用安培定律计算磁场

用安培定律计算磁场
用安培定律计算磁场

麻省理工学院

物理系

解题6:用安培定律计算磁场

目标:

1.

用安培定律写出内半径a 外半径b 的通电圆柱壳的磁场表达式。 2. 用安培定律写出通电平板的磁场表达式。

参考:8.02讲义,9.3节。

用安培定律解题的策略(8.02讲义,9.10.2节)

安培定律认为,沿任意闭曲线的线积分正比于该闭曲线所包围曲面上的总的稳态电流:

s B r r d ?enc I d 0μ=?∫s B r r

用安培定律来求磁场有以下几个步骤:

(1) 画出安培环路;

(2) 找出安培环路包围的电流;

(3) 计算沿环路的线积分∫?s B r r d ;

(4) 令∫?s B r r d 等于enc I 0μ来求B r 。

例1:圆柱壳的磁场

现在我们来用这些步骤解如下问题。考虑中空的壁厚为b – a 的铜质圆柱形导体,如图所示。这里a 和b 分别是壁的内外半径。电流i 均匀流过导体截面(阴影部分)。我们来计算a < r < b 区域的磁场。

问题1(答案写在后面的答题页上!!!): 在a < r < b 区

域内单位面积上的电流J 是多大?记住,我们假定电流I

均匀覆盖a < r < b 区域,电流密度J 定义为单位面积上的

电流。

解题步骤(1) 画出安培环路:

图中我们取a < r < b 区域内半径为r 的圆。

解题步骤(2) 安培环路包围的电流:

第二个步骤就是计算虚拟安培环路包围的电流。提示:所求电流等于安培环路面积乘以电流密度J 。

问题2(答案写在后面的答题页上!!!):在a < r < b 区域内取半径为r 的虚拟环路包围的总电流是多大?

问题3 (答案写在后面的答题页上!!!):r = a 时答案应是零,r = b 时答案应是I (为什么?)。你的答案是这样吗?

?s r r d :

问题4 (答案写在后面的答题页上!

!!):你取的环路的线积分∫?s B r r d 是多少?

解题步骤(4) 计算B r :

问题5(答案写在后面的答题页上!!!):如果你运用安培定律,令问题4的答案等于问题3的答案乘以0μ,得到的a < r < b 区域内的磁场是多少?

问题6(答案写在后面的答题页上!!!):重复上述步骤,求出r < a 区域的磁场。

问题7(答案写在后面的答题页上!!!):重复上述步骤,求出r > b 区域的磁场。

问题8(答案写在后面的答题页上!!!):将B 的分布画在下图中:

例2:电流片的磁场 我们来用安培定律求无限大电流片的磁场B r 。下图显示了具有电流密度的电流片,其中J 的量纲为安培/米z

J ?J =r 2。电流片在x 和z 方向上无限大,y 方向上厚度为d 。

我们先来求y > d/2区域的磁场。

问题9 (答案写在后面的答题页上!!!):在y = 0位置上的磁场多大?这里y = 0是线圈的中心。

解题步骤(1) 画出安培环路:

我们要求y > d /2区域的磁场。从问题9我们已经求得y = 0位置上的磁场,那么要求y > d /2区域的磁场,取什么样的安培环路较为合理?

问题10 (答案写在后面的答题页上!!!):你取什么样的安培环路来求y > d /2区域的磁场?将它同时画在上图上和答题页上,并标注上量纲。

解题步骤(2) 安培环路包围的电流:

第二个步骤就是计算虚拟安培环路包围的电流。提示:所求电流等于安培环路面积乘以电流密度J 。

问题11 (答案写在后面的答题页上!!!):问题10所取的安培环路所包围的总电流是多少?

?s r r d :

问题12 (答案写在后面的答题页上!

!!):你取的环路的线积分∫?s B r r d 是多少?

解题步骤(4) 计算B r :

问题13(答案写在后面的答题页上!!!):如果你运用安培定律,令问题12的答案等于问题11的答案乘以0μ,得到的y > d /2区域内的磁场是多少?

现在我们来求0 < y < d /2区域的磁场。

解题步骤(1) 画出安培环路:

我们要求0 < y < d /2区域的磁场。从问题9我们已经求得y = 0位置上的磁场,那么要求0 < y < d /2区域的磁场,取什么样的安培环路较合理?

问题14 (答案写在后面的答题页上!!!):你取什么样的安培环路来求0 < y < d /2区域的磁场?将它同时画在上图上和答题页上,并标注上量纲。

解题步骤(2) 安培环路包围的电流:

第二个步骤就是计算虚拟安培环路包围的电流。提示:所求电流等于安培环路面积乘以电流密度J 。

问题15 (答案写在后面的答题页上!!!):问题14所取的安培环路所包围的总电流是多少?

?s r r d :

问题16 (答案写在后面的答题页上!

!!):你取的环路的线积分∫?s B r r d 是多少?

解题步骤(4) 计算B r :

问题17(答案写在后面的答题页上!!!):如果你运用安培定律,令问题16的答案等于问题15的答案乘以0μ,得到的0 < y < d /2区域内的磁场是多少?

问题18(答案写在后面的答题页上!!!):将B x的分布画在下图中:

麻省理工学院 物理系

解题6:用安培定律计算磁场

组号___________________________________________(例如,填上6A ) 姓名____________________________________

____________________________________

____________________________________

问题1: 在a < r < b 区域内单位面积上的电流J 是多大?

问题2:在a < r < b 区域内,取半径为r 的虚拟环路包围的总电流是多大?

问题3:r = a 时答案应是零,r = b 时答案应是I (为什么?)。你的答案是这样吗?

问题4:你取的环路的线积分∫?s B r r d 是多少?

问题5:你得到的a < r < b 区域内的磁场是多少?

问题6:求出r < a 区域的磁场。

问题7:求出r > b 区域的磁场。

问题8:将B 画在下图中:

例2:电流片的磁场

问题9:在y = 0位置上的磁场多大?

问题10:你取什么样的安培环路来求y > d /2区域的磁场?将它同时画在上图上和答题页上,并标注上量纲。

问题11:问题10所取的安培环路所包围的总电流是多少?

问题12:你取的环路的线积分∫?s B r r d 是多少?

问题13:如果你运用安培定律,令问题12的答案等于问题11的答案乘以0μ,得到的y > d /2区域内的磁场是多少?

问题14:你取什么样的安培环路来求0 < y < d /2区域的磁场?将它同时画在上图上和答题页上,并标注上量纲。

问题15:问题14所取的安培环路所包围的总电流是多少?

问题16:你取的环路的线积分∫?s B r r d 是多少?

问题17:如果你运用安培定律,令问题16的答案等于问题15的答案乘以0μ,得到的0 < y < d /2区域内的磁场是多少?

问题18:将B x 的分布画在下图中:

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

等额本息和等额本金计算公式

等额本息和等额本金计算公式 等额本金: 本金还款和利息还款: 月还款额=当月本金还款+当月利息式1 其中本金还款是真正偿还贷款的。每月还款之后,贷款的剩余本金就相应减少: 当月剩余本金=上月剩余本金-当月本金还款 直到最后一个月,全部本金偿还完毕。 利息还款是用来偿还剩余本金在本月所产生的利息的。每月还款中必须将本月本金所产生的利息付清: 当月利息=上月剩余本金×月利率式2 其中月利率=年利率÷12。据传工商银行等某些银行在进行本金等额还款的计算方法中,月利率用了一个挺孙子的算法,这里暂且不提。 由上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩余本金较多,所以可见,贷款初期每月的利息较多,月还款额中偿还利息的份额较重。随着还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金全部还清,利息付最后一次,下个月将既无本金又无利息,至此,全部贷款偿还完毕。 两种贷款的偿还原理就如上所述。上述两个公式是月还款的基本公式,其他公式都可由此导出。下面我们就基于这两个公式推导一下两种还款方式的具体计算公式。 1. 等额本金还款方式 等额本金还款方式比较简单。顾名思义,这种方式下,每次还款的本金还款数是一样的。因此: 当月本金还款=总贷款数÷还款次数 当月利息=上月剩余本金×月利率 =总贷款数×(1-(还款月数-1)÷还款次数)×月利率

当月月还款额=当月本金还款+当月利息 =总贷款数×(1÷还款次数+(1-(还款月数-1)÷还款次数)×月利率) 总利息=所有利息之和 =总贷款数×月利率×(还款次数-(1+2+3+。。。+还款次数-1)÷还款次数) 其中1+2+3+…+还款次数-1是一个等差数列,其和为(1+还款次数-1)×(还款次数-1)/2=还款次数×(还款次数-1)/2 :总利息=总贷款数×月利率×(还款次数+1)÷2 由于等额本金还款每个月的本金还款额是固定的,而每月的利息是递减的,因此,等额本金还款每个月的还款额是不一样的。开始还得多,而后逐月递减。 等额本息还款方式: 等额本金还款,顾名思义就是每个月的还款额是固定的。由于还款利息是逐月减少的,因此反过来说,每月还款中的本金还款额是逐月增加的。 首先,我们先进行一番设定: 设:总贷款额=A 还款次数=B 还款月利率=C 月还款额=X 当月本金还款=Yn(n=还款月数) 先说第一个月,当月本金为全部贷款额=A,因此: 第一个月的利息=A×C 第一个月的本金还款额 Y1=X-第一个月的利息

测量螺线管的磁场

实验题目:测量螺线管的磁场 实验目的:学习测量交变磁场的一种方法,加深理解磁场的一些特性及电磁感应定律. 实验原理: 1、有限长载流直螺线管的磁场 长为2l,匝数为N 的单层密绕的直螺线管产生的磁场.当导线中流过电流I 时,由毕奥-萨伐尔定律可以计算出在轴线上某一点P 的磁感应强度为 }] )([] )([{ 2 2 1222 1220l x R l x l x R l x nI B -+-- +++= μ (1) 式中l N n A N 2,/10 427 0= ?=-πμ为单位长度上的线圈匝数,R 为螺线管半径,x 为P 点到螺线管中心处的距离.由曲线显示,在螺线管内部磁场近于均匀,只在端点附近磁感应强度才显著下降.当l>>R 时,nI B 0μ=与场点的坐标x 无关,而在螺线管两端nI B 02 1 μ=为内部B 值的一半.无限长密绕直螺线管是实验室中经常使用到的产生均匀磁场的理想装置. 2、 测线圈法测量磁场 本实验采用探测线圈法测量直螺线管中产生的交变磁场.图6.3.2-2是实验装置的示意图.当螺线管A 中通过一个低频的交流电流t I t i ωsin )(0=时,在螺线管内产生一个与电流成正比的交变磁场 t B t i C t B P ωsin )()(0== (2) 其中C P 是比例常数.把探测圈A 1放在螺线管线圈内部或附近,在A 1中将产生感生电动势.探测线圈的尺寸比1较小,匝数比较少.若其截面积为S,匝数为N 1,线圈平面的发线与磁场方向的夹角为θ,则穿过线圈的磁通链数为 θψcos )(11t B S N = (3) 根据法拉第定律,线圈中的感生电动势为

安培力经典计算题

安培力复习 1.把轻的长方形线圈用细线挂在载流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动,当长方形线圈通以如图所示的电流时,线圈将( ) (A )不动 (B )靠近导线AB (C )离开导线AB (D )发生转动,同时靠近导线AB 答案:B 2.长直电流I 2与圆形电流I 1共面,并与其一直径相重合(但两者绝缘),如图所示。设长直导线不动,则圆形电流将( ) (A )绕I 2旋转(B )向右运动(C )向左运动(D )不动 答:B 3.在均匀磁场中,放置一个正方形的载流线圈使其每边受到的磁力的大小都相同的方法有( ) (A )无论怎么放都可以;(B )使线圈的法线与磁场平行;(C )使线 圈的法线与磁场垂直;(D )(B )和(C )两种方法都可以 答:B 4.一平面载流线圈置于均匀磁场中,下列说法正确的是( ) (A )只有正方形的平面载流线圈,外磁场的合力才为零。 (B )只有圆形的平面载流线圈,外磁场的合力才为零。 (C )任意形状的平面载流线圈,外磁场的合力和力矩一定为零 (D )任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定为零。 答:D 1. 截面积为S 、密度为ρ的铜导线被弯成正方形的三边,可以绕水平轴O O '转动,如图所示。导线放在方向竖直向上的匀强磁场中,当导线中的电流为I 时,导线离开原来的竖直位置偏转一个角度θ而平衡。求磁感应强度。若S =2mm 2 ,ρ=8.9g/cm 3 , θ=15°,I =10A ,磁感应强度大小为多少? 解:磁场力的力矩为 θθθcos cos cos 2212BIl l BIl Fl M F ===(3分) 重力的力矩为 θ ρθ ρθρsin 2sin 2 1 2sin 22221gSl l gSl l gSl M mg =?+?= (3分) 由平衡条件 mg F M M =,得 ' '

矩形激励线圈的分析

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。 二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1)式中: B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A); I?D导线的电流强度; l?D导线长度; R?D源点到场点的距离; eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D 莎伐定律的积分形式:(2)

电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为 (x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,; a?D导线底端到该空间点在导线上投影间的距离,即|QA|; b?D导线顶端到该空间点在导线上投影间的距离,即|QB|; Y?D 在XOY平面的投影,即|OQ|; Z?D 在XOZ平面的投影,即|OP|。这样空间点与其在导线和XOY平面的投影点构成一直角三角形DPOQ。

房贷等额本息还款公式推导(详细)

等额本息还款公式推导 设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为: 第一个月A 第二个月A(1+β)-X 第三个月(A(1+β)-X)(1+β)-X=A(1+β)2-X[1+(1+β)]第四个月((A(1+β)-X)(1+β)-X)(1+β)-X =A(1+β)3-X[1+(1+β)+(1+β)2] … 由此可得第n个月后所欠银行贷款为 A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X [(1+β)n-1]/β 由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有 A(1+β)m –X[(1+β)m-1]/β=0 由此求得

X = Aβ(1+β)m /[(1+β)m-1] ======================================================= ===== ◆关于A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X[(1+β)n-1]/β的推导用了等比数列的求和公式 ◆1、(1+β)、(1+β)2、…、(1+β)n-1为等比数列 ◆关于等比数列的一些性质 (1)等比数列:An+1/An=q, n为自然数。 (2)通项公式:An=A1*q^(n-1); 推广式:An=Am·q^(n-m); (3)求和公式:Sn=nA1(q=1) Sn=[A1(1-q^n)]/(1-q) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零. ◆所以1+(1+β)+(1+β)2+…+(1+β)n-1 =[(1+β)n-1]/β 等额本金还款不同等额还款 问:等额本金还款是什么意思?与等额还款相比是否等额本金还款更省钱?

电磁学主要公式、定理、定律

电磁学主要公式、定理、定律 一. 电场 1.库仑定律:212 q q F K r = 2.电场强度定义式:F E q = 3.点电荷电场强度决定式:2 Q E K r = 4.电势定义式:P E q ?= 5.两点间电势差:AB A B U ??=- 6.场强与电势差的关系式:AB U Ed = (只适用于匀强电场) 7.电场力移动电荷做功:AB W U q =? 8平行板电容器电容定义式:Q C U = (U 就是电势差AB U ) 9.平行板电容器电容决定式:4S C Kd επ= ( 式中,ε为介质的介电常数,S 为两板正对面积, K 为静电力恒量,d 为板间距离) 10.带电粒子在匀强电场中被加速:21 2mv qU = 11.带电粒子在匀强电场中偏转:2 2 02qL U y mv d = (U 为两板间电压) 二.恒定电流 1.电流强度定义式:q I t = 2.电流微观表达式:I nqSv = (其中n 为单位 体积内 的自由 电荷数,q 为每个电荷的电量值,S 为导体的横截面积,v 为 自由电荷定向移动速率。) 3.电动势定义式:W E q = (W 为非静电力移送电荷做的功,q 为被移送的电荷量) 4.导线电阻决定式:L R S ρ = ( 式中ρ为电阻率,由导线材料、温度决定,L 为导线长,S

为导线横截面积。) 5.欧姆定律:U I R = (只适用于金属导电和电解液导电的纯电阻电路,对含电动机、电解槽 的非纯电阻电路,气体导电和半导体导电不适用) 6.串联电路: (1) 总电阻 12......R R R =++总 (2) 电流关系 123.....I I I I === (3) 电压关系 123......U U U U =++总 7.并联电路: (1)总电阻 123 1111 ......R R R R =+++总 ①只有两个电阻并联时用 12 12 R R R R R = +总 更方便快捷; ②若是n 个相同的电阻并联。可用1= R R n 总 (2) 电流关系 123=......I I I I +++总 (3) 电压关系 123=......U U U U ===总 8.电功的定义式:W qU UIt == ( 在纯电阻电路中 ,2 2 U W UIt I Rt t R ===) 9.电功率定义式:W P UI t == ( 在纯电阻电路中 , 22 U P I R R ==) 10.焦耳定律(电热计算式):2Q I Rt = 11.电热与电功的关系 : (1)在纯电电路中,W Q = (2)在非纯电阻电路中 W qU UIt == >Q 2I Rt = 12.电功率定义式:W P t = 13.电功率通用式:W P t = 和 P UI = (对纯电阻电路,22 W U P UI I R t R ====) 14.闭合电路欧姆定律:E I R r =+ (变形:E U U =+外内 ;E IR Ir =+; E U Ir =+外) 三. 磁场

讲义螺线管磁场

霍尔效应法测定螺线管 轴向磁感应强度分布 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.掌握测试霍尔元件的工作特性。 2.学习用霍尔效应法测量磁场的原理和方法。 3.学习用霍尔元件测绘长直螺线管的轴向磁场分布。 二、实验原理 1.霍尔效应法测量磁场原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 B v e F g = (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。 无论载流子是正电荷还是负电荷,洛仑兹力F g 的方向均沿Y 方向,在此力的作用下,载流子发生便移,则在Y 方向即试样A 、A′电极两侧就开始聚积异号电荷而在试样A 、A′两侧产生一个电位差V H ,形成相应的附加电场E H —霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A′称为霍尔电极。电场的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有 型) (型)(P 0 0) (),(??H H E N E Z B X Is 显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受 一个与F g 方向相反的横向电场力 H E eE F = (2) 其中E H 为霍尔电场强度。 F E 随电荷积累增多而增大,当 (a ) (b ) 图(1)样品示意图

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

螺线管内磁场的测量

实验九螺线管内磁场的测量在工业、国防和科学研究中经常要对磁场进行测量例如在粒子回旋加速器、受控热核反应、同位素分离、地球资源探测、地震预测和磁性材料研究等方面。测量磁场的方法较多从测量原理上大体可以分为五类力和力矩法、电磁感应法、磁传输效应法、能量损耗法、基于量子状态变化的磁共振法。常用的测量方法主要有冲击电流计法霍尔元件法、核磁共振法和天平法。练习一用冲击电流计法测量螺线管内磁场【实验目的】1学习用冲击法测量磁感应强度的原理和方法2学会使用冲击电流计3研究长直螺线管内轴线上的磁场分布4对比螺线管轴线上磁场的测量值与理论值加深对毕奥萨伐尔定律的理解。【实验仪器】冲击电流计、螺线管磁场测量仪、直流电源、直流电流表、电阻箱、滑线变阻器。【实验原理】1. 长直螺线管轴线上的磁场如图5.9.1所示设螺线管长为L半径为r0表面均匀地绕有N匝线圈放在磁导率为μ的磁介质中并通以电流I。如果在螺线管上取一小段线圈dL则可看作是通过电流为INdL/L的圆形载流线圈。由毕奥萨伐尔定律得到在螺线管轴线上距离中心O为x的P点产生的磁感应强度dBx 为3202rrLINdLdBx 5.9.1 图5.9.1长直螺线管轴的结构图OP2LLx0r21dLdBxrd 由图5.9.1可知0sinrrsinrddL代入式5.9.1得到dLμINdBxsin2 5.9.2 因为螺线管的各小段在P点的磁感应强度方向均沿轴线向左故整个螺线管在P点产生的

磁感应强度21coscos2sin22121LNIdLNIdBBx 5.9.3 由图5.9.1可知5.9.3式还可以表示为 212022*********rxLxLrxLxLLNIBx 5.9.4 令x0得到螺线管中点O的磁感应强度2120204rLNIB 5.9.5 令xL/2得到螺线管两端面中心点的感应强度2122202LNIBLr 5.9.6 当L≥r0时由式5.9.5和式5.9.6可知BL/2≈B0/2。只要螺线管的比值L/r0保持不变则不论螺线管放大或缩小也不论线圈的匝数N 和电流I为多少磁感应强度相对值沿螺线管轴的分布曲线不改变。 2. 用冲击电流计测量磁场的原理如图5.9.2所示设探测线圈匝数为n平均截面为S线圈的法线与磁场方向一致当K1倒向一边使螺线管中通过电流的I。当K1突然断开时螺线管内的磁通突然改变探测线圈中的感应电流i通过冲击电流计G若测出在短时间内的脉冲电流所迁移的电量就可求得该点的Bx值。由法拉第电磁感应定律可知在探测回路中产生感应电动势ddt 5.9.7 设探测回路的总电阻为R则通过冲击电流计的瞬时感应电流为1diRdt 5.9.8 图5.9.2测量螺线管内磁场电路图GA-1R2RgR1KER在磁通变化的时间内通过冲击电流计的总电量0000111dQidtdtdRdtRR 5.9.9 实验时把通过螺线管的电流由I突变为0即把K1断开使磁通量发生改变则有0t时0xBnSt0代入5.9.9式有xBnSQR 5.9.10 因此只需测量出R及Q就可以算出Bx。Q值可以通过DQ-3/4型智能冲击电流计直接测出为了测出探测回路的

等额本息法及等额本金法两种计算公式.doc

精品文档 等本息法和等本金法的两种算公式 一: 按等额本金还款 法:贷款额为: a, 月利率为: i , 年利率为: I , 还款月数: n, an 第 n 个月贷款剩余本金: a1=a, a2=a-a/n, a3=a-2*a/n ...次类推 还款利息总和为Y 每月应还本金: a/n 每月应还利息: an*i 每期还款 a/n +an*i 支付利息 Y=( n+1)*a*i/2 还款总额 =( n+1)*a*i/2+a 等本金法的算等本金(减法):算公式: 每月本金=款÷期数 第一个月的月供 =每月本金+款×月利率 第二个月的月供 =每月本金+(款-已本金)×月利率 申10 万 10 年个人住房商性款,算每月的月供款?(月利率: 4.7925 ‰)算果: 每月本金: 100000÷120= 833 元 第一个月的月供:833+ 100000×4.7925 ‰=1312.3 元 第二个月的月供:833+( 100000- 833)×4.7925 ‰= 1308.3 元 如此推?? 二 : 按等本息款法:款 a,月利率 i ,年利率 I ,款月数n,每月款 b,款利息和 Y 1: I =12×i 2: Y=n×b- a 3:第一月款利息:a×i 第二月款利息:〔a-( b- a×i )〕×i =( a×i -b)×( 1+ i ) ^1 +b 第三月款利息:{ a-( b- a×i )-〔 b-( a×i - b)×( 1+ i ) ^1 -b〕}×i =( a×i -b)×( 1+i ) ^2 + b 第四月款利息:=( a×i - b)×( 1+ i ) ^3 + b 第 n 月款利息:=(a×i - b)×( 1+ i ) ^( n- 1)+ b 求以上和:Y=( a×i -b)×〔( 1+ i ) ^n- 1〕÷i + n×b 4:以上两Y 相等求得 月均款 :b = a×i ×( 1+ i ) ^n ÷〔( 1+ i )^n - 1〕 支付利息 :Y = n×a×i ×( 1+i ) ^n ÷〔( 1+ i ) ^n - 1〕- a 款 :n ×a×i ×( 1+ i )^n ÷〔( 1+ i ) ^n- 1〕 注:a^b 表示 a 的 b 次方。 等本息法的算 ----- 例如下: 如款 21 万, 20 年,月利率 3.465 ‰按照上 面的等本息公式算 月均款 :b = a×i ×( 1+ i ) ^n ÷〔( 1+ i )^n - 1〕即: =1290.11017 即每个月款1290 元。 。 1欢迎下载

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

物理学中的定律公式

一、物理定律、原理: 1、牛顿第一定律(惯性定律) 2、阿基米德原理 3、光的发射定律 4、欧姆定律 5、焦耳定律 6、能量守恒定律 二、物理规律: 1、平面镜成像的特点 2、光的折射规律 3、凸透镜成像规律 4、两力平衡的条件和运用 5、力和运动的关系 6、液体压强特点 7、物体浮沉条件8、杠杆平衡条件9、分子动理论 10、做功与内能改变的规律11、安培定则12、电荷间的作用规律 13、磁极间的作用规律14、串、并联电路的电阻、电流、电压、电功、电功率、电热的分配规律 三、应记住的常量: 1、热:1标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃ 体温计的量程:35℃~42℃分度值为0.1℃ 水的比热:C水=4.2×103J/(kg.℃) 2、速度:1m/s=3.6km/h 声音在空气的传播速度:V=340m/s V固>V液>V气 光在真空、空气中的传播速度:C=3×108m/s 电磁波在真空、空气中的传播速度:V=3×108m/s 3、密度:ρ水=ρ人=103kg/m3 ρ水>ρ冰ρ铜>ρ铁>ρ铝 1g/cm3=103kg/m3 1L=1dm3 1mL=1cm3 g=9.8N/kg 4、一个标准大气压:P0=1.01×105Pa=76cm汞柱≈10m水柱 5、元电荷的电量:1e=1.6×10-19C 一节干电池的电压:1.5V 蓄电池的电压:2V 人体的安全电压:不高于36V 照明电路的电压:220V 动力电路的电压:380V 我国交流电的周期是0.02s,频率是50Hz,每秒换向100次。 1度=1Kw.h=3.6×106 J 四、物理中的不变量: 1、密度:是物质的一种特性,跟物体的质量、体积无关。 2、比热:是物质的一种特性,跟物质的吸收的热量、质量、温度改变无关。 3、热值:是燃料的一种特性,跟燃料的燃烧情况、质量、放出热量的多少无关。 4、电阻:是导体的一种属性,它由电阻自身情况(材料、长度、横截面积)决定,而跟所加的电压的大小,通过电流的大小无关。 5、匀速直线运动:物体的速度不变,跟路程的多少,时间长短无关。 五、生活中的物理模型: 1、连通器:如水壶、水位计、船闸等。 2、杠杆:如撬棒、天平、杆秤、独轮车、铡刀等。 3、轮轴:如板手、螺丝刀、自行车的车把等。

新型螺线管磁场测定实验报告

新型螺线管磁场测定 一.实验目的 1.验证霍耳传感器输出电势差与螺线管磁感应强度成正比。 2.测量集成线性霍耳传感器的灵敏度。 3.测量螺线管磁感应强度与位置之间的关系,求得螺线管均匀磁场围及边缘的磁感应强度。 4.学习补偿原理在磁场测量中的应用。 二.实验原理 霍耳元件的作用(如右图2所示):若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直于该半导体,是电子流方向由洛伦茨力作用而发生改变,在薄片两个横向面a 、b 之间应产生电势差, 这种现象称为霍耳效应。在与电流I 、磁场B 垂直方向上产生的电势差称为霍耳电势差,通常用UH 表示。霍耳效应的数学表达式为: IB K IB d R U H H H ==)( (1) 其中RH 是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。B 为磁感应强度,I 为流过霍耳元件的电流强度,KH 称为霍耳元件灵敏度。 虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,UH=0,但是实际情况用数字电压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍耳传感器(结构示意图如图3所示)是一种高灵敏度集成霍耳传感器,它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。测量时输出信号大,并且剩余电压的影响已被消除。对SS95A 型集成霍耳传感器,它由三根引线,分别是:“V+”、“V-”、“Vout ”。其中“V+”和“V-”构成“电流输入端”,“Vout ”和“V-”构成“电压输出端”。由于SS95A 型集成霍耳传感器,它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处在该标准状态。在实验时,只要在磁感应强度为零(零磁场)条件下,调节“V+”、“V-”所接的电源电压(装置上有一调节旋钮可供调节),使输出电压为2.500V(在数字电压表上显示),则传感器就可处在标准工作状态之下。

安培定律

《大学物理Al》作业No.10 安培定律磁力磁介质 I = 1什|2。设铁环总电阻为R,由电阻公式有 2 R, R2 1 3 2 又因U b =Uc,即一RI i 3 所以: 2?无限长载流空心圆柱导体的内外半径分别为a、b,电流在导体截面上均匀分布,则空间各处B的大小与场点到圆柱中心轴线距离r的关系定性地如图所示。正确的图是: 解:由安培环路定理有: r ::: a 时, 2 (V ■a^) 由此知:随着r的增加,B~r曲线的斜率将减小 r 班级学号姓名成绩 一、选择题:(注意:题目中可能有一个或几个正确答案) 1.如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等 a. 的铁环上,稳恒电流I从a端流入而从d端流出,则磁感应强度 图中闭合路径L的积分 L B dl等于 (A) %l 1 (C)4%] (B)1 J o I 3 2 (D)-M 3 b R i I L ,120 R d\ (C)(D) a ::: r ::: b 时, z22、 二…)(…) B _ 2- (b2-a2) 2 2 r 「a 解:电流I从b点分流, 故选D dB dr 2-(b2-a2) %I

-I 1 r b 时,B乂 一 2兀r r 故选B 3.如图,一无限长直载流导线与正三角形载流线圈在同一平面内,长 直导线固定不动,则载流三角形线圈将: (A)向着长直导线平移(B)离开长直导线平移 (C)转动(D)不动 解:建立如图所示的坐标轴,无限长的直电流在x>0处产生的 磁感应强度为: 由安培定律公式,可得三角形线圈的三个边受力大小分别 为: %I1I2 AB %l1£ F AC =F BC = A BI2dI二a a lcos30 %11丨2 dx ] 若 丨 1 妙^l nU+l3丄) cos30 .3二 2 a 式中I为三角形边长,各力方向如图所示,可见三角形不可能移动,合力为: 、F y =F AC sin60 - F BC sin60 =0 %I1I2」2 3 3 ln(1 +--- 2 二F x --F AB 2F AC cos60 = 3 ln(1a)] d(' F x) d ■ 22 3 vT1 1 +—z 2 ^I1I2(1- 又a Fx\.^ = 0,所以载流线圈所受合力始终向着长直电流,故载流线圈只能向着长直 电流平 动。 故选A 4?真空中电流元iph与电流元|2dl2之间的相互作用是这样进行的: (A)I1dl1与I2dl2直接进行作用,且服从牛顿第三定律。 (B)I1d i1产生的磁场与I 2d 12产生的磁场之间相互作用,且服从牛顿第三定 律。 (C)I1d i1产生的磁场与I 2d I 2产生的磁场之间相互作用,但不服从牛顿第三定 律。 (D)11di 1产生的磁场与I 2d 12进行作用,或由I2dl2产生的磁场与I1 dl1进行作用,且

螺线管内磁场的测量

实验九螺线管内磁场的测量在工业、国防和科学研究中经 常要对磁场进行测量例如在粒子回旋加速器、受控热核反应、同位素分离、地球资源探测、地震预测和磁性材料研究等方面。测量磁场的方法较多从测量原理上大体可以分为五类力和力矩法、电磁感应法、磁传输效应法、能量损耗法、基于量子状态变化的磁共振法。常用的测量方法主要有冲击电流计法霍尔元件法、核磁共振法和天平法。练习一用冲 击电流计法测量螺线管内磁场【实验目的】1学习用冲击 法测量磁感应强度的原理和方法2学会使用冲击电流计3 研究长直螺线管内轴线上的磁场分布4对比螺线管轴线上 磁场的测量值与理论值加深对毕奥萨伐尔定律的理解。【实验仪器】冲击电流计、螺线管磁场测量仪、直流电源、直 流电流表、电阻箱、滑线变阻器。【实验原理】1.长直螺线管轴线上的磁场如图5.9.1所示设螺线管长为L半径为r0 表面均匀地绕有N匝线圈放在磁导率为卩的磁介质中并通以 电流I。如果在螺线管上取一小段线圈dL则可看作是通过电 流为INdL/L的圆形载流线圈。由毕奥萨伐尔定律得到在螺线管轴线上距离中心0为x的P点产生的磁感应强度dBx 为3202rrLINdLdBx 5.9.1 图5.9.1长直螺线管轴的结构图 OP2LLxOr21dLdBxrd 由图5.9.1 可知OsinrrsinrddL 代入式5.9.1得到dL y INdBxsin2 5.9.2因为螺线管的各小段在P点 的磁感应强度方向均沿轴线向左故整个螺线管在P点产生的

磁感应强度21coscos2sin22121LNIdLNIdBBx 5.9.3 由图5.9.1 可知 5.9.3 式还可以表示为2122rxLxLrxLxLLNIBx 5.9.4 令x0 得到螺线管中点O 的磁感应强度2120204rLNIB 5.9.5 令xL/2 得到螺线管两端面中心点的感应强度2122202LNIBLr 5.9.6 当L> rO时由式5.9.5 和式5.9.6 可知BL/2?B0/2只要螺线管的比值L/rO保持不变则不论螺线管 放大或缩小也不论线圈的匝数N 和电流I 为多少磁感应强度相对值沿螺线管轴的分布曲线不改变。2. 用冲击电流计测量磁场的原理如图5.9.2 所示设探测线圈匝数为n 平均截面为S 线圈的法线与磁场方向一致当K1 倒向一边使螺线管中通过电流的I 。当K1 突然断开时螺线管内的磁通突然改变探测线圈中的感应电流i 通过冲击电流计G 若测出在短时间内的脉冲电流所迁移的电量就可求得该点的Bx 值。由法拉第电磁感应定律可知在探测回路中产生感应电动势ddt 5.9.7 设探测回路的总电阻为R则通过冲击电流计的瞬时感应电流 为1diRdt 5.9.8 图 5.9.2 测量螺线管内磁场电路图GA- 1R2RgR1KER 在磁通变化的时间内通过冲击电流计的总电量OOOO111dQidtdtdRdtRR 5.9.9 实验时把通过螺线管的电流由I 突变为O 即把K1 断开使磁通量发生改变则有Ot 时OxBnStO 代入5.9.9 式有xBnSQR 5.9.1O 因此只需测量出R 及Q 就可以算出Bx。Q 值可以通过DQ-3/4 型智能冲击电流计直接测出为了测出探测回路的总电阻为R 使用图 5.9.3 中的标准互感器M 为互感系

等额本息还款法

一、按揭贷款等额本息还款计算公式 1、计算公式 每月还本付息金额=[本金×月利率×(1+月利率)还款月数]/(1+月利率)还款月数-1] 其中:每月利息=剩余本金×贷款月利率 每月本金=每月月供额-每月利息 计算原则:银行从每月月供款中,先收剩余本金利息,后收本金;利息在月供款中的比例中虽剩余本金的减少而降低,本金在月供款中的比例因而升高,但月供总额保持不变。 2、商业性房贷案例 贷款本金为300000元人民币 还款期为10年(即120个月) 根据5.51%的年利率计算,月利率为4.592‰ 代入等额本金还款计算公式计算: 每月还本付息金额=[300000×4.592‰×(1+月利率)120]/[(1+月利率)120-1] 由此,可计算每月的还款额为3257.28元人民币 二、按揭贷款等额本金还款计算公式 1、计算公式 每月还本付息金额=(本金/还款月数)+(本金-累计已还本金)×月利率 每月本金=总本金/还款月数 每月利息=(本金-累计已还本金)×月利率 计算原则:每月归还的本金额始终不变,利息随剩余本金的减少而减少 2、商业性房贷案例 贷款本金为300000元人民币 还款期为10年(即120个月) 根据5.51%的年利率计算,月利率为4.592‰ 代入按月递减还款计算公式计算: (第一个月)还本付息金额=(300000/120)+ (300000-0)×4.592‰ 由此,可计算第一个月的还款额为3877.5元人民币 (第二个月) 还本付息金额=(300000/120)+ (300000-2500)×4.592‰ 由此,可计算第一个月的还款额为3866.02元人民币 (第二个月) 还本付息金额=(300000/120)+ (300000-5000)×4.592‰

相关文档
最新文档