【步步高】届高三数学大一轮复习 三角函数的图象与性质学案 理 新人教A版

【步步高】届高三数学大一轮复习 三角函数的图象与性质学案 理 新人教A版
【步步高】届高三数学大一轮复习 三角函数的图象与性质学案 理 新人教A版

学案19 三角函数的图象与性质

导学目标: 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的

交点等),理解正切函数在区间? ??

??-π2,π2内的单调性.

自主梳理

1.三角函数的图象和性质

当x =____________________________________时,取最大值1; 当x =____________________________________时,取最小值-1. 3.余弦函数y =cos x

当x =__________________________时,取最大值1; 当x =__________________________时,取最小值-1.

4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为____________、___________、______________.

5.y =sin x 、y =cos x 的对称轴分别为______________和____________,y =tan x 没有对称轴.

自我检测

1.(2010·十堰月考)函数y =A sin(ωx +φ) (A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω为 ( )

A .1

B .2

C .3

D .4

2.函数y =sin ?

????2x +π3图象的对称轴方程可能是 ( )

A .x =-π6

B .x =-π

12

C .x =π

6

D .x =π

12

3.(2010·湖北)函数f (x )=3sin ? ??

??x 2-π4,x ∈R 的最小正周期为 (

) A.π

2

B .π

C .2π

D .4π 4.(2010·北京海淀高三上学期期中考试)函数f (x )=(sin x +cos x )2

+cos 2x 的最

小正周期为

(

)

A .4π

B .3π

C .2π

D .π

5.如果函数y =3cos(2x +φ)的图象关于点? ??

??4π3,0中心对称,那么|φ|的最小值为 (

) A.π6 B.π4 C.π3 D.π2

探究点一 求三角函数的定义域 例1 (2011·衡水月考)求函数y =

2+log 1

2

x +tan x 的定义域.

变式迁移1 函数y =1-2cos x +lg(2sin x -1)的定义域为________________________.

探究点二 三角函数的单调性

例2 求函数y =2sin ? ??

??π4-x 的单调区间.

变式迁移2 (2011·南平月考)(1)求函数y =sin ? ??

??π3-2x ,x ∈[-π,π]的单调递减区间;

(2)求函数y =3tan ? ??

??π6-x 4的周期及单调区间.

探究点三 三角函数的值域与最值

例3 已知函数f (x )=2a sin(2x -π3)+b 的定义域为[0,π

2

],函数的最大值为1,最

小值为-5,求a 和b 的值.

变式迁移3 设函数f (x )=a cos x +b 的最大值是1,最小值是-3,试确定g (x )=

b sin(ax +π

3)的周期.

转化与化归思想的应用

例 (12分)求下列函数的值域:

(1)y =-2sin 2

x +2cos x +2;

(2)y =3cos x -3sin x ,x ∈[0,π

2

];

(3)y =sin x +cos x +sin x cos x . 【答题模板】

解 (1)y =-2sin 2x +2cos x +2=2cos 2

x +2cos x

=2(cos x +12)2-1

2

,cos x ∈[-1,1].

当cos x =1时,y max =4,

当cos x =-12时,y min =-12,故函数值域为[-1

2

,4].[4分]

(2)y =3cos x -3sin x =23cos(x +π

6

)

∵x ∈[0,π2],∴π6≤x +π6≤2π

3

∵y =cos x 在[π6,2π

3]上单调递减,

∴-12≤cos(x +π6)≤3

2

∴-3≤y ≤3,故函数值域为[-3,3].[8分]

(3)令t =sin x +cos x ,则sin x cos x =t 2-1

2

,且|t |≤ 2.

∴y =t +t 2-12=12

(t +1)2

-1,∴当t =-1时,y min =-1;

当t =2时,y max =1

2+ 2.

∴函数值域为[-1,1

2

+2].[12分]

【突破思维障碍】

1.对于形如f (x )=A sin(ωx +φ),x ∈[a ,b ]的函数在求值域时,需先确定ωx +φ的范围,再求值域.同时,对于形

如y =a sin ωx +b cos ωx +c 的函数,可借助辅助角公式,将函数化为y =a 2+b 2

sin(ωx +φ)+c 的形式,从而求得函数的最值.

2.关于y =a cos 2x +b cos x +c (或y =a sin 2

x +b sin x +c )型或可以为此型的函数求值域,一般可化为二次函数在闭区间上的值域问题.

提醒:不论用什么方法,切忌忽略函数的定义域.

1.熟练掌握正弦函数、余弦函数、正切函数的定义、图象和性质是研究三角问题的基础,三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实质上就是解最简单的三角不等式(组).

2.三角函数的值域问题,实质上是含有三角函数的复合函数的值域问题.

3.函数y =A sin(ωx +φ) (A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体,利用y =sin x 的单调区间来求.

(满分:75分)

一、选择题(每小题5分,共25分)

1.(2011·黄山月考)已知函数y =sin x 的定义域为[a ,b ],值域为[-1,1

2

],则b -

a 的值不可能是 ( )

A.π3

B.2π3 C .π D.4π3

2.(2010·安徽6校高三联考)已知函数y =tan ωx (ω>0)与直线y =a 相交于A 、B

两点,且|AB |最小值为π,则函数f (x )=3sin ωx -cos ωx 的单调增区间是 ( )

A.?

?????2k π-π6,2k π+π6 (k ∈Z ) B.?

?????2k π-π3,2k π+2π3 (k ∈Z ) C.?

?????2k π-2π3,2k π+π3 (k ∈Z ) D.?

?????2k π-π6,2k π+5π6 (k ∈Z ) 3.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =π4所得线段长为π

4

,则

f ? ????π4的值是 ( )

A .0

B .1

C .-1 D.π

4

4.函数y =-x cos x 的部分图象是图中 ( )

5.(2011·三明模拟)若函数y =sin x +f (x )在[-π4,3π

4

]上单调递增,则函数f (x )

可以是( )

A .1

B .cos x

6.设点P 是函数f (x )=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对称轴

的距离的最小值是π

8,则f (x )的最小正周期是________.

7.函数f (x )=2sin x

4

对于任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小

值为________.

8.(2010·江苏)定义在区间?

????0,π2上的函数y =6cos x 的图象与y =5tan x 的图象的

交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.

三、解答题(共38分)

9.(12分)(2011·厦门月考)已知函数f (x )=2cos 4x -3cos 2

x +1

cos 2x

,求它的定义域和值域,

并判断它的奇偶性.

10.(12分)(2010·福建改编)已知函数f (x )=2sin(ωx +π

6

)+a (ω>0)与g (x )=

2cos(2x +φ)+1的图象的对称轴完全相同.

(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调递减区间;

(3)当x ∈[0,π

2

]时,f (x )的最小值为-2,求a 的值.

11.(14分)(2010·安徽合肥高三二模)已知向量a =(sin x ,23sin x ),b =(2cos x ,sin x ),定义f (x )=a·b - 3.

(1)求函数y =f (x ),x ∈R 的单调递减区间;

(2)若函数y =f (x +θ) (0<θ<π

2

)为偶函数,求θ的值.

答案 自主梳理

1.R R {x |x ≠k π+π

2,k ∈Z } [-1,1] [-1,1] R 2π 2π π 奇函数 偶

函数 奇函数 [2k π-π2,2k π+π2](k ∈Z ) [2k π+π2,2k π+3

2

π](k ∈Z ) [2k π-π,

2k π](k ∈Z ) [2k π,2k π+π](k ∈Z ) (k π-π2,k π+π

2

)(k ∈Z )

2.2k π+π2(k ∈Z ) 2k π-π

2(k ∈Z ) 3.2k π(k ∈Z ) 2k π+π(k ∈Z ) 4.(k π,0)(k

∈Z ) ? ????k π+π2,0(k ∈Z ) ? ??

??k π2,0(k ∈Z ) 5.x =k π+π2(k ∈Z ) x =k π(k ∈Z ) 自我检测

1.C 2.D 3.D 4.D 5.A 课堂活动区

例1 解题导引 求三角函数的定义域时,需要转化为三角不等式(组)求解,常常借助于三角函数的图象和周期解决,求交集时可以利用单位圆,对于周期相同的可以先求交集再加周期的整数倍即可.

解 要使函数有意义,

则?????

2+log 1

2

x ≥0,

x >0,tan x ≥0,

x ≠k π+π2

k ∈Z ,

得?

????

0

2k ∈Z .

所以函数的定义域为 ????

??x |0

2或π≤x ≤4.

变式迁移1 ????

??π3+2k π,5π6+2k π,k ∈Z 解析 由题意得

?

??

??

1-2cos x ≥02sin x -1>0??????

cos x ≤1

2sin x >1

2

解得?????

π3+2k π≤x ≤5π

3

+2k π,k ∈Z π6+2k π

6+2k π,k ∈Z ,

即x ∈??

??

??π3+2k π,5π6+2k π,k ∈Z .

例2 解题导引 求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx +φ (ω>0)”视为一个“整体”;②A >0 (A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式方向相同(反).

解 y =2sin ? ??

??π4-x 可看作是由y =2sin u 与u =π4-x 复合而成的. 又∵u =π

4-x 为减函数,

∴由2k π-π2≤u ≤2k π+π

2(k ∈Z ),

即2k π-π2≤π4-x ≤2k π+π

2 (k ∈Z ),

得-2k π-π4≤x ≤-2k π+3π

4 (k ∈Z ),

即?

?????-2k π-π4,-2k π+3π4(k ∈Z )为 y =2sin ? ????π4-x 的递减区间. 由2k π+π2≤u ≤2k π+3π

2 (k ∈Z ),

即2k π+π2≤π4-x ≤2k π+3π

2 (k ∈Z ),

得-2k π-5π4≤x ≤-2k π-π

4 (k ∈Z ),

即?

?????-2k π-5π4,-2k π-π4(k ∈Z )为 y =2sin ? ??

??π4-x 的递增区间. 综上可知,y =2sin ? ??

??π4-x 的递增区间为 ????

??-2k π-5π4,-2k π-π4(k ∈Z ); 递减区间为?

?????-2k π-π4,-2k π+3π4 (k ∈Z ). 变式迁移2 解 (1)由y =sin ? ??

??π3-2x , 得y =-sin ?

????2x -π3, 由-π2+2k π≤2x -π3≤π

2+2k π,

得-π12+k π≤x ≤5π

12+k π,k ∈Z ,

又x ∈[-π,π],

∴-π≤x ≤-712π,-π12≤x ≤512π,11

12

π≤x ≤π.

∴函数y =sin ? ????π3-2x ,x ∈[-π,π]的单调递减区间为?

?????-π,-712π,??????-π12,512π,????

??1112π,π.

(2)函数y =3tan ? ??

??π6-x 4的周期 T =π????

??-14=4π. 由y =3tan ? ????π6-x 4 得y =-3tan ? ??

??x 4-π6, 由-π2+k π

2+k π得

-43π+4k π

3

π+4k π,k ∈Z , ∴函数y =3tan ? ????π6-x 4的单调递减区间为? ??

??-43π+4k π,83π+4k π (k ∈Z ).

例3 解题导引 解决此类问题,首先利用正弦函数、余弦函数的有界性或单调性求出y =A sin(ωx +φ)或y =A cos(ωx +φ)的最值,再由方程的思想解决问题.

解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2

3

π,

∴-

32≤sin(2x -π

3

)≤1, 若a >0,则??

? 2a +b =1-3a +b =-5,解得??

?

a =12-63

b =-23+123

若a <0,则??

?

2a +b =-5

-3a +b =1,

解得??

?

a =-12+63

b =19-123

.

综上可知,a =12-63,b =-23+12 3 或a =-12+63,b =19-12 3. 变式迁移3 解 ∵x ∈R , ∴cos x ∈[-1,1],

若a >0,则?????

a +

b =1-a +b =-3,解得?

???? a =2b =-1;

若a <0,则?

??

??

a +

b =-3

-a +b =1,解得?

??

??

a =-2

b =-1.

所以g (x )=-sin(2x +π3)或g (x )=-sin(-2x +π

3

),周期为π.

课后练习区

1.A [画出函数y =sin x 的草图(图略),分析知b -a 的取值范围为[2π3,4π

3

],故

选A.]

2.B [由题意知,函数的最小正周期为π,则ω=1, 故f (x )=3sin ωx -cos ωx

=2sin ?

????x -π6的单调增区间满足:

2k π-π2≤x -π6≤2k π+π

2

(k ∈Z )

解得2k π-π3≤x ≤2k π+2π

3

.]

3.A 4.D

5.D [因为y =sin x -cos x =2sin(x -π4),-π2≤x -π4≤π2,即-π4≤x ≤3π

4

满足题意,所以函数f (x )可以是-cos x .]

6.π2

解析 依题意得T 4=π8,所以最小正周期T =π

2

.

7.4π 解析 由f (x 1)≤f (x )≤f (x 2)知,f (x 1)、f (x 2)分别为f (x )的最小值和最大值,而当x

4

2k π-π2,即x =8k π-2π (k ∈Z )时,f (x )取最小值;而x 4=2k π+π2

,即x =8k π+2π (k

∈Z )时,f (x )取最大值,

∴|x 1-x 2|的最小值为4π. 8.23

解析 线段P 1P 2的长即为sin x 的值,且其中的x 满足6cos x =5tan x ,x ∈?

????0,π2,

解得sin x =23.所以线段P 1P 2的长为2

3

.

9.解 由题意知cos 2x ≠0,得2x ≠k π+π

2

解得x ≠k π2+π

4

(k ∈Z ).

∴f (x )的定义域为{x |x ∈R ,且x ≠k π2+π

4

,k ∈Z }.

……………………………………………………………………………………………(3分)

又f (x )=2cos 4x -3cos 2

x +1

cos 2x

=2cos 2x -1cos 2

x -12cos 2

x -1 =cos 2x -1=-sin 2

x ,……………………………………………………………………(6分)

又∵定义域关于原点对称,

∴f (x )是偶函数.…………………………………………………………………………(8分)

显然-sin 2

x ∈[-1,0],

又∵x ≠k π2+π

4

,k ∈Z ,

∴-sin 2

x ≠-12

.

∴原函数的值域为

????

??y |-1≤y <-12或-1

2

分)

10.解 (1)∵f (x )和g (x )的对称轴完全相同,

∴二者的周期相同,即ω=2,f (x )=2sin(2x +π

6

)+a (3分)

∴f (x )的最小正周期T =2π

2

=π.…………………………………………………………

(4分)

(2)当2k π+π2≤2x +π6≤2k π+3π

2,k ∈Z ,

即k π+π6≤x ≤k π+2π

3

(k ∈Z )时,函数f (x )单调递减,

故函数f (x )的单调递减区间为

[k π+π6,k π+2π3

](k ∈Z ).…………………………………………………………………

(8分)

(3)当x ∈[0,π2]时,2x +π6∈[π6,7π

6

],…………………………………………………

(10分)

∴2sin(2·π2+π

6

)+a =-2,

∴a =-1.………………………………………………………………………………(12分)

11.解 f (x )=2sin x cos x +23sin 2

x - 3

=sin 2x +23·1-cos 2x

2

- 3

=sin 2x -3cos 2x =2sin ?

????2x -π3.………………………………………………………(4分)

(1)令2k π+π2≤2x -π3≤2k π+3π

2

,k ∈Z ,

解得单调递减区间是????

??k π+5π12,k π+11π12,k ∈Z . ……………………………………………………………………………………………(8分)

(2)f (x +θ)=2sin ?

????2x +2θ-π3. 根据三角函数图象性质可知,

y =f (x +θ) ?

????0<θ<π2在x =0处取最值, ∴sin ?

????2θ-π3=±1, ∴2θ-π3=k π+π2,θ=k π2+5π

12

,k ∈

Z .……………………………………………………(12分)

又0<θ<π2,解得θ=5π

12

.…………………………………………………………………

(14分)

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

高三数学三角函数复习测试题

(数学4必修)第一章 三角函数(上)[基础训练] 一、选择题 1.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.给出下列各函数值:①)1000sin(0-;②)2200cos(0 -; ③)10tan(-;④9 17tan cos 107sin πππ.其中符号为负的有( ) A .① B .② C .③ D .④ 3.02120sin 等于( ) A .23± B .23 C .23- D .2 1 4.已知4sin 5 α= ,并且α是第二象限的角,那么 tan α的值等于( ) A .43- B .34 - C .43 D .34 5.若α是第四象限的角,则πα-是( ) A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 二、填空题 1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角18 17π的正弦线和余弦线,则给出的以下不等式: ①0<

4.设扇形的周长为8cm ,面积为2 4cm ,则扇形的圆心角的弧度数是 。 5.与02002-终边相同的最小正角是_______________。 三、解答题 1.已知1tan tan αα, 是关于x 的方程2230x kx k -+-=的两个实根, 且παπ273< <,求ααsin cos +的值. 2.已知2tan =x ,求 x x x x sin cos sin cos -+的值。 3.化简:)sin()360cos() 810tan()450tan(1)900tan()540sin(00000x x x x x x --?--?-- 4.已知)1,2(,cos sin ≠≤ =+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值。 数学4(必修)第一章 三角函数(上) [基础训练] 一、选择题 1.C 22,(),,(),2422k k k Z k k k Z π π α π παππππ+<<+∈+<<+∈ 当2,()k n n Z =∈时, 2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而cos cos cos 0222α αα =-?≤,2α∴在第三象限; 2.C 00sin(1000)sin 800-=>;000 cos(2200)cos(40)cos 400-=-=>

三角函数图象性质一览表

三角函数图象性质一览表 正弦定理、余弦定理及应用 设ABC △的外接圆的半径是R ,内切圆的半径是r ,()c b a p ++=2 1 是半周长。 1、正弦定理: R C c B b A a 2sin sin sin ===,或 C B A c b a sin :sin :sin ::= 变式:A R a sin 2=;B R b sin 2=;C R c sin 2= R a A 2sin = ;R b B 2sin =;R c C 2sin = 2、余弦定理: A bc c b a cos 2222-+=; B ac c a b cos 2222-+=; C ab b a c cos 2222-+= 推论:bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 2 22-+= 3、面积公式:B ac A bc C ab S A B C sin 2 1 sin 21sin 21=== △ 变式:⑴C B A R abc R S A B C sin sin sin 241 2== △ ⑵()()()c p b p a p p S A B C ---=△(海伦秦九韶公式) 4、常用结论: ⑴B A B A b a sin sin >?>?> ⑵b a B A B A =?=?=sin sin ⑶若B A 2sin 2sin =,则B A B A =?=22或2 22π π=+?=+B A B A ⑷和诱导公式有关的变式: 2cos 2sin C B A =+;2cos 2sin B C A =+;2 cos 2sin A C B =+; 2sin 2cos C B A =+;2sin 2cos B C A =+;2sin 2cos A C B =+ ()C B A sin sin =+;()B C A sin sin =+;()A C B sin sin =+; ()C B A cos cos -=+;()B C A cos cos -=+;()A C B cos cos -=+ ⑸B c C b a cos cos +=;A c C a b cos cos +=;A b B a c cos cos += 5、注意两角和与差公式、二倍角公式和半角公式、辅助角公式的应用。 6、注意函数()?ω+=x A y sin 的知识在三角形中的应用: 比如求()??? ??+ =82 1sin 2πA x f ,?? ? ??∈4,0πA 的最大值。

三角函数的图象与性质

三角函数的图象与性质 1.(2020·全国Ⅰ卷)设函数f (x )=cos ? ? ???ωx +π6在[-π,π]的图象大致如图,则f (x )的 最小正周期为( ) A.10π 9 B.7π6 C.4π3 D.3π2 解析 由图象知π

解析 T =2π 1=2π,故①正确. 当x +π3=π2+2k π(k ∈Z ),即x =π 6+2k π(k ∈Z )时,f (x )取得最大值,故②错误. y =sin x 的图象 y =sin ? ?? ?? x +π3的图象,故③正确.故选B. 答案 B 3.(2019·全国Ⅱ卷)下列函数中,以π2为周期且在区间? ???? π4,π2单调递增的是( ) A.f (x )=|cos 2x | B.f (x )=|sin 2x | C.f (x )=cos|x | D.f (x )=sin|x | 解析 易知A ,B 项中函数的最小正周期为π 2;C 中f (x )=cos|x |=cos x 的周期为2π,D 中f (x )=sin|x |=?????sin x ,x ≥0, -sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x ) 均以2π为周期,但在整个定义域上f (x )不是周期函数,排除C ,D. 又当x ∈? ????π4,π2时,2x ∈? ?? ?? π2,π, 则y =|cos 2x |=-cos 2x 是增函数,y =|sin 2x |=sin 2x 是减函数,因此A 项正确,B 项错误. 答案 A 4.(2020·江苏卷)将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,则平移后的 图象中与y 轴最近的对称轴的方程是________. 解析 将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,所得图象的函数解析式为y =3sin ?????? 2? ????x -π6+π4=3sin ? ????2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π 24,与y 轴最近. 答案 x =-5π 24 5.(2020·北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

三角函数图象和性质(总结的很全面_不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

高考数学三角函数复习专题

三角函数复习专题 一、核心知识点归纳: ★★★1、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ?? ≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当22 x k π π=+ () k ∈Z 时,max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在2,22 2k k π πππ? ? - + ??? ? ()k ∈Z 上是增函数;在 32,222k k ππππ??++??? ? ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π πππ? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ? ?+∈Z ?? ? 对称轴()x k k π=∈Z 对称中心 (),02k k π?? ∈Z ??? 无对称轴 ★★2.正、余弦定理:在ABC ?中有: 函 数 性 质

①正弦定理: 2sin sin sin a b c R A B C ===(R 为ABC ?外接圆半径) 2sin 2sin 2sin a R A b R B c R C =??=??=? ? sin 2sin 2sin 2a A R b B R c C R ? =?? ? =?? ? =?? 注意变形应用 ②面积公式:111 sin sin sin 222 ABC S abs C ac B bc A ?= == ③余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ?=+-?=+-??=+-? ? 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ?+-=?? +-?=???+-= ?? 二、练习题 1、角α的终边过点 b b 则且(,5 3 cos ),4,--=α的值( ) A 、3 B 、-3 C 、3± D 、5 2、已知2π θπ<<,3 sin()25 πθ+=-,则tan(π-θ)的值为( ) A .34 B .43 C .34- D .4 3 - 3、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 4、为得到函数πcos 3y x ? ?=+ ?? ?的图象,只需将函数sin y x =的图像( ) A .向左平移π 6个长度单位 B .向右平移 π 6 个长度单位 C .向左平移5π 6 个长度单位 D .向右平移 5π 6 个长度单位 5、()sin()(0,0,||)2 f x A x A ωφωφπ =+>>< 是( ) A. y = 2sin(x -4π) B. y = 2sin(x +4π) C. y = 2sin (2x -8π) D. y = 2sin (2x +8 π )

知识讲解_三角函数的图象和性质_基础

高考复习正弦、余弦的图象和性质 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π, (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数的图象与性质

三角函数的图象与性质 一、选择题 1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ? ? ???2x +π6,④y = tan ? ? ???2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③ 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ? ? ???2x +π6的最小正周期T =2π2=π; ④y =tan ? ? ???2x -π4的最小正周期T =π2,因此选A. 答案 A 2.(2017·石家庄模拟)函数f (x )=tan ? ? ???2x -π3的单调递增区间是( ) A.?????? k π2-π12,k π2+5π12(k ∈Z) B.? ???? k π2-π12,k π2+5π12(k ∈Z) C.? ?? ???k π-π12,k π+ 5π12(k ∈Z) D.? ? ???k π+π6,k π+ 2π3(k ∈Z) 解析 由k π-π2<2x -π3<k π+π2(k ∈Z),解得k π2-π12<x <k π2+ 5π 12(k ∈Z),所以函数y =tan ? ????2x -π3的单调递增区间是? ???? k π2-π12,k π2+5π12(k ∈Z),故选B. 答案 B 3.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,

4.3三角函数的图象及性质应用

科 目 数学 年级 高三 备课人 高三数学组 第 课时 4.3三角函数的图象及性质应用 考纲定位 理解三角函数的性质,并利用其性质解决一些简单问题; 【典型例题】 1、如图所示,它是sin(),(0,0),||>的图象,由图中条件,写出该函数的解析式. 小结:根据图象如何求函数sin(),(0,0)y A x b A ω?ω=++>>中的参数,,,A b ω?. (1)A = ;(2)ω= ;(3)b = ;(4)? 【高考真题】 2、(2010四川)将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A )sin(2)10y x π=- (B )sin(2)5 y x π=- (C )1sin()210y x π=- (D )1sin()220y x π=- 3、(2010全国)为了得到函数sin(2)3y x π=- 的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 4、(2010辽宁)设0ω>,函数sin()23 y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( ) (A )23 (B ) 43 (C ) 32 (D ) 3 5、(2010重庆)已知函数sin()(0,||)2 y x πω?ω?=+><的部分图象如题(6)图所示,则( ) A.ω=1,?= 6π B.ω=1,?=-6 π C.ω=2,?=6π D.ω=2,?=-6π

最新高考数学二轮精品复习资料-专题-三角函数(教师版)

2014届高考数学二轮复习资料 专题四 三角函数(教师版) 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公 式;理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、 sin()y A x ω?=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题 等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式.

三角函数图象与性质

三角函数图象与性质 类型一 学会踩点 [例1] (本题满分12分)已知函数f (x )=cos x ·sin ? ???? x +π3-3cos 2x +34,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在闭区间x ∈???? ?? -π4,π4上的最大值和最小值. 解:(1)由已知得f (x )=cos x ·? ????12sin x +3 2cos x -3cos 2x +34=12sin x ·cos x - 32cos 2 x +3 4(2分) =14sin 2x -34(1+cos 2x )+34=14sin 2x -3 4cos 2x (4分) =12sin ? ? ? ??2x -π3.(6分) 所以,f (x )的最小正周期T =2π 2=π.(7分) (2)因为f (x )在区间??????-π4,-π12上是减函数,在区间?????? -π12,π4上是增函数.(10分) f ? ???? -π4=-14,f ? ????-π12=-12,f ? ?? ??π4=14.(11分) 所以,函数f (x )在闭区间?????? -π4,π4上的最大值为14,最小值为-12.(12分) 评分细则:得分点及踩点说明 (1)第(1)问无化简过程,直接得到f (x )=12sin ? ? ???2x -π3,扣5分.每一步用公式正确 就得分. (2)化简结果错误,但中间某一步正确,给2分. (3)第(2)问只求出f ? ???? -π4=-14,f ? ????π4=14得出最大值为14,最小值为-14,得1分. (4)若单调性出错,只得1分. (5)单调性正确,但计算错误,扣2分.

相关文档
最新文档