2013 Silica nanorattle with enhanced protein loading A potential vaccine adjuvant

2013 Silica nanorattle with enhanced protein loading A potential vaccine adjuvant
2013 Silica nanorattle with enhanced protein loading A potential vaccine adjuvant

Silica nanorattle with enhanced protein loading: A potential vaccine adjuvant

Tianlong Liu, Huiyu Liu, Changhui Fu, Linlin Li, Dong Chen, Yanqi Zhang, Fangqiong Tang ?

Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

a r t i c l e i n f o Article history:

Received 30 December 2012 Accepted 6March 2013

Available online 22 March 2013 Keywords:

Silica nanorattle Protein Vaccine Adjuvant

a b s t r a c t

Nanopar t icles are excellent carriers for drug and protein, and have the potential to be used in vaccine delivery system. Here, we prepared different structures silica nanoparticles such as silica nanorattles (SNs),mesoporous silica nanop a rticles (MSNs)and solid silica nanoparticl e s (SSNs),and chosen ovalbu- min (OVA)as model protein to study the potential app l ication of silica nanoparticl e s in protein vaccine delivery system. The results showed that silica nanoparticles were ef?cient in protein loading and depen- dent on structure, size and incubation medium. According to the three structure particles ,SNs were favorabl e to be used as protein carriers. Furthermore, we proved low cytotoxic i ty of silica nanorattle on RAW 264.7 cell line and biocompatibility in vivo .In addition, SNs was capable to up-regulate the humoral immunity reaction when mice were vaccinated with SNs–OVA formulation. Taken together, SNs was excellent carriers for protein vaccine and has the potential to be used as adjuvant.

ó2013 Elsevier Inc. All rights reserved.

1. Introduction

Vaccines, known as an effective weapon for human disease pre- vention, are playing an increasingly important role in the ?ght against infectious disease. According to the division of preparation, vaccines can be divided into classic vaccine and modern vaccine [1,2].The former include inactivated ,attenuated and subunit vac- cine which be made from some ingredients of natural organism. Modern vaccine refer to those vaccine apply modern biological technology, such as subunit vaccines, gene delete vaccines, recom- binant and synthetic peptide vaccine. Classic vaccines have some ingredients like inactivated or low activity microorganism will in- duce adverse effects [3,4].Although modern vaccine showing more safety than classic types, such like recombinant and synthetic pep- tide vaccine, the less ef?cient immunity protect effect limits their broader applications [5,6].Furthermore, recombinant and syn- thetic peptide vaccine face many challenges because of their bad stability, short half-life and vulnerability to interfere n ce by endog- enous substances [7,8].It is necessary to provide suitable carrier for prevention and modify of antigen protein in modern vaccine formulation .

Adjuvant has advantages in enhancing vaccine immunity pro- tect effect. Since 1925, ?rst discovered of some other substances (metal salt, lecithin and saponin)can improve the antigen speci?c immune response by Ramon, all sorts of different material were

used as adjuvant [9–11].However ,there were little numbers of clinical cases. With the booming of nanotechno l ogy, the applica- tion of nanomaterials as adjuvant has aroused more concern [12–16].Local in?ammation and systemic immune response caused by nanoparticles as foreign matter actually can be considered as an immunopot e ntiation effect. Therefore, it is important to investi- gate the loading of proteins in nanomaterials and their bio-effect in vivo [17].Mesopor o us materials are of great interest to nanoscience and nanotechno l ogy due to their unique porous structures as well as their tailorable adsorption, catalytic, conductive, and magnetic propertie s [18,19].Among the ordered mesoporous materials, mes- oporous silica nanoparticl e s (MSNs)have become a type of very popular materials with potential applications ranging from adsorp- tion and catalysis to nanotechno l ogy and biotechnolo g y [20,21].However ,the storage capacity for the conventional mesoporous materials is relatively low, and also the irregular bulk morphology is not perfect for delivery [22].To overcome these problems, one strategy is to synthesize mesoporous hollow silica nanoparticl e s with penetrating pore channels from outside to the inner hollow capacity. Recently ,we reported a ?exible,scalable and robust method to prepare rattle-typ e mesoporous silica hollow spheres named as silica nanorattles (SNs).SNs are emerging as new and promising class of nanoparti c les that developed for drug delivery system due to their special structure and functions [23–25].In pre- vious study, we found that low lethal toxicity of SNs when intrave- nous injection at single dose. We also found that kupffer cells (KCs)are the major target cells when SNs entered the blood stream [26].These previous research provide advantages of SNs for potential applicati o n in adjuvant. However, loading and releasing ef?ciency of SNs on antigen and potential adverse effect of SNs on immune

0021-9797/$ -see front matter ó2013 Elsevier Inc. All rights reserved. https://www.360docs.net/doc/5111663396.html,/10.1016/j.jcis.2013.03.005

?Corresponding author. Address: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, East Road Zhongguancun, Beijing 100190, PR China. Fax: +86 10 82543521.

E-mail address: tangfq@https://www.360docs.net/doc/5111663396.html, (F.Tang).

system or immune response should be determined before the kind of application.

Here, we examine d the loading and releasing of silica nanorattle with 110 nm on ovalbumin (OVA).In?uencing factors on protein loading and releasing such as nanoparti c les structure, size, temper- ature, medium and time were studied. In addition, we also evalu- ated the effect of SNs on immune cells and immune organs in vivo and in vitro .Finally, the effect of SNs on OVA antibody levels after vaccination by SNs–OVA formulation were investigated in this study.

2. Materials and methods

2.1. Materials

Tetraethylor t hosilane (T

E OS),N-[3-(trimethoxysilyl)pro-pyl]ethylen e diamine (TSD),3-aminoprop y ltrimethox y silane (APT-MS),3-Aminopro p yltriethoxysilane (APS),hydro?uoric acid (HF), NaOH, CuSO 4á5H2O)and KNaC 4H4O6á4H2O were obtained from Beijing Chemical Reagents Company (China).Potassium E DTA, BSA, OVA (grade V),complete freund adjuvant (CFA),hematoxy l in and eosin were purchased from Sigma. RAW264. 7cell line was gained from American Type Culture Collectio n(ATCC).E LISA kit of OVA antibody was obtained from Roche Ltd.

2.2. Fabrication and characteri z ation of silica nanoparticles

SNs, MSNs and solid silica nanoparticl e s (SSNs)were synthe- sized as previous described [27,28].MSNs and SSNs have been amino functionalized as positive charge control by 3-Aminopro p yl- triethoxysilane (APS)and remarked as MSNs-NH 2and SSNs-NH 2. Morphology and structure of the resulting nanoparti c les were observed with a JE OL-200CX transmis s ion electron microscope (TE M).Zeta potential and size distribution was characteri z ed by dynamic light scattering using a using the Malvern Zetasizer 3000HS at 25 °C.

2.3. Preparation of protein-capt u ring nanopariticles

To determine protein entrapment, 40 mg silica nanoparticles were diluted in 1.0 mL PBS (pH7.4).Then 1.0 mL of 2mg/mL OVA was added and the solution was stirred vigorously for 24 h. The silica nanoparticl e s were separated by centrifugation at 15,000 rpm for 8min. The concentr a tion of protein remained in the media was determined by biuret protein assay using UV–visible spectroscopy at 280 nm. The absorbance of the remained protein was converte d into the concentration with ?tted curve of OVA in PBS (Supporting informations, Fig. S1 A).The loading con- tent (LC)means the percent of loaded protein in total amount of protein plus carrier and entrapm e nt ef?ciency(EE)means the per- cent of loaded protein in total protein were calculated. All mea- surements were conducted in triplicate s and the mean values and standard deviation s were calculated. Morphology and struc- ture of the loaded OVA nanoparticles were observed with TE M. Zeta potential and size distribution was characteri z ed by dynamic light scattering using the Malvern Zetasizer 3000HS at 25 °C.

2.4. In vitro release of OVA

For protein release assay, the SN–OVA samples were placed in 20 mL of release medium (PBS;5% glucose solution or pure water), stirring at given temperature (4,25 and 37 °C).2mL of the release medium was taken at given time intervals. The concentr a tion of OVA was determined by biuret protein assay using UV–visible spectroscopy at 280 nm. 2.5. In vitro cell viability and cell apoptosis

Mouse macrophage- l ike RAW264. 7cells were maintained in high-gluc o se Dulbecco’s modi?ed E agle’s medium (DME M),sup- plemente d with 10% FBS at 37 °C in a humidi?ed atmosphere of 5% CO2. The cell culture media were supplemented with 100 units/mL penicillin, 100 l g/mL streptomycin. The cytotoxicity of SNs was evaluated by MTT viability assay. SNs were dissolved using DMSO. For 24 h detection, the cells were seeded at a density of 8?104 cell/mL on 96-well plates. After incubating the cells with silica nanorattles for 24 h, MTT (3-(4,5-dimethylthiazol- 2- yl)-2,5-diphenyltetrazol i um bromide)(?nal concentration of 0.5 mg/mL)was added to each well. After 4h of incubation at 37°C, colorimetric measureme n ts were performed at 570 nm on a scanning multiwell spectrometer. Data were expressed as mean ±standard error of mean of at least six independen t experime n ts.

Cell apoptosis was determined with ?uorescence activated cell sorter (FACS)and assessed with an annexin V detection kit. After incubation with SNs for 24 h, RAW 264.7 cells were stained with annexin V and PI, and assessed by FACS as described previously. Brie?y,cells were washed with binding buffer and incubate d with annexin V and PI at room temperat u re for 10 min, then analysed immedia t ely by FACS.

2.6. In vivo effect of SNs on immune system

All animal experiments were performed in compliance with the local ethics committee. Female BALB/c mice (provided by Vital River Laboratory Animal Technology Co. Ltd., Beijing),aged 6–

8weeks, were used in the experime n ts. E very ?ve mice were housed in stainless steel cages containing sterile paddy husk as bedding in ventilated animal rooms. They were acclimated in the controlle d environment (temperature:22 ±1°C; humidity: 60 ±10% and light: 12 h light/dark cycle)with free access to water and a commercial laboratory complete food. SNs was sterilized by UV irradiation for 2h, then suspended in sterile 5% glucose solu- tion and sonicated for 15 min before being loaded into 1mL syrin- ges under sterile conditions. An endotoxin assay showed that there was no detectable gram negative endotoxin on any of the particle at a concentratio n of 1mg/mL (the detection limit was less than 0.1 EU/mL).BALB/c mice were intraperitonea l ly injected with SNs suspensi o n in 5% glucose at 10, 25 and 50 mg/kg levels once a week for 4weeks. Intraperiton e al injections of sterile 5% glucose injec- tion were also given to mice as controls. Mortality and clinical manifest a tion was recorded. On day 14 after the last injection, the mice were sacri?ced,and the serum and organs were recov- ered. The spleen and thymus were excised and weighed accurately. The coef?cients of spleen and thymus to body weight were calcu- lated as the ratio of tissues (wet weight, mg)to body weight (g). Spleen and thymus tissues recovered from the necropsy were ?xed

in 10% formalin, embedded in paraf?n,sectioned, and stained with hematoxy l in and eosin (HE)for histological examination using standard techniques. After hematoxylineo s in staining, the slides were observed and photos were taken using optical microscope (Olympus X71, Japan).All the identity and analysis of the pathol- ogy slides were blind to the pathologi s t.

2.7. Vaccinati o n and ELISA for anti-OVA Abs

A total of 2mg/mL OVA or SN–OVA in PBS was mixed for injec- tion at 1:1 (v:v),with the complete Freund’s adjuvant (CFA)adju- vants following the manufactur e r’s recomme n dations for optimal immunog e nicity. Female BALB/c mice were divided into four groups injected with different materials as CFA–OVA,SN–OVA, CFA–SN–OVA and PBS–OVA containing 10 l g ovalbumi n on days

T. Liu et al. /Journal of Colloid and Interface Science 400 (2013)168–174169

0, 1, and 2. On day 21, plasma was collected to assess antigen- speci?c antibody responses. Antigen- s peci?c IgG and subclass IgG1 antibody levels were determined by enzyme- l inked immuno- sorbent assay (ELISA).The ELISA plates were coated with 10 l g/mL OVA and incubate d overnight at 4°C. Non-speci ?c Antibody bind- ing was minimize d by incubating the plates with 4% blocking solu- tion at 37 °C for 2h. Plasma dilutions were added to the antigen coated plates and incubated at 37 °C for a further 2h. The coated plates were then washed with PBS containing 0.05% Tween 20 and incubate d with a horseradish peroxidase conjugat e d goat anti-mouse IgG solution at 37 °C for 2h. The color reaction was developed with tetramethylbenzi d ine, stopped with 2N H2SO4, and quantitated by measuring OD 450minus OD 655using a micro- plate reader.

2.8. Statistical analysis

Results were expressed as mean ±standard deviation (S.D). Multigroup comparisons of the means were carried out by one- way analysis of variance (ANOVA)test using SPSS 14.0 (SPSS Inc., Chicago, IL).The statistical signi?cance for all tests was set at p<0.05.

3. Results and discussion

3.1. Preparation and characterization of silica nanoparticle s tential of SNs. Potential of amino functionalized MSN and SSNs were 27.4 ±

4.5 and 24.8 ±3.2 mv, respectively .

3.2. Effect of nanoparti c le structure and size on OVA loading ef?ciency

To ?nd the optimum loading conditions of OVA, we investiga t ed varied factors including particles structure ,size, concentr a tions of OVA, media, temperat u re and entrap time. Different structure as silica nanorattles, mesporous silica nanoparticl e s and solid silica nanoparti c les were used for the study. Three sizes 70, 110 and 260 nm of SNs was used to detect the size effect on protein loading.

40 mg of SNs was added in different proportions of OVA (20:1; 10:1; 5:1; 2.5:1; 1:1; 1:2.5; 1:5)diluted in PBS pH 7.4 in ?nal vol- ume of 2mL (v/v).Furthermore, different media like PBS, 5% glu- cose solution, reaction temperature 4°C and 37 °C and 0.5, 1, 2, 4 and 24 h entrap time were considered .

Under the same condition s, amount of OVA which loaded on SNs was greater than that of MSNs and SSNs. LC of MSNs and SSNs were 5.14% and 3.5%, respectively. According to the positive con- trol, LC of MSNs-NH 2and SSNs-NH 2were 10.25% and 6.8%. LC of SNs was 2.87, 2.17 and 4.22 times than MSN, SSNs-NH 2and SSNs as 14.76%, respectivel y. (Fig. 2A).There was no signi?cant differ- ence between SNs and MSN-NH 2.No obvious difference of LC was founded between 70, 110 and 260 nm SNs. (Fig. 2B).

3.3. Effect of concentratio n of OVA, media and temperature on loading ef?ciency

TEM images of SNs, MSNs and SSNs in 5% glucose solution. Three nanoparticles, SNs (A),MSNs (C),SSNs (D),all had well monodispersion in the dispersant. OVA did not affect the monodispersion of SNs and OVA loaded on SNs could be observed (B,black arrow).

170T. Liu et al. /Journal of Colloid and Interface Science 400 (2013)168–174

loading was a dynamical change process and 4h was the appropri- ate entrap time. The absorbance of the remained OVA was con- verted into the concentratio n with ?tted curve of OVA in glucose and water (Supporting information s, Fig. S1 B and C).Incubation media and temperature did not signi?cantly affect the loading of protein on nanocarrier s. In the conclusion, 110 nm diameter, 1.5 ratio of protein and particles, 5% glucose solution as media, 4h and 4°C were the optimization condition s for proteins loading. 3.4. Effect of media and temperature on releasing

Effect of media and temperature on releasing rate of SNs–OVA was investigated in this study. 5% glucose solution was the most suitable one among the three candidat e media (glucose,PBS and pure water).The cumulative OVA release curve for SNs in PBS sol- vent basically started with a burst effect of release and followed with a control release (Fig. 3A).There was low release of OVA in pure water till 12 days (Fig. 3C).Unlike the two solvents above, burst release did not occur in glucose and releasing started at 5days followed with ef?cient releasing till 12 days reached 87% (Fig.3B).Temperature had a certain in?uence on OVA releasing in different solvents, especially in glucose. Releasing data was signif- icant declined at 4°C compare d with 37 °C in glucose.

Nanomateri a ls which probably used as adjuvant should meet the following requiremen t s: 1, Particle size should be less than 100 nm for ef?cient traversing biological barriers, 2, good biocom- patibility and high clearance from body, 3, sustained release of antigen and maintain a constant and effective blood concentratio n, 4, mass production for commercial purpose, 5, be adapt to surface modify for target location. Progresses in SBA-15 over the last dec- ade offered exciting opportun i ties in the developmen t of adjuvant. SBA-15 was the ?rst mesoporous silica nanoparti c les which used for adjuvant application [29,30].In 2006, Lucildes et al. demon- strated that SBA-15 behaves as an adjuvant inducing a better re- sponse in BALB/c immunized with E. coli bacterial protein or a complex proteins spectrum of Micrurus venom in comparison to a commonly used adjuvant for animal application, such as the complex oil incomplete freund adjuvant [31].

In this study, we found the high loading ef?ciency of OVA on SNs. Furthermore, the condition of the binding reaction and the releasing were optimized. Three aspects of loading reaction were studied, including nanoparticl e s characters, protein concentration and reaction condition s such as temperature ,media and so on. Our results indicated that structure had great effect on protein binding on nanoparti c les. Silica nanorattles had greatest loading ef?ciency among three silica nanoparticles, may be attributed to positive surface charge. Although LC of amino functionalized nano- particles such as MSN-NH 2and SSN-NH2 ,has been raised com- pared with unfunctionaliz e d particles, but still lower than SNs with the similar positive potential. And the SSNs-NH 2was the low- est one, so this result indicated that the hollow structure and the positive charge surface both play important roles in protein load- ing. We also found that particle size had some effect on protein loading, but the changes were not signi?cant.Ratios of protein and SNs had great in?uence on the protein binding and the optimal ratio was 1.5 at both optimization LC and EE. Entrap time was the most important among varied reaction conditions, media and tem- perature did not have a signi?cant effect on LC.

3.5. In vitro study of SNs on RAW26

4.7 cell lines

Cytotoxic i ty of SNs was determined by cell viability and apop- tosis on murine macrophage cell lines in vitro .MTT assay result indicated that there was no observed change of the viability when cells exposed SNs at 6.25–400l g/mL concentratio n s (Fig. 4A). FACS result showed that apoptosis rate of cells increased when the concentratio n over 100 l

g/mL, but the increase was not Effect of structure (A),particle size (B),ratio of OVA and SNs (C)and media or temperature (D)on LC or EE of OVA loading on nanoparticles.

statistically signi?cant(Fig. 4B).These results indicated that there was no adverse effect of SNs on murine macrophage cells.

3.6. In vivo study of SNs on immune organs

On 14 day after the last injection ,the mice were sacri?ced and the weights of body, spleen and thymus tissues were collected .No obvious differenc e s were found in the body weights of groups. The coef?cient of spleen at 25 mg/kg was slightly declined, but was not statistical l y signi?cant.Coef?cients of thymus at all dose showed no remarkabl e change after administrat i on of SNs (Fig. 4C). found no abnormality in any of spleen and thymus organs in the SNs injected mice at three doses (Fig. 5).Compare d with control animals, spleen red pulp and white pulp remained normal regions when the mice received SNs. Morphology of thymus also showed there was no apparent damage. These resulted suggested that the benign immune system biocompatib i lity of SNs in vivo .

The increasing demand of new adjuvant provides broad spaces for the development of nanomat e rials as antigen delivery [32–34]. Although a dozen nanomaterial s have been investigated for dec- ades as potential adjuvant, few materials have entered clinical tri- als stage [35].The lack of research on bio-effect of nanomaterial s

ffects of medium and temperature on OVA releasing from SNs–OVA nanoparticles. 5% glucose solution (A)was the most suitable one among the three candidate media, the others were PBS (B)and pure water (C).Temperature had a certain in?uence on OVA releasing in different solvents, especially in glucose. Releasing date was signi?cant declined at 4°C.Fig. 4. Cytotoxicity and organ index in vivo of SNs. Different levels of SNs (0–g/mL)induced no decline of cell survival rate of RAW264.7 cell (A).Apoptosis rate were detected by FACS (B)and SNs caused a slight increase of apoptosis but not signi?cant.Repeated exposure of SNs did not affect organ index of spleen and thymus in mice (C).

and unclear adjuvant mechanism s were responsible for this situation.

Cytotoxicity of SNs in vitro on RAW264.7 cell line showed SNs that it was a pro m is i n g bi o ma t eria l with exc e lle n t bio c omp a tib i li t y. SNs did not induce decrease of cell viability or cell apoptosis. We previously reported that LD50 of SN was greater than 1000 mg/kg, which was much higher than that in

silica nanoparticles [26].In this study, we investiga

repeated dose SN on immune system. The results indicated that there were no obvious lesion of immune organs such as thymus and spleen after SN exposure.

3.7. ELISA assay of antibody of OVA

To assess the effect of silica particles on immune responses measure d the levels of anti OVA IgG antibody and anti OVA IgG1 antibody .The levels of OVA speci?c IgG antibody in mice exposed to SNS–OVA(OD=0.42)were signi?cantly higher than in those animals exposed to OVA alone (OD=0.11).The levels of anti OVA IgG induced by SNs–OVA collaborated with CFA (OD

slightly elevated than those without CFA (Fig. 6A).

ci?c IgG1 Antibody also followed the same changes (

IgG1 production is indicative of a Th2 type response. These results suggest that silica nanoratt l es can induce the production of antigen speci?c antibody responses including antigen-speci?c

immune responses.

Antigen uptake by antigen presenting cells (APCs)

by the association of antigens with nanoparticl e s. The adjuvant ef- fect of these particles appears to largely be a conseque

uptake into APCs [36,37].More importantly, particulate antigens In conclusio n, we investigated the possibilit y of SNs in protein vaccine adjuvant applications .SNs had high protein loading ef?-ciency, stability and releasing performance. The toxicity results of SNs in vivo and in vitro also indicate that SNs was a kind of biomater i als with benign biocomp a tibility. We also proved that SN enhanced antibody level of OVA after single dose vaccination. Further studies for SNs clinical application are in progress to

Histological analyses of tissues in silica nanorattles treated mice. Histological section of spleen (A–D)and thymus (E–H)stained with H&E. Data were representative of mice. The scale bar is 100 l m.

The levels of anti OVA IgG Ab (A)and anti OVA IgG1 Ab (B)were measured

by ELISA kits. The levels of OVA speci?c IgG Ab and IgG1 Ab in mice exposed to OVA

loaded SNs were signi?cantly higher than in those exposed to OVA alone. The levels

of anti OVA IgG induced by OVA loaded SNs collaborated with CFA were slightly

elevated than those without CFA but not signi?cant(??denotes statistical signi?-

cance for the comparison of control, ??p<0.01).

determine whether the novel nanotechnolog y can induce cellular or humoral immunity.

Acknowled g ments

The authors acknowledge ?nancial support from the National Natural Science Foundation of China (NSFC)(Nos.81201814, 81171454, 81000667, 30900349)and Beijing Nova Program (Z111103054511113).

Appendix A. Supplementar y material

Supplement a ry data associated with this article can be found, in the online version, at http://dx.doi.o r g/10.1016/j.jc i s.2013.03.005 . Reference

[1] J.B. March, E xpert Rev. Vaccines 5(2006)753.

[2] P. Simerska, P.M. Moyle, I. Toth, Med. Res. Rev. 31 (2011)520.

[3] M.M. Levine, M.B. Sztein, Nat. Immunol. 5(2004)460.

[4] A.D. Douglas, S.C. de Cassan, M.D. Dicks, S.C. Gilbert, A.V. Hill, S.J. Draper,

Vaccine 28 (2010)7167.

[5] T. Yoshida, R. Yoshida, B.Y. Ma, S. Mikolajczak, D.J. Kelvin, A. Ochi, Vaccine 28

(2010)3688.

[6] L. Zou, J. Wang, B. Huang, M. Xie, A. Li, Vaccine 29 (2011)391.

[7] T.H. Kang, A. Monie, L.S. Wu, X. Pang, C.F. Hung, T.C. Wu, Vaccine 29 (2011)

1082.

[8] S.A. dos Santos, C.R. Zarate-Blades, F.C. de Sa Galetti, I.T. Brandao, A.P. Masson,

E.G. Soares, A.P. Araujo, C.L. Silva, Hum. Vaccin 6(2010)1047.

[9] M. D’Incalci, E ur. J. Cancer 45 (2009)316.

[10] K.S. Phillipps, M.N. Wykes, X.Q. Liu, M. Brown, J. Blanch?eld,I. Toth,

Immunology 128 (2009)e582.

[11] A. Waghmare, R.L. Deopurkar, N. Salvi, M. Khadilkar, M. Kalolikar, S.K. Gade,

Vaccine 27 (2009)1067.

[12] T. Wang, M. Zou, H. Jiang, Z. Ji, P. Gao, G. Cheng, Eur. J. Pharm. Sci. 44 (2011)

653.

[13] A. Flemming, Nat. Rev. Drug Discov. 10 (2011)258.

[14] J.P. Scheerlinck, S. Gloster, A. Gamvrellis, P.L. Mottram, M. Plebanski, Vaccine

24 (2006)1124. [15] Q. He, A.R. Mitchell, S.L. Johnson, C. Wagner-Bartak, T. Morcol, S.J. Bell, Clin.

Diagn. Lab. Immunol. 7(2000)899.

[16] A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig,

V. Castranova, M. Thompson, Nat. Mater. 8(2009)543.

[17] M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Nat. Nanotechnol. 7(2012)

779.

[18] J. Wang, W. Hua, Y. Yue, Z. Gao, Bioresour. Technol. 101 (2010)7224.

[19] A. Navrotsky, O. Trofymluk, A.A. Levchenko, Chem. Rev. 109 (2009)3885.

[20] S. Huh, H.T. Chen, J.W. Wiench, M. Pruski, V.S. Lin, Angew. Chem. Int. E d. E ngl.

44 (2005)1826.

[21] L. Pasqua, S. Cundari, C. Ceresa, G. Cavaletti, Curr. Med. Chem. 16 (2009)3054.

[22] Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, Angew. Chem. Int. Ed.

Engl. 44 (2005)5083.

[23] L. Li, F. Tang, H. Liu, T. Liu, N. Hao, D. Chen, X. Teng, J. He, ACS Nano 4(2010)

6874.

[24] H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Angew. Chem. Int. Ed. Engl. 50

(2011)891.

[25] L. Li, Y. Guan, H. Liu, N. Hao, T. Liu, X. Meng, C. Fu, Y. Li, Q. Qu, Y. Zhang, S. Ji, L.

Chen, D. Chen, F. Tang, ACS Nano 5(2011)7462.

[26] T. Liu, L. Li, X. Teng, X. Huang, H. Liu, D. Chen, J. Ren, J. He, F. Tang, Biomaterials

32 (2011)1657.

[27] D. Chen, L.L. Li, F.Q. Tang, S.O. Qi, Adv. Mater. 21 (2009)3804.

[28] D.R. Radu, C.Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S. Lin, J. Am. Chem. Soc.

126 (2004)13216.

[29] L.V. Carvalho, C. Ruiz Rde, K. Scaramuzzi, E.B. Marengo, J.R. Matos, D.V.

Tambourgi, M.C. Fantini, O.A. Sant’Anna, Vaccine 28 (2010)7829.

[30] R. Seabra Ferreira Junior, R. Pavan Anderlini, O. Augusto Brazil E steves Sant’

Anna, D. Carvalho Pimenta, R. De Oliveira Orsi, B. Barraviera, J. Toxicol. Environ.

Health A73 (2010)926.

[31] L.P. Mercuri, L.V. Carvalho, F.A. Lima, C. Quayle, M.C. Fantini, G.S. Tanaka, W.H.

Cabrera, M.F. Furtado, D.V. Tambourgi, R. Matos Jdo, M. Jaroniec, O.A.

Sant’Anna, Small 2(2006)254.

[32] X. Huang, X. Meng, F. Tang, L. Li, D. Chen, H. Liu, Y. Zhang, J. Ren,

Nanotechnology 19 (2008)445101.

[33] S. de Jong, G. Chikh, L. Sekirov, S. Raney, S. Semple, S. Klimuk, N. Yuan, M. Hope,

P. Cullis, Y. Tam, Cancer Immunol. Immunother. 56 (2007)1251.

[34] B. Slutter, L. Plapied, V. Fievez, M.A. Sande, A. des Rieux, Y.J. Schneider, E. Van

Riet, W. Jiskoot, V. Preat, J. Control Rel. 138 (2009)113.

[35] S.M. Bal, B. Slutter, R. Verheul, J.A. Bouwstra, W. Jiskoot, E ur. J. Pharm. Sci.,

2011.

[36] C. Chittasupho, L. Shannon, T.J. Siahaan, C.M. Vines, C. Berkland, ACS Nano 5

(2011)1693.

[37] Y. Krishnamachari, S.M. Geary, C.D. Lemke, A.K. Salem, Pharm. Res. 28 (2011)

215.

174T. Liu et al. /Journal of Colloid and Interface Science 400 (2013)168–174

内蒙古自治区人民政府办公厅关于印发《内蒙古自治区2013年至2015年

内蒙古自治区人民政府办公厅关于印发《内蒙古自治区2013年至2015年金属非金属矿山整顿关闭工作实施方案》的通知 【法规类别】矿产资源监督管理 【发文字号】内政办发[2013]17号 【发布部门】内蒙古自治区政府 【发布日期】2013.03.01 【实施日期】2013.03.01 【时效性】现行有效 【效力级别】XP10 内蒙古自治区人民政府办公厅关于印发《内蒙古自治区2013年至2015年金属非金属矿 山整顿关闭工作实施方案》的通知 (内政办发〔2013〕17号2013年3月1日) 各盟行政公署、市人民政府,自治区各有关委、办、厅、局: 经自治区人民政府同意,现将《内蒙古自治区2013年-2015年金属非金属矿山整顿关闭工作实施方案》印发给你们,请认真贯彻执行。 内蒙古自治区2013年至2015年金属非金属矿山整顿关闭工作实施方案按照《国务院办公厅转发安全监管总局等部门关于依法做好金属非金属矿山整顿工作

意见的通知》(国办发〔2012〕54号)要求,为确保我区金属非金属矿山整顿关闭工作(以下简称整顿关闭工作)有序进行,完成整顿关闭工作目标和任务,特制定本方案。 一、总体要求和目标任务 (一)总体要求。以《国务院关于坚持科学发展安全发展促进安全生产形势持续稳定好转的意见》(国发〔2011〕40号)为指导,大力实施安全发展战略,按照严格依法、淘汰落后、标本兼治、稳步推进的原则,统筹采取“关闭、整合、整改、提升”等措施,依法取缔和关闭无证开采、不具备安全生产条件和破坏生态、污染环境等各类矿山尤其是小矿山,全面提高矿山安全生产水平和安全保障能力,促进全区矿山安全生产形势持续稳定好转。 (二)目标任务。到2015年底,力争完成国家安全监管总局2012年下达的整顿关闭1457个非煤矿山企业的工作任务(其中2012年已经关闭253个,2013年至2015年计划关闭1204个),基本改变我区非煤矿山企业“多、小、散、乱、差”的状况,私挖滥采、偷采盗采、无证开采和超层越界开采等非法违法行为得到有效制止,不符合产业政策、安全保障能力低下的小型矿山得到依法整顿关闭,浪费破坏矿产资源、严重污染环境等行为得到根本遏制,小型矿山安全基础工作进一步加强,矿山安全生产条件进一步改善,矿山规模化、机械化、标准化、信息化、科学化水平进一步提高,生产安全事故持续下降,较大事故得到有效遏制,重大以上事故基本杜绝。 二、组织领导机构及相关部门职责 (一)组织领导机构。为确保整顿关闭工作的顺利有序实施,自治区成立金属非金属矿山整顿关闭工作领导小组(以下简称自治区领导小组) 组长: 王波自治区副主席

2012年北京中考数学试卷(含答案)

2012年中考数学卷精析版——北京卷 (本试卷满分120分,考试时间120分钟) 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 3.(2012北京市4分)正十边形的每个外角等于【】 A.18?B.36?C.45?D.60? 【答案】B。 【考点】多边形外角性质。 【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。故选B。4.(2012北京市4分)下图是某个几何体的三视图,该几何体是【】 A.长方体B.正方体C.圆柱D.三棱柱 【答案】D。 【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。故选D。 5.(2012北京市4分)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是【】 A.1 6 B. 1 3 C. 1 2 D. 2 3 【答案】B。 【考点】概率。 【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。本题全部等可能情况的总数6,取到科普读物的情况是2。∴取到科普读物的概率是 21 63 =。故选B。 6.(2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】 A.38?B.104?C.142?D.144? 【答案】C。 【考点】角平分线定义,对顶角的性质,补角的定义。 【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM平分∠AOD,根据角平分线定义,∠COM=380。 ∴∠BOM=∠COM+∠BOC=1420。故选C。 7.(2012北京市4分)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(度)120 140 160 180 200 户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是【】 A.180,160 B.160,180 C.160,160 D.180,180 【答案】A。 【考点】众数,中位数。 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是180,故这组

2013-2014学年八年级数学上册期末测试题(2)

1 / 5 2013-2014八年级数学上册 期末测试题(2) 姓名 一.选择题( 3 ×10=30分) 1.下列各式由左边到右边的变形中,是分解因式的为( )。 A 、a (x + y) =a x + a y B 、x 2-4x+4=x(x -4)+4 C 、10x 2-5x=5x(2x -1) D 、x 2-16+3x=(x -4)(x+4)+3x 2.下列运算中,正确的是( )。 A 、 x x =x 336 ? B 、3x 2÷2x=x C 、x =x 235 () D 、x+y =x y 2224+() 3.下列图形中,不是轴对称图形的是( )。 4.已知△ABC 的周长是24,且AB=AC ,又AD ⊥BC ,D 为垂足,若△ABD 的周长是 20,则AD 的长为( )。 A 、6 B 、8 C 、10 D 、12 5.8.已知m 6x =,3n x =,则 2m n x -的值为 ( )。 A 、9 B 、34 C 、12 D 、4 3 6. 当分式3 x 1-有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x 7.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。 A 、14 B 、16 C 、10 D 、14或16 8.已知m 6x =,3n x =,则 2m n x -的值为( )。 A 、9 B 、34 C 、12 D 、4 3 B C D A

9.若分式22 x 9x 4x 3--+的值为0,则x 的值为( ) A .3 B.3或-3 C.-3 D.0 10. 如果把分式y x xy +中的x 和y 都扩大2倍,则分式的值( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍 二.填空题 ( 3 ×10=30分) 11.已知a 1-b 1 =5,则b ab a b ab a ---+2232的值是 12.一个汽车牌在水中的倒影为 , 则该车牌照号码____________。 13.若分式方程x-3 =m x+31+有增根,则这个增根的值为___________ 。 14. 已知点A (l ,-2),若A 、B 两点关于x 轴对称,则B 点的坐标为________。 15.分解因式 3322x 2-+y x y xy = ________________________。 16.1纳米=0.000000001米,7.5纳米用科学记数法表示为_______________________。 17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是____________。 18. 多项式 24a 1+加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是____________________________。(填上一个你认为正 确的即可) 19.已知x +y =1,则2211 22 ++x xy y = _______________________。 20.如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F = 90°, ∠B =∠C ,AE =AF 。给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD=DN 。其中正确的结论有____________(填序号) 三、简答题:(共60分) M N A B C D E F 1 2

【解析版】2013年北京市中考数学试卷及答案

北京市2013年中考数学试卷 一、选择题(本题共32分,每小题4分。下列各题均有四个选项,其中只有一个是符合题意的。 1.(4分)(2013?北京)在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学记数法表示应为()A.39.6×102B.3.96×103C.3.96×104D.0.396×104 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答:解:将3960用科学记数法表示为3.96×103. 故选B. 点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(4分)(2013?北京)﹣的倒数是() A.B.C. ﹣D. ﹣ 考点:倒数. 分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 解答: 解:∵(﹣)×(﹣)=1, ∴﹣的倒数是﹣. 故选D. 点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 3.(4分)(2013?北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D. 考点:概率公式. 分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:解:根据题意可得:大于2的有3,4,5三个球,共5个球, 任意摸出1个,摸到大于2的概率是.

2013年八年级上册数学期中复习试题

A D E B 八年级上册数学期中复习试卷 1、4的算术平方根是( ) A . 2± B .2 C . D 2 、下列图形中,不是轴对称图形的是( ) . 3、黄瑶拿一张正方形的纸按下图沿虚线连续对折后剪去带直角的部分,然后打开后的形状是( ) 4、下列语句: 4 ; 2=± ③平方根等于本身的数是0和1 ; ④ , 其中正确的有( )个 A .1 B. 2 C.3 D.4 5、已知等腰三角形的一边长为4cm ,另一边为8cm ,则它的周长是( ) A 16㎝ B 20㎝ C 12㎝ D 16㎝或20㎝ 6、能根据3 50≈1.710,求出近似值的是( ) A 35000 B 3005.0- C 305.0- D 3 500 7、下列数中,无理数的个数是( ) 31-,2,0.53, 2 π , 0 , —25, —2.171171117 , 33 . A 3 B 4 C 5 D 6 8、大于32-且小于23的整数的个数有( ) A.9 B.8 C.7 D.6 9、若∠AOP=∠BOP=15°,PC ∥OA, PD ⊥OA,PC=4,则PD=( ) 10、 10、如图,在Rt ABC △中, 90=∠B ,ED 是AC 的 垂直平分线,交AC 于点D , 交BC 于点E .已知 10=∠BAE ,则C ∠的度数为( ) A . 30 B . 40 C . 50 D . 60 11、下列说法正确的是( ) A. 带根号的数是无理数 B. 无限小数是无理数 C. 4 3 是分数 D. 数轴上的点与实数一一对应 122,那么2 x =( ). A 、4 B 、16 C 、±2 D 13.下列说法正确的是( ) . A 、±4的平方根是16 B 、1的平方根是1 C 3 D 、2是2 (2)-的算术平方根 二:填空题 14、16的平方根是 ,125-的立方根是 。 15、81的算术平方根是 ,0的平方根是 ,-1的立 方根是 。 16、36-的绝对值是______。2的相反数是______。 |3.14-π|=___________。 17、点A (3,2-)关于x 轴的对称点的坐标是 。 18、若 62255-++=-+-c b a a ,则a b c +的值 为 。 19、如图,△ABC 中,∠A =50°, 将其折叠,使点A 落在边CB 上 A ′处,折痕为CD , ∠D C B =48°,则∠DB A ' 的度数为 。 20、三角形三个内角度数之比是1:2:3,最大边长是8,则它的最小边的长 21.一辆汽车的车牌号在水中的倒影是: , 那 么它的实际车牌号是: ; 22.如果一个数的立方根是它本身,那么这个数是 :23.等腰三角形的顶角是120°,底边上的中线长为4cm,则它的腰长 ; 24.点M (x-1,y+1)与M ′(2x-2,3y –2)关于X 轴对称,则:x= ,y= ; 25、如图,已知点O 是 △ABC 内一点,且点O 到三边的距离相等, ∠A=40,则∠BOC= 三、解答题: 26、计算(1)81+(-6)-3 27 (2)322 22-+ (3 (4) 213222---+ (5) ()2334 1 22027.01044.152 3-+----?- A ' B D A D C B A C O A B

(会考)2013年内蒙古自治区普通高中学业水平考试(历史)

机密★启用前 试卷类型A 2013年内蒙古自治区普通高中学业水平考试 历史 注意事项:1.本试卷共8页。满分100分,考试时间90分钟; 2.考生作答时,将答案写在答题卡上。写在本试卷上无效; 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:共30个小题,每小题2分,共60分。每小题给出的四个选项中,只有一项是最符合题目要求。 1.2011年1月新《老年法》规定“子女要经常回家看望父母”,这一消息引起社会热议。结合下图场景,能判断出影响今天中国人观念行为的古代政治制度是() 台湾蒋孝严赴大陆祭祖 A.世袭制 B.分封制 C.宗法制 D.禅让制 2.“中国式建筑是凝固的思想意识形态,……太和殿内皇帝所用的御座,安置在一个高约2米的基座上,使御座从平地升起,犹如须弥座托着的太和殿的缩影。”这体现的政治思想是() A.民贵君轻 B.皇权至上 C.以法治国 D.天人感应 3.专制主义中央集权制度在封建社会后期(明清时期)消极影响逐渐增大,主要在于() A.官场腐败严重 B.官僚主义之风盛行 C.激化了阶级矛盾 D.严重阻碍了中国社会的进步 4.下列不平等条约中,最早允许外国人在中国通商口岸投资设厂的是() A.《南京条约》 B.《北京条约》 C.<马关条约》 D.《辛丑条约》 5.雅典民主是一种直接民主的典范,但实际上民主也是有限的。有资格入选古雅典陪审团的是() A.成年雅典男性公民 B.奴隶 C.外邦人 D.雅典妇女 6.彻底改变了近代以来中国在反侵略战争中屡战屡败的屈辱史的事件是() A.五四运动爆发 B.红军长征的胜利 C.香港回归 D.抗日战争的胜利 7.为了完成祖国统一大业,邓小平提出了“一个国家,两种制度”的构想。“一

2013年北京中考西城一模数学(含答案)电子版

北京市西城区2013年初三一模试卷 数 学 2013. 5 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的相反数是 A .3 1 - B . 3 1 C .3 D .3- 2.上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为 A .1.3×105 B .1.3×104 C .13×104 D .0.13×106 3.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点 E . 若∠1=25°,则BAF ∠的度数为 A .15° B .50° C .25° D .12.5° 4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为 A . 2 1 B . 3 1 C . 6 1 D .1 5.若菱形的对角线长分别为6和8,则该菱形的边长为 A .5 B .6 C .8 D .10 6 则该队队员年龄的众数和中位数分别是 A .16,15 B .15,15.5 C .15,17 D .15,16 7.由一些大小相同的小正方体搭成的一个几何体的三视图如图所示,则构成这个几何体 的小正方体共有 A .6个 B .7个 C .8个 D .9个

8.如图,在矩形ABCD 中,AB=2,BC=4.将矩形ABCD 绕点C 沿顺时针方向旋转90°后,得到矩形FGCE (点A 、B 、D 的对应点分别为点F 、G 、E ).动点P 从点B 开始沿BC-CE 运动到点E 后停止,动点Q 从点E 开始沿EF -FG 运动到点G 后停止,这两点的运动速度均为每秒1个单位.若点P 和点Q 同时开始运动,运动时间为x (秒),△APQ 的面积为y ,则能够正确反映y 与x 之间的函数关系的图象大致是 二、填空题(本题共16分,每小题4分) 9.函数y = x 的取值范围是 . 10.分解因式:3 2 816a a a -+= . 11.如图,在梯形ABCD 中,AD ∥BC ,BD ⊥DC ,∠C=45°. 若AD=2,BC=8,则AB 的长为 . 12.在平面直角坐标系xOy 中,有一只电子青蛙在点A (1,0)处. 第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点A 1; 第二次,它从点A 1先向左跳跃2个单位,再向下跳跃2个单位到达点A 2; 第三次,它从点A 2先向右跳跃3个单位,再向上跳跃3个单位到达点A 3; 第四次,它从点A 3先向左跳跃4个单位,再向下跳跃4个单位到达点A 4; …… 依此规律进行,点A 6的坐标为 ;若点A n 的坐标为(2013,2012), 则n = . 三、解答题(本题共30分,每小题5分) 13.计算:10345sin 2)13(8-+?--+. 14.解不等式组 4(1)78,2 5,3x x x x +≤-?? -?-

2013年内蒙古包头市中考数学试卷及答案(Word解析版)

2013年内蒙古包头市中考数学试卷及答案(Word解析版) 一、选择题(本大题共12小题,每小题3分,满分36分。每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑) D 代入进行计算即可. 解:原式=3×. 3.(3分)(2013?包头)函数y=中,自变量x的取值范围是()

2 知,原方程的两根是( 6.(3分)(2013?包头)一组数据按从大到小排列为2,4,8,x,10,14.若这

8.(3分)(2013?包头)用一个圆心角为120°,半径为2的扇形作一个圆锥的 ,然后解方程即可. ,解得:

9.(3分)(2013?包头)化简÷?,其结果是() ﹣ ?= 10.(3分)(2013?包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B 在EF边上,若矩形ABCD和矩形AEFC的面积分别是S 1、S 2 的大小关系是() 11.(3分)(2013?包头)已知下列命题:①若a>b,则c﹣a<c﹣b; ②若a>0,则=a;

③对角线互相平行且相等的四边形是菱形; ④如果两条弧相等,那么它们所对的圆心角相等. =a 12.(3分)(2013?包头)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是() >

二、填空题(共8小题,每小题3分,满分24分。请把答案填在各题对应的横线上) 14.(3分)(2013?包头)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是 3 . 15.(3分)(2013?包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=28 度.

2013北京中考数学试题、答案解析版

2013年北京市高级中等学校招生考试数学试卷 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的。 1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。将3 960用科学计数法表示应为 ( ) A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 考点:科学记数法—表示较大的数 分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3.96×103.故选B . 点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2. 43 - 的倒数是 ( ) A. 34 B. 43 C. 43- D. 34 - 考点:倒数 分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D 点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为() A. 51 B. 52 C. 53 D. 54 考点:概率公式 分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C 点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可 能性相同,其中事件A 出现m 种结果,那么事件A 的概率 n m A P = )(,难度适中。 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于() A. 40° B. 50° C. 70° D. 80° 考点:平行线的性质 分析:根据平角的定义求出∠1,再根据两直线平行,内错角相等解答. 解答: 点评:本题考查了平行线的性质,平角等于180°,熟记性质并求出∠1是解题的关键

2013年第一学期期末八年级数学试卷(含答案)

2012—2013学年度第一学期期末试题 科目:数学年级:八年级 (考生注意:本卷满分100分,考试时间为100分钟) 一、选择题(每小题只有一个正确答案。每小题3分,共30分。) 1、将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是() A、1,2,3 B、5,12,13 C、4,5,7 D、9,80,81 2、在实数 7 22 -、0、3 -、506、π、327 - -、 . . 101.0中,无理数的个数是 ( ) A.1个 B.2个 C.4个 D.5个 3、-8的立方根是() A 2 ± B 2 C-2 D 24 4、在平面直角坐标系中,点A(1,-3)在() A 第一象限 B 第二象限 C 第三象限 D 第四象限 5、点P(-1,2)关于y轴对称的点的坐标为() A、(1,-2) B、(-1,-2) C、(1,2) D、(2,1) 6、观察下列图形,既是轴对称图形,又是中心对称图形的是() A B C D 7、下列说法中错误的是() A 四个角相等的四边形是矩形 B 对角线互相垂直的矩形是正方形 C 对角线相等的菱形是正方形 D 四条边相等的四边形是正方形 8、下列各组数值是二元一次方程4 3= -y x的解的是() (A) ? ? ? - = = 1 1 y x (B) ? ? ? = = 1 2 y x (C) ? ? ? - = - = 2 1 y x (D) ? ? ? - = = 1 4 y x 9、某商场对上周末某品牌运动服的销售情况进行了统计,如下表所示: 经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识是 () A 平均数 B 中位数 C 众数 D 平均数与中位数 10、一支蜡烛长20厘米, 点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时) 的函数关系的图象是() A B C D 二、填空题(每空3分,共24分) 1、如右图,数轴上点A表示的数是; 2、绝对值是 7 的数是,38 1 -的倒数是。 3、菱形ABCD的边长为5cm,其中一条对角线长为6cm,则菱形ABCD的面积 为 cm2. 4、如右图;在等腰梯形ABCD中,AD=2,BC=4,DC=5

北京市2014年中考数学试题及答案

2014年北京市高级中等学校招生考试 数学试卷 学校 姓名 准考证号 下面各题均有四个选项,其中只有一个..是符合题意的. 1.2的相反数是 A .2 B .2- C .1 2 - D . 12 2.据报道, 某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000 吨.将300 000 用科学记数法表示应为 A .60.310? B .5310? C .6310? D .43010? 3.如图,有6张扑克处于,从中随机抽取一张,点数为偶数的概率是 A . 16 B . 14 C .13 D . 12 4.右图是几何体的三视图,该几何体是 A.圆锥 B .圆柱 C .正三棱柱 D .正三棱锥 5.某篮球队12名队员的年龄如下表所示: A .18,19 B .19,19 C .18 ,19.5 D .19,19.5 6.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为 A .40平方米 B .50平方米 C .80平方米 D .100平方米

O E D C B A 7.如图.O e 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=?, 4OC =,CD 的长为 A . B .4 C . D .8 8.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是 A A D C B A A 二、填空题(本题共16分,每小题4分) 9.分解因式:429______________ax ay -=. 10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m . 11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写 出一个函数(0)k y k x =≠,使它的图象与正方形OABC 有公共 点,这个函数的表达式为 . 12.在平面直角坐标系x Oy 中,对于点()P x y , ,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A , 点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 . 三、解答题(本题共30分,每小题5分) 13.如图,点B 在线段AD 上, BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠. E C B A D

广东省东莞市2013-2014学年八年级上期末数学试卷及答案

广东省东莞市2013-2014学年八年级(上)期末 数学试卷 一、选择题(每小题2分,共20分) 1.下列运算正确的是() A.(ab)3=ab3B.a3?a2=a5C.(a2)3=a5D.(a﹣b)2=a2﹣b2 2.使分式有意义的x的取值范围是() A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2 3.某种生物孢子的直径为0.000 63m,用科学记数法表示为() A.0.63×10﹣3m B.6.3×10﹣4m C.6.3×10﹣3m D.6.3×10﹣5m 4.一个等边三角形的对称轴共有() A.1条B.2条C.3条D.6条 5.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是() A.13 B.6C.5D.4 6.如图1,AB∥CD,∠A=40°,∠D=45°,则∠1的度数为() A.5°B.40°C.45°D.85° 7.如图2,△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,BD=2,则AD的长度是()A.6B.8C.12 D.16 8.如图3,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为() A.20°B.40°C.70°D.90° 9.如图,图中含有三个正方形,则图中全等三角形共有多少对() A.2B.3C.4D.5 10.如图,则图中的阴影部分的面积是() A.12πa2B.8πa2C.6πa2D.4πa2

二、填空题(每小题3分,共15分) 11.分解因式:2a2﹣4a+2=_________. 12.点(﹣3,﹣5)关于y轴对称的点的坐标是_________. 13.计算:(a﹣b)2=_________. 14.分式方程﹣=0的解是_________. 15.如图,点A、D、B、E在同一直线上,△ABC≌△DEF,AB=5,BD=2,则AE=_________. 三、解答题(每小题5分,共25分) 16.(5分)计算:(a﹣1)(a2+a+1) 17.(5分)计算:(+)÷(﹣) 18.(5分)如图,在直角坐标系中,已知点A(0,3)与点C关于x轴对称,点B

2013年内蒙古自治区鄂尔多斯市中考数学试题

2013年鄂尔多斯市中考数学试题 一、单项选择(本大题共10题,每题3分,共30分.) 1.若“神舟十号”发射点火前15秒记为﹣15秒,那么发射点火后10秒应记为( ) A .-5秒 B .5秒 C .-10秒 D .+10秒 2.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需 按墙上的空洞造型(如图所示)摆出相同姿势,才能穿墙而 过,否则会被推入水池.若墙上的三个空洞恰是某个几何体的 三视图,则该几何体为( ) A B C D 3.2013年,鄂尔多斯市计划新建、改扩建中小学15所,规划投入资金计10.2亿元. 数据“10.2亿”用科学记数法表示为( ) A .1.02×107 B .1.02×108 C .1.02×109 D .10.2×108 4.下列汽车标志中,既是轴对称图形,又是中心对称图形的是( ) A B C D 5.不等式组?? ?≤--+<-3)1(21112x x x 的解集在数轴上表示,正确的是( ) A B C D 6.一次数学模考后,李老师统计了20名学生的成绩. 记录如下:有6人得了85分, 有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和 平均数分别是( ) A .82.5,82.5 B .85,81 C .82.5,81 D .85,82.5 7.下列说法中,正确的有( ) (1)25的平方根是5±. (2)五边形的内角和是540°. (3)抛物线432+-=x x y 与x 轴无交点.

(4)等腰三角形两边长为6cm 和4cm ,则它的周长是16cm. (5)若⊙O 1与⊙O 2的半径分别是方程0342 =+-x x 的两根,且O 1O 2=3,则两圆相 交. A .2个 B .3个 C .4个 D .5个 8.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN , 使从A 到B 的路径AMNB 最短的是(假定河的两岸是平行直 线,桥要与河岸垂直)( ) A B C D 9.如图,小明随机地在对角线为6cm 和8cm 的菱形区域内投针,则针扎到其内切圆 区域的概率是( ) A .25 7π B .253π C .256π D .254π 10.某校校园内有一个大正方形花坛,它由四个边长均为3米的 小正方形组成,如图(1),且每个小正方形的种植方案相同. 其中的一个小正方形ABCD 如图(2),DG =1米,AE=AF=x 米, 在五边形EFBCG 区域上种植花卉,则大正方形花坛种植 花卉的面积y 与x 的函数图象大致是( ) A B C D 二、填空(本大题共8题,每题3分,共24分.)

2016年北京市中考数学试卷(解析版)

2016年北京市中考数学试卷 一、选择题(本题共30分,每小题3分) 1.(3分)(2016?北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为() A.45°B.55°C.125°D.135° 2.(3分)(2016?北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为() A.2.8×103B.28×103C.2.8×104D.0.28×105 3.(3分)(2016?北京)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是() A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b 4.(3分)(2016?北京)内角和为540°的多边形是() A. B.C. D. 5.(3分)(2016?北京)如图是某个几何体的三视图,该几何体是() A.圆锥 B.三棱锥C.圆柱 D.三棱柱 6.(3分)(2016?北京)如果a+b=2,那么代数(a﹣)?的值是() A.2 B.﹣2 C.D.﹣ 7.(3分)(2016?北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()

A.B.C.D. 8.(3分)(2016?北京)在1﹣7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是() A.3月份B.4月份C.5月份D.6月份 9.(3分)(2016?北京)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为() A.O1B.O2C.O3D.O4 10.(3分)(2016?北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是() ①年用水量不超过180m3的该市居民家庭按第一档水价交费; ②年用水量超过240m3的该市居民家庭按第三档水价交费; ③该市居民家庭年用水量的中位数在150﹣180之间; ④该市居民家庭年用水量的平均数不超过180.

2013年秋八年级上数学期末测试题

2013八年级数学上期末测试题 一 .选择题(共12小题,满分36分,每小题3分) 1 . (3分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴 对称图形是() A . 2. (3分)(2011?绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变 3. (3分)如下图,已知△ ABE ACD,/仁/2,/ B= / C,不正确的等式是( 2 9. (3分)(2012?安徽)化简L的结果是( B . x—1 形,他至少还要再钉上几根木条?( A . 0根 20131224 A . AB=AC B . / BAE= / CAD C. BE=D C D. AD=DE ax ax (4)(6) 4. (3分)(2012?凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形, 则图中/ a+ / B的度数是() A . 180°B. 220°C. 240°D. 300° 5. (3分)(2012?益阳)下列计算正确的是 ( A. 2a+3b=5ab (x+2) 2=x2+4 C. (ab3) 2=ab60 D. ( —1) =1 6 .(3分)(2012 ?柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是() A . 2 2 B. x +a +2ax 2 & ( 3分)(2012?宜昌)若分式二有意义,则a的取值范围是( a+1 (x+a) (x+a)(x —a) (x —a) (x+a) a+ (x+a) x A . a=0 B . a=1 C . a z—1 A . x+1 (3)

10 . (3 分)(2011?鸡西)下列各式:①a°=1;② a2?a3=a5;③ 2 2=-二 4 4 2 2 2 ④—(3 - 5)+ (- 2)七X (- 1)=0 ;⑤ x +x =2x ,其中正确的是() A .①②③ B .①③⑤C.②③④ D .②④⑤ 11. (3分)(2012?本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的 2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为() A . 尹5“B. 岂1出 R 2. 5 C. 8 1 S I R 4_2. D. 8 S 1 门.5K 4 12. (3分)(2011?西藏)如图,已知/ 1 = / 2,要得到△ ABD ◎△ ACD,还需从下列条件中补选一个,则错误的选法是() A . AB=AC B. DB=DC C. / ADB= / ADC D. / B= / C 二.填空题(共5小题,满分20分,每小题4分) 3 2 13. (4 分)(2012?潍坊)分解因式:x - 4x - 12x= _____________ . 1 — kx 1 14. (4分)(2012?攀枝花)若分式方程:_______ ^ . 有增根,则k= ________________________ . X _ Z Z _ X 15. (4分)(2011?昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF , AD=FB , 要使△ ABC ◎△ FDE ,还需添加一个条件,这个条件可以是 _______________ .(只需填一个即可) 16. (4 分)(2012?白银)如图,在厶ABC 中,AC=BC , △ ABC 的外角/ ACE=100 ° 则/A= _________ 度. A

北京市2015年中考数学试题及答案

2015年北京市高级中等学校招生考试 数学试卷 一、选择题 下面各题均有四个选项,其中只有一个 ..是符合题意的。 1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。将1 40 000用科学记数法表示应为 A.14×104B.1.4×105 C.1.4×106 D.0.14×106 2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是 A.a B.b C.c D.d 3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 A.B.C.D. 4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 5.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°, 则∠3的度数为 A.26°B.36° C.46°D.56° 6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为 A.0.5km B.0.6km C.0.9km D.1.2km 7.某市6月份日平均气温统计如图所示,则在日平均气温这组数 据中,众数和中位数分别是 A.21,21 B.21,21.5 C.21,22 D.22,22 8.右图是利用平面直角坐标系画出的故宫博物院的主要建

筑分布图。若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是 A.景仁宫(4,2) B.养心殿(-2,3) C.保和殿(1,0) D.武英殿(-3.5,-4) 9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元)每次游泳收费(元) A类50 25 B类200 20 C类400 15 例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A类会员年卡B.购买B类会员年卡 C.购买C类会员年卡D.不购买会员年卡 10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为 A.A→O→B B.B→A→C C.B→O→C D.C→B→O 二、填空题 11.分解因式:5x2-10x2=5x=_________. 12.右图是由射线AB,BC,CD,DE,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.

2013-2014人教版八年级数学上册全册教案

第七章三角形 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。 课时分配 7.1与三角形有关的线段……………………………………… 2课时 7.2 与三角形有关的角………………………………………… 2课时 7.3多边形及其内角和………………………………………… 2课时 本章小结………………………………………………………… 2课时

相关文档
最新文档