醇基(-CHOH-CO-CH20H),进行基团转移,中间生成三碳、七碳、四碳和六碳等的单糖磷酸酯,最后转变成6-磷酸果糖和3-磷酸甘油醛,进一步代谢成为G-6-P。

二、磷酸戊糖途径的调节

6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的限速酶,催化不可逆反应。其活性主要受NADP+/NADPH比例的调节。

三、生理意义

磷酸戊糖途径不是供能的主要途径,它的主要生理作用是提供生物合成所需的一些原料。

1、磷酸戊糖途径是细胞产生还原力(NADPH)的主要途径.

2.磷酸戊糖途径为DNA、RNA和多种辅酶的合成提供核糖-5-磷酸。

3.磷酸戊糖途径是细胞内不同结构糖分子的重要来源,并为各种单糖的相互转变提供条件。

遗传性G-6-P脱氢酶缺乏的患者,磷酸戊糖途径不能正常进行,造成NADPH+H+减少,GSH含量低下,红细胞易破坏而发生溶血性贫血。

第七节糖原合成和糖原分解

糖原是体内糖的储存形式,主要以肝糖原、肌糖原形式存在。肝糖原的合成与分解主要是为了维持血糖浓度的相对恒定;肌糖原是肌肉糖酵解的主要来源。糖原由许多葡萄糖通过α-1,4-糖苷键(直链)及α-1,6-糖苷键(分枝)相连而成的带有分枝的多糖,存在于细胞质中。

糖原合成(glycogenesis)是由葡萄糖合成糖原的过程。反之,糖原分解(glycogenolysis)则是指肝糖原分解为葡萄糖的过程。糖原合成及分解反应都是从糖原分支的非还原性末端开始,分别由两组不同的酶催化。

一、糖原合成

糖原合成首先以葡萄糖为原料合成尿苷二磷酸葡萄糖(UDP-Glc),在限速酶糖原合酶(glycogen synthase)的作用下,将UDP-Glc转给肝、肌肉中的糖原引物(糖原蛋白)上,延长糖链合成糖原。其次糖链在分支酶的作用下再分支合成多支的糖原。反应可以分为二个阶段:

第一阶段:糖链的延长

游离的葡萄糖不能直接合成糖原,它必须先磷酸化为G-6-P再转变为G-1-P,后者与UTP作用形成UDP-Glc及焦磷酸(PPi)。UDP-Glc是糖原合成的底物,葡萄糖残基的供体,称为活性葡萄糖。UDP-Glc 在糖原合酶催化下将葡萄糖残基转移到糖原蛋白中糖原的直链分子非还原端残基上,以α-1,4-糖苷键相连延长糖链。

第二阶段:糖链分支

糖原合酶只能延长糖链,不能形成分支。当直链部分不断加长到超过11个葡萄糖残基时,分支酶可将一段糖链(至少含有6个葡萄糖残基)转移到邻近糖链上,以α-1,6-糖苷键相连接,形成新的分支,分支以α-1,4-糖苷键继续延长糖链。

糖原蛋白是一个分子质量为37 kDa的蛋白质,它既是糖链延长的引物,又具有酶活性,在糖原合成起始中具有重要作用。

糖原合酶是糖原合成的限速酶,是糖原合成的调节点。糖原蛋白每增加一个葡萄糖残基要消耗2分子ATP(葡萄糖磷酸化以及生成UDP-Glc)

二、糖原分解

在限速酶糖原磷酸化酶(glycogen phosphorylase)的催化下,糖原从分支的非还原端开始,逐个分解以α-1,4-糖苷键连接的葡萄糖残基,形成G-1-P。G-1-P转变为G-6-P后,肝及肾中含有葡萄糖-6- 磷酸酶,使G-6-P水解变成游离葡萄糖,释放到血液中,维持血糖浓度的相对恒定。由于肌肉组织中不含

葡萄糖-6-磷酸酶,肌糖原分解后不能直接转变为血糖,产生的G-6-P在有氧的条件下被有氧氧化彻底分解,在无氧的条件下糖酵解生成乳酸,后者经血循环运到肝脏进行糖异生,再合成葡萄糖或糖原(见糖异生)。

当糖原分子的分支被糖原磷酸化酶作用到距分支点只有4个葡萄糖残基时,糖原磷酸化酶不能再发挥作用。此时脱支酶发挥作用,脱支酶具有转寡糖基酶和α-1,6-葡萄糖苷酶两个酶活性:转寡糖基酶将分支上残留的3个葡萄糖残基转移到另外分支的末端糖基上,并进行α-1,4-糖苷键连接;而残留的最后一个葡萄糖残基则通过α-1,6-葡萄糖苷酶水解,生成游离的葡萄糖;分支去除后,糖原磷酸化酶继续催化分解葡萄糖残基形成G-1-P。

三、糖原合成与糖原分解的调节

在肌肉中糖原的合成与分解主要是为肌肉提供ATP;在肝脏,糖原合成、糖原分解主要是为了维持血糖浓度的相对恒定。它们的作用受到肾上腺素、胰高血糖素、胰岛素等激素的影响:肾上腺素主要作用于肌肉;胰高血糖素、胰岛素主要调节肝脏中糖原合成和分解的平衡。糖原合酶与糖原磷酸化酶分别是糖原合成和糖原分解的限速酶,糖原磷酸化酶和糖原合酶的活性不会同时被激活或同时抑制,它们可以通过别构调节和共价修饰调节两种方式进行活性的调节。

(一) 糖原磷酸化酶活性调节

糖原磷酸化酶以a、b两种形式存在。在糖原磷酸化酶激酶及ATP存在下,在糖原磷酸化酶b的丝氨酸残基进行磷酸化修饰,使无活性的糖原磷酸化酶b转变成有活性的糖原磷酸化酶a。糖原磷酸化酶a可经磷蛋白磷酸酶作用使其丝氨酸残基脱去磷酸,成为无活性的糖原磷酸化酶b。

在肌肉剧烈运动时,糖原磷酸化酶的活性是受到肾上腺素的调节。在肝脏中,糖原磷酸化酶的活性调节主要受胰高血糖素调节。

(二)糖原合成酶活性的调节

糖原合酶也分为a、b两种形式。糖原合酶a具有活性。糖原合酶a被磷酸化转变成无活性的糖原合酶b。在磷蛋白磷酸酶的作用下,无活性的糖原酶b脱磷酸转变为有活性的糖原合酶a。糖原磷酸化酶和糖原合酶的活性在磷酸化与去磷酸化作用下相互调节,一个酶被激活,另一个酶活性被抑制,二个酶不会同时被激活或同时抑制。

激素通过级联放大作用控制糖原磷酸化酶和糖原合成酶的磷酸化和脱磷酸,协调控制糖原的合成和分解。

生物化学总结

名词解释: 1.糖:糖类是自然界存在的一大类具有广谱化学结构和生物功能的有机化合物。它由碳、氢及氧3种元素组成,其分子式是(CH2O)n。一般把糖类看作是多羟基醛或多羟基酮及其聚合物和衍生物的总称。 2.单糖:凡不能被水解成更小分子的糖称为单糖。 3.寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子) 4.多糖:有许多单糖分子缩合而成的长链结构,分子量大,在水中不能成真溶液,均无甜味,无还原性。有旋光性,无变旋现象。 5.构象:在分子中由于共价单键的旋转所表现出的原子或基团的不同空间排布叫构象。 6.构型:在立体异构体中的原子或取代基团的空间排列关系叫构型。 7.变旋现象:当一种旋光异构体,如糖溶于水中转变为几种不同旋光异构体的平衡混合物时发生的旋光变化现象,叫做变旋现象。 8.旋光性:当光通过含有某物质的溶液时,使经过此物质的偏振光平面发生旋转的现象。 9. 脂类:是脂肪及类脂的总称,其化学本质为脂肪酸(多是4碳以上的长链一元羧酸)和醇(包括甘油醇、鞘氨醇、高级一元醇和固醇)等所组成的酯类及其衍生物。 10.皂化值:完全皂化1g油或脂所消耗的KOH毫克数。 11.皂化作用:脂酰甘油的碱水解作用称为皂化作用。 12. 酸败:脂肪长期暴露于潮湿闷热的空气中,受到空气的作用,游离脂肪酸被氧化、断裂生成醛、酮及低分子量脂肪酸,产生难闻的恶臭味,称之酸败。13.酸值:中和1g油脂中游离脂肪酸所消耗KOH的mg数,称为酸值(酸价),可表示酸败的程度。 14.卤化作用:油脂中不饱和双键与卤素发生加成反应,生产卤代脂肪酸,称为卤化作用。 15.碘值:100g油脂所能吸收的碘的克数—碘价(碘化值),可以用来判断油脂中不饱和双键的多少。 16.氢化:Ni的作用下,甘油酯中的不饱和双键可以与H2发生加成反应,油脂被饱和,液态变为固态,可防止酸败。 17.必须脂肪酸:多不饱和脂酸是人体不可缺乏的营养素,不能自身合 成,需从食物摄取,故称必需脂酸。 18.维生素(vitamin):是机体维持正常生理功能所必需,但在体内不能合成或合成量很少,必须由食物供给的一组低分子量有机物质。 19:维生素原:本身不是维生素,但是可以转化成维生素的物质。 20.核酸(nucleic acid):是含有磷酸基团的重要生物大分子,因最初从细胞核分离获得,又具有酸性,故称为核酸。 21.核苷:碱基和核糖(脱氧核糖)通过N-糖苷键连接形成糖苷称为核苷(脱氧核苷)。 22.核苷酸:核苷(脱氧核苷)和磷酸以磷酸酯键连接形成核苷酸(脱氧核苷酸)。 23. DNA一级结构:指构成核酸的各个单核苷酸之间连接键的性质以及组成中单核苷酸的数目和排列顺序(碱基排列顺序) 24.DNA的变性:有些理化因素会破坏氢键和碱基堆积力,使核酸分子的空间结构改变,从而引起核酸理化性质和生物学功能改变,这种现象称为核酸的变性。 25.Tm值:变性是在一个相当窄的温度范围内完成,在这一范围内,紫外光吸收

生物化学总结下半部分

8.试述胆固醇与胆汁酸之间的代谢联系 答:①胆汁酸由胆固醇在肝C内合成的 ②胆汁酸的合成受肠道向肝脏胆固醇转运量的调节,从肠吸收至肝脏内的胆固醇增多,则胆汁酸的合成亦增多 ③胆固醇的消化、吸收和排泄均受胆汁酸盐的影响

1.简述DNA双螺旋模型的要点 答:①两条反向平行的互补多核苷酸链围绕中心轴,盘旋成右手双螺旋结构 ②碱基间形成氢键,使两条链相连,A=T,G C。氢键与碱基堆砌力是维持DNA二级结 构稳定的重要因素。 ③每10个碱基对能使螺旋上升一圈,螺距3.4nm,螺旋直径为2nm。 ④磷酸和脱氧核糖构成股价,位于螺旋外侧,碱基位于内侧。碱基平面与中心轴垂直。 2.糖代谢与脂代谢使通过那些反应联系起来的? 答:①糖酵解过程重产生的磷酸二羟丙酮可转变为3-磷酸甘油,可作为脂肪合成的原料和脂肪酸进一步合成TG。 ②糖有?氧氧化进程重产生的乙酰CoA是脂肪酸和酮体的合成原料。 ③脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化 ④酮体氧化产生的乙酰CoA最终也进入三羧酸循环氧化 ⑤甘油经磷酸甘油激酶作用,最终转变为磷酸二羧丙酮进入糖酵解或糖的有氧氧化过程 3.三羧酸循环有何特点?为什么说三羧酸循环是糖、脂肪、蛋白质在体内氧化的共同途径何相互联系的枢纽? 答:⑴特点:①循环中CO2的生成方式是两次脱羧 ②循环中多个反应是可逆的,但由于柠檬酸合酶,异柠檬酸脱氢酶和α-酮戊 二酸脱氢酶系催化的反应不可逆,故循环只能单向进行 ③循环中4次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体 ④循环中各产物不断地被消耗和补充,使循环处于动态平衡中 ⑤释放大量能量 ⑵三羧酸循环的起始物乙酰CoA不仅由糖的氧化分解产生,也由甘油、脂肪酸和AA氧 化分解产生,因此该循环实际上是糖、蛋白质及脂肪在体内氧化的共同途径 ⑶糖和甘油代谢生成的α-酮戊二酸和草酰乙酸等中间产物可转变成某些AA;儿许多 AA分解的产物又是循环的中间产物,可敬糖异生变成糖或甘油。可见三羧酸循环使三大营养物质相互联系的枢纽 4.胆固醇可在体内转变成哪些物质?合成胆固醇的基本原料和关键酶各是什么? 答:胆固醇在体内可转变为:⑴胆汁酸⑵类固醇激素⑶7-脱氢胆固醇 原料:乙酰CoA、ATP、NADH+H+ 关键酶:HMG CoA还原酶 5.何谓酮体?试述酮体生成及氧化中的主要酶类及酮体代谢特点和生理意义。 答:⑴酮体是脂肪酸在肝内分解代谢产生的一类特殊中间产物,包括:乙酸乙酰,β-羟丁酸和丙酮 酮体在肝内生成,其限速酶是HMGCoA合成酶;酮体在肝外组织被氧化利用,其主要酶类为琥珀酰CoA转硫酶和乙酰乙酸硫激酶。 ⑵酮体代谢的特点是:肝内生成肝外氧化利用;其生理意义是肝脏为肝外组织提供了另一种能源物质,是心、肾、脑、肌肉等重要脏器在糖利用出现障碍时可利用的一种能源。6.试以脂类代谢及代谢紊乱的理论分析酮症、脂肪肝和动脉粥样硬化的病因。 答:⑴酮症:在糖尿病或糖供给等病理情况下,胰岛素分泌减少或作用低下而胰高血糖素、肾上腺素等分泌上升,导致了脂肪动员增强,脂肪酸在肝内的分解增多,酮体的 生成也增多;同时,由于主要来源于糖代谢的丙酮酸减少,因此使草酰乙酸减少, 导致了乙酰CoA的堆积;此时肝外组织的酮体氧化利用减少,结果就出现了酮 体过多积累在血中的现象。 ⑵脂肪肝:肝C内的脂肪来源多、去路少导致脂肪堆积。原因有:①肝功能低下,导致 肝内脂肪运出障碍。②糖代谢障碍导致脂肪动员增强,进入肝内的脂肪酸增多。 ③肝C内用于合成脂蛋白的磷脂缺乏。④急性肝炎后,活动过少使能量消耗减

《生物化学》实验讲义

实验一 蛋白质及氨基酸的颜色反应 一、目的意义 1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。 2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。 二、实验原理 1、双缩脲反应 当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲。双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。 蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应。借此可以鉴定蛋白质的存在或测定其含量。应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质。 2、茚三酮反应 蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸 和羟脯氨酸)所共有。含有氨基酸的其他化合物也呈此反应。 该反应十分灵敏,1:浓度的氨基酸水溶液就能呈现反应。因此,此反应广泛用于氨基酸的定量测定。 3、黄色反应 含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。 OH + HNO 3 HO NO 2 + H 2O HO NO 2 + O N OH OH

三、仪器与试剂 1、试剂 (1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。 (2) 0.3%色氨酸溶液、0.3%酪氨酸溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液、0.5%苯酚溶液。 (3) 0.1%茚三酮-乙醇溶液:称取0.1g茚三酮,溶于100mL 95%乙醇。 (4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸。 2、仪器:试管及试管夹、酒精灯。 四、操作方法 1、双缩脲反应 (1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加 热。此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别)。待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。混匀后观察出现的粉红色。(2) 另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2 滴1%的硫酸铜溶液。摇匀观察其颜色变化。 (3) 注意事项 加入的硫酸铜不可过量,否则会产生蓝色的氢氧化铜,从而掩盖了双缩脲反应的粉红色。 (4) 记载上述实验过程和结果,并解释现象。 2、茚三酮反应 (1) 取3支试管,分别加入蛋白质溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液各1mL,再加0.5mL 0.1%茚三酮-乙醇溶液,混匀后在小火上加热煮沸1-2min,放置冷却,观察颜色变化。 (2) 在滤纸的不同部位分别滴上一滴0.3%脯氨酸溶液、0.5%甘氨酸溶液,风干后再在原处滴 一滴0.1%茚三酮-乙醇溶液,在微火旁烘干显色,观察斑点出现及其颜色。 (3) 记载上述实验过程和结果,并解释现象。 3、黄色反应 向6个试管中按下表加试剂,观察现象并记录。

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

(完整版)生物化学最核心的知识点总结

生物化学最核心的知识点总结 1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用大小与抑制剂和底物的浓度比以及酶对它们的亲和力有关。此类抑制作用最大速度Vmax不变,表观Km值升高。 2)非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶的活性中心以外的必需基团结合。不影响酶在结合抑制剂后与底物的结合。该抑制作用的强弱只与抑制剂的浓度有关。此类抑制作用最大速度Vmax下降,表观Km值不变。 3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。此类抑制作用最大速度Vmax和表观Km值均下降。 2.线粒体内生成的NADPH可直接参加氧化磷酸化过程,但在胞浆中生成的NADPH不能自由透过线粒体内膜,故线粒体外NADPH所带的氢必须通过某种转运机制才能进入线粒体,然后再经呼吸链进行氧化磷酸化过程。这种转运机制主要有α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭两种机制。 (1)α-磷酸甘油穿梭:这种穿梭途径主要存在于脑和骨骼肌中,胞浆中的NADH在磷酸甘油脱氢酶催化下,使磷酸二羟丙酮还原成α-磷酸甘油,后者通过线粒体外膜,再经位于线粒体内膜近胞浆侧的磷酸甘油脱氢酶催化下氧化生成磷酸二羟丙酮和FADH2,磷酸二羟丙酮可穿出线粒体外膜至胞浆,参与下一轮穿梭,而FADH2则进入琥珀酸氧化呼吸链,生成2分子ATP (2)苹果酸-天冬氨酸穿梭:这种穿梭途径主要存在于肝和心肌中,胞浆中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原为苹果酸,后者通过线粒体外膜上的α-酮戊二酸转运蛋白进入线粒体,又在线粒体内苹果酸脱氢酶的作用下重新生成草酰乙酸和 NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。 可见,在不同组织,通过不同穿梭机制,胞浆中的NADH进入线粒体的过程不一样,参与氧化呼吸链的途径不一样,生成的ATP数目不一样。 3. 1)作为酶活性中心的催化基团参加反应; 2)作为连接酶与底物的桥梁,便于酶对底物起作用; 3)为稳定酶的空间构象所必需; 4)中和阴离子,降低反应的静电斥力。 4.肽链延长在核蛋白体上连续性循环。(1)进位:氨基酰-tRNA进入核蛋白体A位;(2)转肽酶催化成肽;(3)转位:由EF-G转位酶催化,新生肽酰-tRNA-mRNA位移入P位,A 位空留,卸载tRNA移入E位并脱离。 成熟的真核生物mRNA的结构特点是:(1)大多数真核mRNA在5′-端以m7GpppN为分子的起始结构。这种结构称为帽子结构。帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核糖体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的稳定性;(2)在真核mRNA的3′末端,大多数有一段长短不一的多聚腺苷酸结构,通常称为多聚A尾。一般有数十个至一百几十个腺苷酸连接而成。因为在基因内没有找到它相应的序列,因此认为它是在RNA生成后才加上去的。随着mRNA存在的时间延续,这段多聚A尾巴慢慢变短。因此,目前认为这种3′-末端结构可能与mRNA从细胞核向细胞质的转位及mRNA的稳定性有关。 2.(1)TAC中有4次脱氢、2次脱羧及1次底物水平磷酸化。(2)TAC中有3个不可逆反应、3个关键酶(异柠檬酸脱氢酶、α—酮戊二酸脱氢酶系、柠檬酸合酶)。(3)TAC的中

生化实验讲义2010(10个)

生物化学实验讲义 赵 国 芬 2010年9月

实验之前说明 1.各班学习委员将成员分成10个大组,每个大组中2人一小组,大组采用循环实 验的方法,同时开出不同的10个实验. 2.共开出10个不同的实验 实验一温度、pH及酶的激活剂、抑制剂对酶活性的影响 实验二牛奶中蛋白质的提取与鉴定 实验三血液葡萄糖的测定-福林(Folin)-吴宪氏法 实验四双缩脲测定蛋白质的含量 实验五血清蛋白质醋酸纤维薄膜电泳 实验六植物组织中还原糖和总糖的含量测定 实验七应用纸层析法鉴定动物组织中转氨基作用 实验八植物组织中维生素C的定量测定 实验九琥珀酸脱氢酶的作用及其竞争性抑制的观察 实验十植物组织中DNA的提取和鉴定 3.穿着要利索,做好实验记录 4.注意实验室卫生和安全. 一. 实验室规则:按照实验室的规则给学生讲解. 二. 生物化学所用的实验技术 1.样品: :血液、血浆、血清、组织 植物样品:果实、花蕾、茎等 无论用什么做材料,为了提取物质,需匀浆 2.移液管的使用: 移液管吸管 移液管 奥氏吸管 读数时视线与凹面相平,取液时要用吸管嘴吸,放出液体时注意嘴部液体的残留问题。 3.离心机的使用: 平衡(管平衡、机器平衡)缓起和慢停 4.分光光度计 机器原理和测定原理(比尔定律) 5.水浴锅的使用 三、实验报告的书写(用教务处统一印刷的报告纸写) 目的、原理、仪器、药品、步骤、结果及结论、讨论

实验一、温度、pH及酶的激活剂、抑制剂对酶活性的影响 一、实验目的 通过本实验了解酶催化的特异性以及pH、温度、抑制剂和激活剂对酶活力的影响,对于进一步掌握代谢反应及其调控机理具有十分重要的意义。 二、实验原理 酶的化学本质是蛋白质。凡是能够引起蛋白质变性的因素,都可以使酶丧失活性。此外,温度、pH和抑制剂、激活剂对酶的活性都有显著的影响。酶的活性通常是用测定酶作用底物在酶作用前后的变化来进行观察的。 本实验用唾液淀粉酶作用的底物—淀粉,被唾液淀粉酶分解成各种糊精、麦芽糖等水解产物的变化来观察该酶在各种环境条件下的活性。 淀粉被酶水解的变化,可以用遇碘呈不同颜色来观察。淀粉遇碘呈蓝色;糊精按分子从大到小的顺序,遇碘可呈蓝色、紫色、暗褐色和红色;最小的糊精和麦芽糖遇碘不呈现颜色反应。 三、试剂 1.0.5%淀粉溶液 2.碘化钾-碘溶液 3.1%尿素溶液。 4.1%CuSO4溶液 5.磷酸氢二钠-柠檬酸缓冲液pH5.0-8.0: 6.0.5%NaCl溶液。 7.唾液淀粉酶制备每人用自来水漱口3次,然后取20m1蒸馏水含于口中,半分钟后吐入烧杯中,纱布过滤,取滤液lOml,稀释至2Oml为稀释唾液,供实验用。 四、操作步骤 一、温度对酶活性的影响 (一)淀粉酶的观察 1、取3支大试管,编号后按表操作 2、在白色比色板上,置碘液2滴于各孔中,每隔1分钟,从第二管中取出反应

生物化学复习资料(人卫7版)汇总讲解

生化复习资料 第一章 一、蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、蛋白质的分子组成特点 蛋白质的基本组成单位是氨基酸 ?编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。各种蛋白质的含氮量很接近,平均为16%。 ?每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 氨基酸的分类 ?所有的氨基酸均为L型氨基酸(甘氨酸)除外。 ?根据侧链基团的结构和理化性质,20种氨基酸分为四类。 1.非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。 2.极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。 3.酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。 4.碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。 ?含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 ?芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 ?唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。 ?营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理化性质 ?氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI), 氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK 1 + pK 2 ),(pK 1 和pK 2 分 别为α-羧基和α-氨基的解离常数的负对数值)。 ?氨基酸的紫外吸收性质 ?吸收波长:280nm ?结构特点:分子中含有共轭双键 ?光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸 ?呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。 肽的相关概念 ?寡肽:小于10分子氨基酸组成的肽链。 ?多肽:大于10分子氨基酸组成的肽链。 ?氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。 ?肽键:连接两个氨基酸分子的酰胺键。 ?肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

生物化学知识点总结材料

生物化学复习题 第一章绪论 1. 名词解释 生物化学: 生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体的代谢转变规律,从而阐明生命现象本质的一门科学。其研究容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达。生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质 2. 问答题 (1)生物化学的发展史分为哪几个阶段? 生物化学的发展主要包括三个阶段:①静态生物化学阶段(20世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段(20世纪初至20世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体各种主要化学物质的代谢途径③功能生物化学阶段(20世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系。(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素? 组成生物体的元素共28种 第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素。第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素。 第二章蛋白质 1. 名词解释 (1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物 (2)氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点 (3)蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点 (4)N端与C端:N端(也称N末端)指多肽链中含有游离α-氨基的一端,C端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽 (6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基 (7)肽单元(肽单位):多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转 (8)结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域。结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离(区别于蛋白质亚基)③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同 (9)分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病 (10)蛋白质的变构效应:蛋白质(或亚基)因与某小分子物质相互作用而发生构象变化,导致蛋白质(或亚基)功能的变化,称为蛋白质的变构效应(酶的变构效应称为别构效应)(11)蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应 (12)蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构。造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解 (14)蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性 2. 问答题 (1)组成生物体的氨基酸数量是多少?氨基酸的结构通式、氨基酸的等电点及计算公式? 组成生物的氨基酸有22种,组成人体和大多数生物的为20种,结构 通式如右图。氨基酸的等电点指当氨基酸溶液在某一定pH时,是某特定氨 基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也 文案大全

生物化学实验讲义

生物化学实验报告 姓名: 专业: 院系: 学号:

实验一蛋白质分子量测定------凝胶层析法 一、实验原理 凝胶层析法是利用凝胶把分子大小不同的物质分开的一种方法,又叫做分子筛层析法,排阻层析法。凝胶本身是一种分子筛,它可以把分子按大小不同进行分离,如同过筛可以把大颗粒与小颗粒分开一样。但这种“过筛”与普通的过筛不一样。将凝胶颗粒放在适宜溶剂中浸泡,使其充分戏液膨胀,然后装入层析柱中,加入欲分离的混合物后,再以同一溶剂洗脱,在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的缝隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。 凝胶是由胶体溶液凝结而成的固体物质,无论是天然凝胶还是人工凝胶,它们的内部都具有很微细的多孔网状结构。凝胶层析法常用的天然凝胶是琼脂糖凝胶,人工合成的凝胶是聚丙烯酰胺凝胶和葡聚糖凝胶,后者的商品名为Sephadex型的各种交联葡聚糖凝胶,它具有不同孔隙度的立体网状结构的凝胶,不溶于水。 这种聚合物的立体网状结构,其孔隙大小与被分离物质分子的大小有相应的数量级。在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。相反,交联度低得孔隙大,适于分离大分子物质。利用这种性质可分离不同分子量的物质。 以下进一步来说明凝胶层析的原理。将凝胶装载柱后,柱床总体

积称为“总体积”,以Vt表示。实质上Vt是由Vo,Vi与Vg三部分组成,即Vt=Vi+Vg+Vo。Vo称为“孔隙体积”或“外体积”又称“外水体积”,即存在于柱床内凝胶颗粒外面孔隙之间的水相体积,相应于一般层析柱法中内流动相体积;Vi为内体积,即凝胶颗粒内部所含水相的体积,Vg为凝胶本身的体积,因此Vt-Vo等于Vi+Vg。 洗脱体积与Vo及Vi之间的关系可用下式表示: Ve=Vo+KdVi 式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部和外部的分配系数。它只与被分离物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长短粗细无光,也就是说它对每一物质为常数,与柱的物理条件无关。Kd 可通过实验求得,上式可改写成: Kd=(Ve-Vo)/Vi 上式中Ve为实际测得的洗脱体积;Vo可用不被凝胶滞留的大分子物质的溶液通过实际测量求出;Vi可由g.Wr求得。因此,对一层析柱凝胶床来说,只要通过实际实验得知某一物质的洗脱体积Ve就可算出它的Kd值。 Vo表示外体积;Vi内体积;Ve II、Ve III分别代表组分II和III的洗脱体积。Kd可以有下列几种情况: 1、当Kd=0时,则Ve=Vo。即对于根本不能进入凝胶内部的大分子物质,洗脱体积等于空隙体积。

生物化学深刻复习资料(全)

生物化学复习资料 第一章蛋白质化学 第一节蛋白质的基本结构单位——氨基酸 凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25 氨基酸结构通式: 蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。 氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺 必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸 氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。这就是氨基酸的两性性质。 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。 蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。 第二节肽 肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。 少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。 谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。 化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应 第三节蛋白质的分子结构 蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。 蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。二级结构有α-螺旋、β-折叠、β-转角和无规则卷曲。 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 蛋白质的四级结构:指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。 维持蛋白质一级结构的化学键有肽键和二硫键,维持二级结构靠氢键,维持三级结构和四级结构靠次级键,其中包括氢键、疏水键、离子键和范德华力。 第四节蛋白质的重要性质书P16 蛋白质的等电点:当蛋白质解离的阴阳离子浓度相等即净电荷为零,此时介质的pH即为蛋白质的等电点。

生物化学实验

生物化学实验讲义 化学工程与技术学院 基础部

实验一酪蛋白的制备 一、目的 学习从牛乳中制备酪蛋白的原理和方法。 二、原理. 牛乳中主要的蛋白质是酪蛋白,含量约为35g/L。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将牛乳的pH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯的酪蛋白。 三、器材 1 、离心机2、.抽滤装置 3、精密pH试纸或酸度计 4、电炉 5、烧杯 6、温度计. 四、试剂与材料 1、牛奶2500mL 2、95%乙醇1200mL 3、无水乙醚1200mL

4、0.2mol/L pH 4.7醋酸—醋酸钠缓冲液3000mL 5、.乙醇—乙醚混合液2000mL 五、操作 1、将100mL牛奶加热至40℃。在搅拌下慢慢加入 预热至40℃、pH 4.7的醋酸缓冲液100 mL。用精密pH试纸或酸度计调pH至4.7。将上述悬浮液冷却至室温。离心15分钟(3 000r/min)。弃去清液,得酪蛋白粗制品。 2、用水洗沉淀3次,离心10分钟(3000r/min), 弃去上清液。 3、在沉淀中加入30mL乙醇,搅拌片刻,将全部悬 浊液转移至布氏漏斗中抽滤。用乙醇—乙醚混合液洗沉淀2次。最后用乙醚洗沉淀2次,抽干。 4、将沉淀摊开在表面皿上,风干;得酪蛋白纯晶。 5、准确称重,计算含量和得率。 含量:酪蛋白g/100mL牛乳(g%)

得率: 测得含量 100 % 理论含量 思考题 1、制备高产率纯酪蛋白的关键是什么? 实验二小麦萌发前 后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的糖类主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n +nH2O nC12H22O11 麦芽糖有还原性,能使3,5---二硝基水杨酸还原成棕色的3-氨基-5-硝基水扬酸。后者可用分光光度计测定。

生物化学复习资料

第一章绪论 生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。生物化学的研究内容:生物分子的结构与功能(静态生化); 物质代谢及其调节(动态生化); 生命物质的结构与功能的关系及环境对机体代谢的影响(功能生化)。 第二章糖类化学 一、糖的定义及分类 糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。糖类分类:(大体分为简单糖和复合糖) 单糖:基本单位,自身不能被水解成更简单的糖类物质。最简单的多羟基醛或多羟基酮的化合物。Eg:半乳糖 寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。Eg:乳糖 多糖:由许多单糖分子缩合而成。如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。 复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。 二单糖 1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。单糖构型的确定以甘油醛为标准。距羰基最远的手性碳与D-(+)-甘油醛的手性碳构型相同时,为D型;与L-(-)-甘油醛构型相同时,为L型。 2、对映异构体:互为镜像的旋光异构体。如:D-Glu与L-Glu 3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。 4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。如:葡萄糖与甘露糖;葡萄糖与半乳糖。 5、环状结构异构体的规定:根据半缩醛羟基与决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。(只在羰基碳原子上构型不同的同分异构体) 6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。 1)单糖和寡糖的游离羰基,有还原性。 2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。 3)环式结构可通过与开链结构之间的平衡转化为后者,有半缩醛羟基的为还原糖。 4)非还原性双糖相当于由两个单糖的半缩醛羟基失水而成的,两个单糖都成为苷, 这样的双糖没有变旋现象和还原性。如:蔗糖) 7、糖含量的测定:蒽酮测糖。 三寡糖 麦芽糖:两分子葡萄糖通过α-1,4-糖苷键连接而成 纤维二糖:两分子葡糖糖通过β-1,4-糖苷键连接 乳糖:一分子葡萄糖和一分子β半乳糖通过β-1,4-糖苷键连接而成 蔗糖:一分子葡糖糖和一分子果糖通过脱水缩合而成

生物化学总结

第一章 一、蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、蛋白质的分子组成特点 1.蛋白质的基本组成单位是氨基酸 编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。 2. 各种蛋白质的含氮量很接近,平均为16%。 每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 3. 氨基酸的分类 所有的氨基酸均为L型氨基酸(甘氨酸)除外。 根据侧链基团的结构和理化性质,20种氨基酸分为四类。 (1)非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。 (2)极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。 (3)酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。 (4)碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。 ?含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 ?芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 ?唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。 ?营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理化性质 1. 氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI),氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK1 + pK2),(pK1和pK2分别为α-羧基和α-氨基的解离常数的负对数值)。 2. 氨基酸的紫外吸收性质 (1)吸收波长:280nm (2)结构特点:分子中含有共轭双键 (3)光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸 (4)呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。 肽的相关概念 (1)寡肽:小于10分子氨基酸组成的肽链。 (2)多肽:大于10分子氨基酸组成的肽链。 (3)氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。 (4)肽键:连接两个氨基酸分子的酰胺键。 (4)肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。 三、蛋白质分子结构特点 见表1-1。

大学生物化学复习资料

一、名词解释 1、血液:血液中的葡萄糖称为血糖。 2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成。 糖原分解成葡萄糖的过程称为糖原的分解。 3、糖异生:由非糖物质合成葡萄糖的过程叫糖异生。 4、有氧氧化:指糖、脂肪、蛋白质在氧的参与下分解为二氧化碳和水,同时释放大量能量,供二磷酸腺苷(ADP)再合成三磷酸腺苷(ATP)。 5、三羧酸循环(TAC循环):由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两 分子的CO2 , 并释放出大量的能量。反应部位在线粒体基质。 6、糖酵解:是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。(在供氧不足时,葡萄糖在胞液中分解成丙酮酸,丙酮酸再进一步还原乳酸。) 7、血脂:血中的脂类物质称为血脂。 8、血浆脂蛋白:指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。(脂类在血浆中的存在形式和转运形式) 9、脂肪动员:指在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员。 (补充知识:脂肪酶—催化甘油三酯水解的酶的统称。甘油三酯脂肪酶—脂肪分解的限速酶。)10、酮体:在肝脏中,脂肪酸的氧化很不完全,因而经常出现一些脂肪酸氧化分解的中间产物,这些中间产物是乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。(知识补充:酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。)

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

相关文档
最新文档