The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole

The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole
The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole

Journal of Molecular Catalysis A:Chemical252(2006)

40–48

The effect of iron oxides and oxalate on the photodegradation of

2-mercaptobenzothiazole

Chengshuai Liu a,b,c,Fangbai Li b,?,Xiaomin Li a,b,c,Gan Zhang a,Yaoqiu Kuang a

a Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou510640,PR China

b Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,Guangdong Institute of

Eco-Environment and Soil Science,Guangzhou510650,PR China

c Graduate School of the Chinese Academy of Sciences,Beijing100039,PR China

Received25October2005;received in revised form11January2006;accepted6February2006

Available online15March2006

Abstract

?-FeOOH was prepared by hydrothermal process and went through the phase transformation from lepidocrocite to maghemite?rstly and then to hematite with the increase of sintering temperature.The iron oxides sintered at250,320,420and520?C for2h were named as IO-250,IO-320, IO-420and IO-520,respectively,and characterized by X-ray diffractograms(XRD)and Brunauer–Emmett–Teller(BET)methods.XRD results showed that IO-250and IO-320had a mixed crystal structure of maghemite and hematite while IO-420and IO-520were pure hematite.BET results showed that the speci?c surface area decreased signi?cantly with the increase of sintering temperature.The effect of iron oxides and oxalate on the photodegradation of2-mercaptobenzothiazole(MBT)was investigated.The degradation of MBT depended strongly on the dosage of iron

oxides and the initial concentration of oxalic acid(C0

ox ).The optimal dosages of iron oxides were0.40,0.35,0.30,0.25and0.25g/L for?-FeOOH,

IO-250,IO-320,IO-420and IO-520,respectively,and the optimal C0

ox was1.0mM for all the?ve iron oxides.The results showed that MBT

photodegradation could be enhanced greatly in the presence of oxalic acid.The?rst-order kinetic constants k for MBT degradation was ranked the

order as IO-320>IO-250>IO-420>IO-520>?-FeOOH in the presence of oxalate with the optimal C0

ox of1.0mM.The oxalate photodegradation,

the pH value in the solution and the concentration of Fe2+and Fe3+along with the reaction time were also investigated.The results showed that they

also depended on iron oxides and C0

ox .IO-420and IO-520with hematite structure and higher stability had a lower activity for oxalate adsorption

and photodegradation,and then less formation of Fe3+and Fe2+,while?-FeOOH and IO-250with a lower stability had much higher activity for oxalate adsorption and photodegradation,and then much more Fe3+and Fe2+formed in the solution.The excessive Fe3+inhibited the formation of H2O2while the much less Fe2+/3+led to a much less Fe2+/3+-oxalate complex on the surface of iron oxides or in the solution.Therefore,IO-320 had the most photoactivity among them because of the mixed crystal structure and the suitable concentration of Fe3+and Fe2+.

?2006Elsevier B.V.All rights reserved.

Keywords:Photodegradation;Iron oxide;Oxalic acid;2-Mercaptobenzothiazole;UV A light

1.Introduction

Fenton system has been paid for much attention over the past several decades[1–5]because of its powerful ability of degra-dation of organic pollutants(abbreviated as OPs).In Fenton system,the generation of hydroxyl radical(?OH)is the key step because hydroxyl radical can oxidize almost all organic matters and mineralize them to carbon dioxide and water owing to its high oxidation potential(E0=+2.80V)[6,7].In the last decade ?Corresponding author.Tel.:+862087024721;fax:+862087024123.

E-mail address:cefbli@https://www.360docs.net/doc/5112681222.html,(F.Li).years,ozone[8,9],electricity[10–12]and light[7,13,14]were introduced into Fenton system to form a so-called Fenton-like system and to increase the ef?ciency of generation of?OH.In Fenton and Fenton-like systems,hydrogen peroxide(H2O2)is the most important factor because it is the direct source of?OH [15].Suf?cient hydrogen peroxide has to be added so as to make the system be ef?cient[3,16].However,H2O2is an acute reac-tive reagent and cannot stand in nature for a long time.This factor limits the application of Fenton and Fenton-like system in the remediation of OPs in nature.

In fact,iron oxides and oxalic acid,which coexisted in natural environments,can set up a Fenton-like system with-out additional H2O2[17–19].Iron is the fourth most abundant

1381-1169/$–see front matter?2006Elsevier B.V.All rights reserved. doi:10.1016/j.molcata.2006.02.036

C.Liu et al./Journal of Molecular Catalysis A:Chemical252(2006)40–4841

element of the earth’s crust(5.1mass%).Iron oxides(including oxyhydroxides)should be a kind of natural minerals and geo-catalysts.The iron oxides are found in soils and rocks,lakes and rivers,on the sea?oor,in air and organism[20].Major iron oxides include goethite(?-FeOOH),hematite(?-Fe2O3), maghemite(?-Fe2O3),lepidocrocite(?-FeOOH)and magnetite (Fe3O4).In natural conditions,hematite usually exists together with maghemite.On the other hand,oxalic acid has strong chelating ability with multivalent cations and is mainly exuded by plants in natural environment[21].Oxalic acid is also an intermediate in the catalytic oxidation of phenol[22–25],and coumaric acid as a by-product of oil manufacturing[26].In a word,this Fenton-like oxidation process can utilize natural mater(iron oxides and oxalic acid)without additional H2O2 and arti?cial injection of iron and should be a very impor-tant way of OPs decontamination in natural environment.It is meaningful to investigate the photochemical reaction in the iron oxide–oxalate complex system for understanding the natural transformation of organic pollutants.In fact,the photochem-istry of Fe(III)-oxalate complexes in natural aquatic environ-ment,fog,precipitation,tropospheric aerosols and soil solution has received considerable attention over the past three decades [27–32]because iron oxide–oxalate exhibit strong ligand-to-metal charge absorption bands in the UV A region.But,to our best knowledge,there is little report on the photodegradation of OPs in the system consisting of iron oxide minerals and oxalic acid.

In this study,2-mercaptobenzothiazole(MBT)was selected as the model pollutant because it is the most important member of the benzothiazole group of heterocyclic aromatic compounds. This xenobiotic compound is used mainly in the manufacture of rubber as additive chemicals[33]but also has other uses,notably as a corrosion inhibitor[34].MBT enters the environment from factories producing and using it and from products containing it [35].MBT has been shown to induce tumors,to be allergenic,to be toxic to aquatic organisms,to hamper wastewater treatment, and also to inhibit degradation of easily degradable OPs[36]. So,its removal from environment has caused for much concern [37–40].But little attention has been devoted to the research of the photocatalytic degradation of MBT in the iron oxide–oxalate complex system.The objective of this study is to investigate the effect of iron oxides and oxalic acid on MBT photodegradation; and the effect of the variation of the pH value and the formation of Fe2+and Fe3+on MBT photodegradation during the photo-chemical process.

2.Experimental

2.1.Preparation of iron oxides

?-FeOOH was prepared by hydrothermal method described previously[41].First,16g of FeCl2·4H2O,22.4g of(CH2)6N4 and5.6g of NaNO2were dissolved in400,80and80mL of double-distilled water,respectively.Then the three solutions were mixed to obtain a bluish green precipitate.The precipitate was aged in the mixture at60?C for3h before it was centrifuged. The precipitate was washed three times with alcohol and distilled water to remove anions and organic impurities and then dried at

65?C for48h.The dried gel was ground and an orange-colored ?-FeOOH was obtained.Then,?-FeOOH powder was sintered at250,320,420and520?C for2h,respectively,at2?C/min

temperature increase rate and the products were named as IO-

250,IO-320,IO-420and IO-520accordingly.

2.2.Characterization of iron oxides

The X-ray powder diffraction patterns of the?ve iron oxides

were recorded on a Rigaku D/Max-III A diffract meter at

room temperature,operating at30kV and30mA,using a

Cu K?radiation(λ=0.15418nm).The phases were identi-

?ed by comparing diffraction patterns with those on the stan-

dard powder XRD cards compiled by the Joint Committee on

Powder Diffraction Standards(JCPDS)[42].The total surface

area and total pore volume of?ve samples were measured by

the Brunauer–Emmett–Teller(BET)method in which the N2

adsorption at77K was applied and Carlo Erba Sorptometer was

used[43].

2.3.Experiment of MBT photodegradation

The photodegradation of MBT was carried out using a Pyrex

cylindrical photoreactor,of which an8W black light lamp

(Luzchem Research Inc.)with the main emission at365nm

was positioned at the centre.The photoreactor was surrounded

by a Pyrex circulation water jacket to control the temperature

during reaction and was covered by aluminum foil to avoid

indoor light irradiation.The reaction suspension was formed

by adding given dosage of iron oxide powder into250mL of

aqueous MBT solution.In all experiments here the initial con-

centration of MBT was10mg/L.Prior to the photoreaction,the

suspension was magnetically stirred in the dark for30min to

establish adsorption/desorption equilibrium.During the pho-

toreaction process,the aqueous suspension was irradiated by

the UV A light with constant aeration and magnetically stirring.

And at the given time intervals,the analytical samples were

withdrawn from the suspension and immediately centrifuged

for20min at4800rpm and then stored in the dark for needed

analysis.

2.4.Analytical method

The remaining MBT during the photodegradation was deter-

mined by liquid chromatography(LC).A mobile phase con-

sisting of70%methanol(HPLC grade)and30%water(HPLC

grade)acidi?ed by adding1%(v/v)acetic acid was operated

at a?ow rate of0.5mL/min,and a wavelength of323nm was

used to detect MBT.The concentration of oxalic acid during

photoreaction was determined by ion chromatography(Dionex

DX-120).An IONPAC ASII-AC and AGII-HC(4nm)were used

for analysis,in which mobile phase consisting of15mmol/L

KOH solution was operated at a?ow rate of1.0mL/min with

the retention time of7.08min for oxalic acid.The concentration

of Fe3+and Fe2+ions were tested by the1,10-phenanthroline

method[44].

42 C.Liu et al./Journal of Molecular Catalysis A:Chemical 252(2006)40–48

3.Results and discussion 3.1.Properties of iron oxides

Fig.1showed the X-ray diffractograms (XRD)of iron oxides.Pure ?-FeOOH powder was obtained ?rstly because all eight peaks of (020),(120),(031),(111),(200),(220),(151)and (231)determined by XRD were attributable to ?-FeOOH.IO-420and IO-520were pure hematite because nine peaks of (012),(104),(110),(113),(024),(116),(018),(214)and (300)were attributable to hematite [45].At meantime,IO-250and IO-320should consist of the mixture of maghemite and hematite.The strongest XRD peak of hematite is the (104)peak with the d h k l -values of 2.69while that of maghemite is the (311)peak with the d h k l -values of 2.518.However,the peak (110)with the d h k l -values of 2.51for hematite and the peak (311)for maghemite present at the same position of Bragg angles.For IO-250and IO-320,the strongest peak at 2θ=35.7?should contain two peaks (110)and (311),and the second strongest peak at 2θ=33.2?should be attributable to hematite (104)peak because (110)peak is the second strongest peak,not the ?rst strongest peak for hematite standard graph,as showed in Fig.1.Furthermore,for IO-250and IO-320,the peaks (422)and (440)of maghemite at 2θ=52.2and 62.8?,respectively,were also almost at the same position of peaks (116)and (214)of hematite,respectively.IO-250and IO-320also had two small (422)and (440)peaks at 2θ=52.2and 62.8?,respectively,which attributed to maghemite,but hematite.It is dif?cult to determine the relative ratio of (110)peak for hematite and (311)peak for maghemite.Obviously,the content of hematite increased with the increase of sintering temperature because the relative intensity of (104)peak for hematite increased with the increase of sintering temperature.It could be concluded that the phase transformation from lepidocrocite to maghemite and then to hematite occurred gradually with the increase of sintering temperature.The crystal size of ?-FeOOH,IO-250,IO-320,IO-420and IO-520were 13.7,19.2,35.7,54.7and 73.9nm

deduced

Fig.1.The XRD graph of iron oxides powders (curves a and b were the standard XRD graphs of hematite and maghemite,respectively).

from Sherrer’s formula with their strongest peaks of XRD based on Fig.1.Obviously,the crystal size increased with increasing the sintering temperature.

The speci?c surface area and total pore volume of iron oxides samples were measured by BET method.The speci?c surface area of ?-FeOOH,IO-250,IO-320,IO-420and IO-520was 115.44,75.91,60.48,29.40and 22.11m 2/g,respectively;while the total pore volume was 0.2977,0.3485,0.3762,0.2747and 0.1650m 3/g,respectively.The results showed that the speci?c surface area decreased with increasing the sintering temperature.?-FeOOH had the largest speci?c surface area while IO-320had the largest total pore volume.

3.2.Photodegradation of MBT on different conditions Fig.2showed the MBT degradation on the different condi-tions.Without UV light (dark)and only with 1.0mM oxalic acid and 0.4g/L IO-420in the 250mL suspension,the concentration of MBT decreased slightly at 1.9%because of adsorption on the surface of iron oxide (curve a).The removal percentage of MBT was at 7.8%level under UV light irradiation without iron oxide and oxalic acid (curve b),and at 12%level at 90min under UV light with 0.4g/L IO-420and without oxalic acid (curve c).When both 1.0mM oxalic acid and iron oxide with 0.4g/L dosage were added into the reaction suspension to form the photo-Fenton-like system under UV irradiation (curves d–h),the removal percentage of MBT was signi?cantly increased,and was up to 41.0,78.9,89.5,76.3and 67.5%.The degradation of MBT in iron oxide–oxalate systems can be described by ?rst-order kinetic well and the ?rst-order kinetic constants k were 0.75×10?2(R =0.9571),2.01×10?2(R =0.9846),2.74×10?2(R =0.9934), 1.84×10?2(R =0.9886)and 1.5×10?2(R =0.9868)min ?1for ?-FeOOH,IO-250,

IO-

Fig.2.Photodegradation of 10mg/L MBT under different conditions:(a)1.0mM oxalic acid +0.4g/L IO-420,(b)UV ,(c)UV +0.4g/L IO-420,(d)0.4g/L ?-FeOOH +UV +1.0mM oxalic acid,(e)0.4g/L IO-250+1.0mM oxalic acid +UV ,(f)0.4g/L IO-320+1.0mM oxalic acid +UV ,(g)0.4g/L IO-420+1.0mM oxalic acid +UV and (h)0.4g/L IO-520+1.0mM oxalic acid +UV .

C.Liu et al./Journal of Molecular Catalysis A:Chemical 252(2006)40–4843

320,IO-420and IO-520,respectively,after 90min reaction.Obviously,the k value was ranked as the order of IO-320>IO-250>IO-420>IO-520>?-FeOOH.The results showed that iron oxides,oxalate and UV light all should play important roles in MBT degradation,and MBT photodegradation should be greatly enhanced in the cooperation of iron oxide and oxalate.At the meantime,MBT photodegradation also strongly depended on the properties of iron oxides.Among of iron oxides,IO-320had the most photochemical activity.Because IO-320had a mixed crystal structure of maghemite and hematite and the largest total pore volume.Actually the band gaps of maghemite (2.03eV)and hematite (2.02eV)are very close,but they have different positions.Hematite has a conduction band level at ?0.62V and a valence band level at +1.40V ,while maghemite has a conduction band level at ?0.08V and a valence band level at +1.94V [46].The mixed crystal structure should result in an effective electron separation and transformation within the iron oxides.On the other hand,the conditions such as pH value and the concentration of Fe 2+and Fe 3+in the IO-320-oxalate system may favor the degradation of MBT in the system,as discussed behind.

3.3.The dependence of MBT photodegradation on the dosage of iron oxides

Fig.3showed the dependence of MBT degradation on the dosage of IO-420in the presence of oxalic acid with an initial concentration of 1.0mM.The ?rst-order kinetic constants k was 1.65×10?2(R =0.9922), 1.97×10?2(R =0.9858),

2.06×10?2(R =0.9854), 1.85×10?2(R =0.9908),1.84×10?2(R =0.9886), 1.09×10?2(R =0.9830)and

0.91×10?2(R =0.9867)min ?1with the dosage of 0.10,0.20,0.25,0.30,0.40,1.00and 1.50g/L,respectively.Obviously,there should be an optimal dosage of 0.25g/L for IO-420.In fact,excessive dosage of iron oxide will limit the penetration of UV light in the solution and lead to the quick decay of UV light intensity.The similar results could be obtained by using other iron

oxides.

Fig.3.The effect of IO-420dosage on the photodegradation of 10mg/L MBT under UV irradiation in the presence of 1.0mM oxalic

acid.Fig.4.The ?rst-order reaction kinetic constants (k )vs.the dosage of different iron oxides in the presence of 1.0mM oxalic acid under UV irradiation.

Fig.4showed that the dependence of the ?rst-order kinetic constants (k )on the dosage of the ?ve kinds of iron oxides in the presence of oxalic acid with an initial concentration of 1.0mM.The k values of MBT degradation were up to 0.75×10?2,2.09×10?2,2.91×10?2,2.06×10?2and 1.6×10?2min ?1when the optimal dosage were 0.40,0.35,0.30,0.25and 0.25g/L by using ?-FeOOH,IO-250,IO-320,IO-420and IO-520,respectively.

3.4.The dependence of MBT photodegradation on the initial concentration of oxalate

Fig.5showed the dependence of MBT photodegradation on

the initial concentration of oxalic acid (C 0ox

)with the dosage of 0.4g/L IO-420under UV light irradiation.The k values of MBT degradation were 0.11×10?2(R =0.9609),0.82×10?2(R =0.9767),1.11×10?2(R =0.9747),1.37×10?2(R =0.9834),1.84×10?2(R =0.9886), 1.56×10?2(R =0.9864), 1.06×10?2(R =0.9736),0.88×10?2(R =0.9691)and 0.76×10?

2

Fig.5.The effect of initial concentration of oxalic acid on the photodegradation of 10mg/L MBT under UV irradiation by using 0.4g/L IO-420.

44 C.Liu et al./Journal of Molecular Catalysis A:Chemical 252(2006)40–48

(R =0.9707)min ?1when the initial concentration of oxalic acid was 0,0.2,0.4,0.8,1.0,1.2,1.6,2.0and 3.0mM,respectively.The results indicated that oxalate should signi?cantly enhance

MBT degradation and there was an optimal C 0ox

at 1.0mM level for MBT degradation.When C 0ox

was less than the optimal one,MBT degradation would be promoted with the increase of C 0ox

,while MBT degradation would be limited with the increase of C 0ox when C 0ox

was more than the optimal one.The similar results could also be obtained by using other iron oxides.Fig.6showed the dependence of the ?rst-order kinetic constants k values for

MBT photodegradation on C 0ox

by using ?-FeOOH,IO-250,IO-320,IO-420and IO-520with the dosage of 0.4g/L.It is very interesting that the optimal initial concentrations of oxalic acid should be 1.0mmol/L for all the ?ve iron oxides and the k val-ues were 0.75×10?2,2.01×10?2,2.74×10?2,1.84×10?2

and 1.50×10?2min ?1in the presence of the optimal C 0ox

for ?-FeOOH,IO-250,IO-320,IO-420and IO-520,respectively.The above experimental results con?rmed that the presence of iron oxides and oxalate in cooperation can greatly accelerate MBT degradation.While the ?rst-order kinetic constant (k )was increased 12.5times from 6.0×10?4min ?1in the absence of oxalate to 7.5×10?3min ?1in the presence of oxalate for ?-FeOOH,28.7times from 7.0×10?4to 2.01×10?2min ?1for IO-250,34.3times from 8.0×10?4to 2.74×10?2min ?1for IO-320,16.7times from 1.1×10?3to 1.84×10?2min ?1for IO-420and 13.6times from 1.1×10?3to 1.5×10?2min ?1for IO-520with the optimal oxalate dosage.These results are very useful information to better understand the effect of oxalate on MBT degradation in such an iron oxide–oxalate complex system.

On the surface of iron oxides,oxalic acid is ?rst adsorbed by iron oxide particles to form iron oxide–oxalate complexes of [Fe III (C 2O 4)n ]3?2n as described by Eq.(1).[Fe III (C 2O 4)n ]3?2n can be excited to form [Fe II (C 2O 4)(n ?1)]4?2n and oxalate radical (C 2O 4)??as indicated by Eq.(2).In the solution,[Fe III (C 2O 4)n ]3?2n

could

Fig.6.The ?rst-order reaction kinetic constants (k )vs.the initial concentration

of oxalic acid (C 0ox

)in different iron oxides suspension with the dosage of 0.4g/L under UV light irradiation.

be also excited to form [Fe II (C 2O 4)(n ?1)]4?2n and oxalate radical (C 2O 4)??as described by Eq.(3).The oxalate radical can be transferred into carbon-centered radical (CO 2)??as described by Eq.(4);and the excited electron is transferred from carbon-centered radical into adsorbed oxygen forming superoxide ion (O 2??),as described by Eq.(5).Fe 3+reacts with O 2??to form O 2and Fe 2+as described by Eq.(6)and Fe 2+reacts with O 2??to form H 2O 2in acidic solution and Fe 3+as described by Eq.(7).To be important,Fe 2+is re-oxidized to Fe 3+in the presence of O 2.Fe 2+reacts with H 2O 2to form hydroxyl radical (?OH)and Fe 3+as described by Eq.(8).Balmer and Sulzberger [30]reported Fe 3+mainly presented as Fe(C 2O 4)2?and Fe(C 2O 4)33?in the Fe 3+-oxalate system when the concentration of oxalate was more than 0.18mM.Fe(C 2O 4)2?and Fe(C 2O 4)33?are much more ef?ciently photolyzed than other Fe 3+species.This was the reason why MBT photodegradation was enhanced greatly in the presence of oxalate.However,excessive oxalate would occupy the adsorbed sites on the surface of iron oxide and react competitively for hydroxyl radical.The adsorption of MBT on the surface was also hindered and only a part of hydroxyl radical would be utilized by MBT.On the other hand,a higher concentration of oxalate would lead to lower pH at the beginning which was not favorable to photo-Fenton system [47].Thirdly,excessive oxalate would lead to the formation of a large amount of Fe 3+,which would inhibit the formation of H 2O 2,as described in Eq.(7).There-fore,excessive oxalate led to the inhibition of MBT degradation in the system.The reason for the difference of photochemical activity of the ?ve kinds of iron oxides will be discussed behind.Iron oxide +n H 2C 2O 4?[Fe(C 2O 4)n ](2n ?3)?

(1)

[Fe(C 2O 4)n ](2n ?3)?+hν→Fe(C 2O 4)22?(or Fe(C 2O 4)22?)+(C 2O 4)??

(2)

Fe III (C 2O 4)n 3?2n +hν→[Fe II (C 2O 4)(n ?1)]4?2n +(C 2O 4)??

(3)

(C 2O 4)??→CO 2+CO 2??(4)CO 2??+O 2→CO 2+O 2??(5)O 2??+Fe 3+→Fe 2++O 2

(6)O 2??+n H ++Fe 2+→Fe 3++H 2O 2(7)Fe 2++H 2O 2→Fe 3++OH ?+?OH (8)

3.5.The photodegradation of oxalate

Oxalic acid was the important factor affecting the photodegra-dation of MBT.The concentration of oxalate versus reaction time was shown in Fig.7in the presence of iron oxides with the dosages of 0.4g/L when the initial concentration of oxalate was 1.0mM.After 90min reaction,the concentration of oxalate decreased to about 0.2–0.3mM in all the ?ve iron oxide–oxalate systems,and the ?rst-order kinetic constants (k )for oxalate

C.Liu et al./Journal of Molecular Catalysis A:Chemical252(2006)40–48

45

Fig.7.The photodegradation of oxalic acid with the initial concentration of 1.0mM in the presence of iron oxides with the dosage of0.4g/L under UV light irradiation.

degradation were1.46×10?2(R=0.9829),1.87×10?2(R= 0.9905),1.87×10?2(R=0.9937),1.50×10?2(R=0.9884) and1.37×10?2(R=0.9802)min?1by using?-FeOOH,IO-250,IO-320,IO-420and IO-520,respectively.Oxalic acid should be removed in two ways.Firstly,oxalate was strongly adsorbed and complexed with the iron oxide as Eq.(1)[48,49]. Secondly,oxalate could be photodegraded by the?OH generated as Eq.(9)[48].Due to the high speci?c surface area and the less stable thermodynamically,?-FeOOH,IO-250and IO-320can complex more easily with oxalic acid than IO-420and IO-520. Therefore,the concentration of oxalic acid by using?-FeOOH, IO-250and IO-320decreased quickly at?rst owing to adsorp-tion on the surface and then became slowly while that decreased gradually during thorough the photochemical process by using IO-420or IO-520.

?OH+HC

2O4

?→CO2+CO2??+H2O(9) 3.6.The variation of pH value

The dependence of the variation of pH versus reaction time on different initial concentration of oxalic acid by using IO-320 (0.4g/L)was showed in Fig.8A.Obviously,pH value increased along with the reaction time.At the beginning,a higher initial concentration of oxalic acid led to a lower initial pH value.How-ever,the pH value in the solution increased much more slowly in the presence of a lower C0ox than that of a higher one.A higher C0ox also caused a greater increase of pH value in the solution with the reaction undergoing along.After30min reaction,the sequence of pH values from low to high turned reverse.A higher concentration of oxalic acid lead to more[Fe(C2O4)n](2n?3)?to be formed.But during the photochemical process,OH?would be generated in accompany with the generation of?OH as Eq.(10)[50,51].More[Fe(C2O4)n](2n?3)?in the sys-tem can generate more OH?so as to increase the pH value more in the solution in the later stage during the

photochemical Fig.8.The change of pH value during10mg/L MBT degradation process,with different C0ox by using0.4g/L IO-320(A)and with different iron oxides with the dosage of0.4g/L in the presence of1.2mM oxalic acid(B),under UV light irradiation.

process.

Fe2++Fe(C2O4)+H2O2→Fe3++FeC2O4++OH?+?OH(10) The variation of pH also depended strongly on iron oxides as shown in Fig.8B.The dosage of iron oxides was0.4g/L and the initial concentration of oxalic acid was1.2mM.The initial pH values were recorded after30min adsorption in dark,and were3.41,3.22,3.08,2.99and2.84before UV light irradia-tion,and then increased to5.60,5.15,4.93,4.53and4.40after 90min reaction,by using?-FeOOH,IO-250,IO-320,IO-420or IO-520,respectively.When pH value of the reaction suspension was about3,the photo-Fenton reaction was more active[52]. The higher initial pH value should be attributable to the stronger adsorption of oxalate on the surface of iron oxides.Obviously, the initial pH value in the solution was ranked the order as?-FeOOH>IO-250>IO-320>IO-420>IO-520.As above men-tioned,the iron oxide that had a higher speci?c surface area and a lower stable thermodynamics can more easily complex

46 C.Liu et al./Journal of Molecular Catalysis A:Chemical 252(2006)40–48

with oxalic acid and then more oxalic acid can be adsorbed which leading to a higher initial pH value in the solution.The increase of pH value was also resulted from the oxalate degrada-tion.Fig.8B showed that pH value increased quickly in the ?rst 45min reaction,and almost remained constant during 45–90min reaction.And the increased amount of pH value also was ranked the order as ?-FeOOH >IO-250>IO-320>IO-420>IO-520.

3.7.The formation of Fe 2+and Fe 3+

Fig.9showed the change of the concentration of Fe 2+(A)and Fe 3+(B)in the presence of different initial concentration of oxalic acid by using IO-320with the dosage of 0.4g/L under UV light irradiation.Obviously,the concentration of

Fe 2+and Fe 3+depended strongly on the C 0ox .A higher C 0ox

led to a higher concentration of Fe 2+and Fe 3+.As before men-tioned,the excessive concentration of Fe 3+was also harmful to MBT photodegradation.Fig.9also showed that the

con-

Fig.9.The dependence of the change of concentration of Fe 2+(A)and Fe 3+(B)

on different C 0ox

by using 0.4g/L IO-320under UV light irradiation.centration of Fe 3+dramatically increased and reached the peak

while the concentration of Fe 2+were negligible after 30min dark adsorption in the solution.The results showed that iron oxides can quickly be dissolved in oxalic acid solution and the reduction process of Fe 3+hardly happened in the dark.In the ?rst 20min during the photochemical process,the concentra-tion of Fe 2+increased quickly and reached the peak because Fe(III)-oxalate can be easily photo dissolved and reduced under UV light irradiation [17]and Fe 2+could be produced during this period as described by Eqs.(3)and (6).The formation of Fe 2+became slower with the decrease of the concentra-tion of oxalic acid.At the same time,the pH value gradually increased due to the degradation of oxalic acid,and Fe 3+pre-cipitated as Fe(OH)3with the increase of pH value,and then the concentration of Fe 3+decreased.At the meantime,Fe 2+would be consumed and Fe 3+formed in order to compensate Fe 3+because of the precipitation of Fe 3+,based on the Fenton-like reaction (Eqs.(7)and (8)).So,the concentration of Fe 2+decreased gradually in the later stage of the photochemical process.

Furthermore,the concentration of Fe 2+and Fe 3+in the iron oxide–oxalate system also depended on the iron oxides.As shown in Fig.10,the concentration of Fe 2+(A)increased dra-matically at the ?rst 20min for ?-FeOOH,IO-250and IO-320during the photochemical process and reached the peak value of 33.4,25.5and 22.4mg/L,respectively,and then,decreased grad-ually on prolonging the reaction time.And the concentration of Fe 3+(B)increased to the peak value of 15.7,11.3and 9.1mg/L,respectively,after 30min dark adsorption and then decreased greatly and quickly,and remained constant after 30min reac-tion.For IO-420and IO-520,the concentration of Fe 2+increased gradually and was always below 2.5mg/L during the whole pho-tochemical process and the concentration of Fe 3+remained at about 1.0mg/L level.

As above mentioned,IO-420and IO-520with pure ?-Fe 2O 3phase had the more stable thermodynamics and lower speci?c surface area than IO-250and IO-320which had the mixed phase of ?-Fe 2O 3and ?-Fe 2O 3,and than ?-FeOOH [17].It is dif?cult to form Fe(III)-oxalate complexes on the surface of IO-420and IO-520,and then the concentration of dissolved iron in the solution was at low level.A lower concentration of Fe(III)-oxalate complexes on the surface of iron oxides and Fe(III)-oxalate in the solution for IO-420and IO-520obvi-ously led to a lower photochemical activity,while the excessive concentration of Fe 3+for ?-FeOOH and IO-250also led to a lower photochemical activity for MBT degradation because the excessive amount of Fe 3+would inhibit the formation of H 2O 2,as described in Eq.(7).Many researchers had studied the effect of concentration of Fe 2+and Fe 3+on the degrada-tion of organic pollutants in the photo-Fenton systems,and it was reported that both excess and lack of Fe 2+and Fe 3+would hinder the degradation of organic pollutants [53].In the photo-Fenton reaction of this investigation,the concentra-tion of Fe 2+and Fe 3+for IO-320were more favorable to the reaction (7)and (8)than for ?-FeOOH and IO-250,and this led to a higher activity for IO-320than for ?-FeOOH and IO-250.

C.Liu et al./Journal of Molecular Catalysis A:Chemical252(2006)40–48

47

Fig.10.The dependence of the change of concentration of Fe2+(A)and Fe3+ (B)on different iron oxides with the dosage of0.4g/L in the presence of1.2mM oxalic acid under UV light irradiation.

4.Conclusions

The photodegradation of MBT depended strongly on the crystal structure,the dosages of iron oxides and the initial concentration of oxalate(C0ox).The optimal dosages for?-FeOOH,IO-250,IO-320,IO-420and IO-520were0.40,0.35, 0.30,0.25and0.25g/L,respectively.And the optimal initial concentration of oxalic acid for all the?ve iron oxides was 1.0mmol/L.IO-320had the highest photochemical activity. The MBT photodegradation in the presence of optimal C0ox was ranked the order as IO-320>IO-250>IO-420>IO-520>?-FeOOH.The concentration of dissolved Fe2+and Fe3+depended strongly on the initial concentration of oxalic acid and iron oxides,and a higher C0ox led to a higher concentration of Fe2+ and Fe3+.Acknowledgments

The authors wish to thank the China National Natural Sci-ence Foundation Project No.20377011and Guangdong Natural Science Foundation Key Project No.036533.

References

[1]W.G.Barb,J.H.Baxendale,P.George,K.R.Hargrave,Trans.Faraday

Soc.47(1951)462.

[2]D.F.Bishop,G.Stern,M.Fleischmann,L.S.Marshall,Ind.Eng.Chem.

Process Des.Dev.7(1968)110.

[3]C.Walling,Acc.Chem.Res.8(1975)121.

[4]C.Walling,K.Amaranth,J.Am.Chem.Soc.104(1982)1185.

[5]M.C.Lu,J.N.Chen, C.P.Chang,J.Hazard.Mater.65(1999)

277.

[6]G.V.Buxton,C.L.Greenstock,W.P.Helman,A.B.Ross,J.Phys.Chem.

Ref.Data17(1988)513.

[7]J.E.F.Moraes,F.H.Quina,C.A.O.Nascimento,D.N.Silva,O.Chiavone-

Filho,Environ.Sci.Technol.38(2004)1183.

[8]R.Sauleda,E.Brillas,Appl.Catal.B29(2001)135.

[9]J.Beltran-Heredia,J.Torregrosa,J.R.Dominguez,J.A.Peres,Chemo-

sphere42(2001)351.

[10]B.Gozmen,M.A.Oturan,N.Oturan,O.Erbatur,Environ.Sci.Technol.

37(2003)3716.

[11]J.Casado,J.Fornaguera,M.I.Galan,Environ.Sci.Technol.39(2005)

1843.

[12]J.Park,S.Kim,Y.Lee,K.Baek,J.Yang,Eng.Geol.77(2005)

217.

[13]H.Fallmann,T.Krutzler,R.Bauer,S.Malato,J.Blanco,Catal.Today

54(1999)309.

[14]K.Wu,Y.Xie,J.Zhao,H.Hidaka,J.Mol.Catal.A144(1999)

77.

[15]M.Pera-Titus,V.Garcia-Molina,M.A.Ba?n os,J.Gim′e nez,S.Esplugas,

Appl.Catal.B47(2004)219.

[16]E.Chamarro,A.Marco,S.Esplugas,Water Res.35(4)(2001)1047.

[17]C.Siffert,B.Sulzberger,Langmuir7(1991)1627.

[18]B.C.Faust,J.Allen,Environ.Sci.Technol.27(1993)2517.

[19]Y.G.Zuo,Y.W.Deng,Chemosphere35(1997)2051.

[20]U.Schwertmann,R.M.Cornell,Iron Oxides in the Laboratory:Prepa-

ration and Characterization,VCH,New York,1991,pp.14–18.

[21]T.Kayashima,T.Katayama,BBA-Gen.Subjects1573(2002)1.

[22]R.V.Shende,V.Mahajani,Ind.Eng.Chem.Res.33(1994)3125.

[23]A.Fortuny,C.Ferrer,C.Bengoa,J.Font,A.Fabregat,Catal.Today24

(1995)79.

[24]D.Duprez,F.Delanoe,J.Barbier Jr.,P.Isnard,G.Blanchard,Catal.

Today29(1996)317.

[25]J.A.Zazo,J.A.Casas,A.F.Mohedano,M.A.Gilarranz,J.J.Rodriguez,

Environ.Sci.Technol.39(2005)9295.

[26]D.Mantzavinos,R.Hellenbrand,A.G.Livingston,I.S.Metcalfe,Appl.

Catal.B7(1996)379.

[27]Y.G.Zuo,J.Holgn′e,Environ.Sci.Technol.26(1992)1014.

[28]R.G.Zepp,B.C.Faust,Environ.Sci.Technol.26(1992)313.

[29]V.Nadtochenko,J.Kiwi,J.Chem.Soc.Faraday Trans.93(1997)2373.

[30]M.E.Balmer,B.Sulzberger,Environ.Sci.Technol.33(1999)2418.

[31]P.Mazellier,B.Sulzberger,Environ.Sci.Technol.35(2001)3314.

[32]A.Bozzi,T.Yuranova,J.Mielczarski,A.Lopez,J.Kiwi,https://www.360docs.net/doc/5112681222.html,-

mun.19(2002)2202.

[33]H.W.Engels,H.J.Weidenhaupt,M.Abele,M.Pieroth,W.Hofmann,

Ullmann’s Encyclopedia of Industrial Chemistry,vol.112,?fth ed., Wiley–VCH,Wenheim,p.329.

[34]C.C.Chen,C.E.Lin,Anal.Chim.Acta321(1996)215.

[35]Anon.,2-Mercaptobenzothiazole;proposed test rule,Federal Register50

(1985)46121.

[36]O.Fiehn,G.Wegener,J.Jochimshn,M.Jekel,Water Res.32(1998)

1075.

48 C.Liu et al./Journal of Molecular Catalysis A:Chemical252(2006)40–48

[37]M.A.Gaja,J.S.Knapp,Water Res.32(1998)3786.

[38]M.H.Habibi,S.Tangestaninejad,B.Yadollahi,Appl.Catal.B33(2001)

57.

[39]M.A.Malouki,C.Richard,A.Zertal,J.Photochem.Photobiol.A167

(2004)121.

[40]F.B.Li,X.Z.Li,M.F.Hou,K.W.Cheah,W.C.H.Choy,Appl.Catal.A

285(2005)181.

[41]F.S.Yen,W.Ch.Chen,J.M.Yang,Ch.T.Hong,Nano Lett.2(2002)

245.

[42]Joint Committee for Powder Diffraction Standards,“JCPDS”Interna-

tional Center for Diffraction Data,1979.

[43]J.G.Yu,J.C.Yu,M.K.-P.Leung,W.K.Ho,B.Cheng,X.J.Zhao,J.C.

Zhao,J.Catal.217(2003)69.

[44]C.Paipa,M.Mateo,I.Godoy,E.Poblete,M.I.Toral,T.Vargas,Miner.

Eng.18(2005)1116.[45]R.M.Cornell,U.Schwertmann,The Iron Oxides:Structure,Properties,

Reaction,Occurrences and Uses,second ed.,Wiley–VCH,Weinheim, 2003,pp.29–31.

[46]J.K.Leland,A.J.Bard,J.Phys.Chem.91(1987)5076.

[47]L.Lunar,D.Sicilia,S.Rbio,D.Perez-Bendito,U.Nickel,Water Res.

34(2000)1791.

[48]B.Sulzberger,https://www.360docs.net/doc/5112681222.html,ubscher,Mar.Chem.50(1995)103.

[49]R.M.Smith,A.E.Martell,Critical Stability Constants:Inorganic Com-

plexes/Other Organic Ligands,vol.4,Plenum Press,New York,1976.

[50]K.A.Hislop,J.R.Bolton,Environ.Sci.Technol.33(1999)3119.

[51]J.D.Rush,B.H.J.Bielski,J.Phys.Chem.89(1985)5062.

[52]F.J.Rivas,V.Navarrete,F.J.Beltran,J.F.Garcia-Araya,Appl.Catal.B

48(2004)249.

[53]M.Pera-Titus,V.Garcia-Molina,M.A.Banos,J.Gimenez,S.Esplugas,

Appl.Catal.B47(2004)219.

中国最高大上的四大学术文摘【果断收藏】

中国最高大上的四大学术文摘【果断收藏】 中国最高大上的四大学术文摘【果断收藏】 《中国社会科学文摘》2000年创刊,月刊,是中国社会科学院主管,中国社会科学杂志社主办的一份二次文献,以学科和问题为双导向,既有学林,前沿等栏目,又有不同的学科。 人大复印报刊资料创刊于1958年,目前已成为国内规模较大、影响较深的社会科学文献信息资料库,是中国人民大学书报资料中心编辑,从全国几千种报刊上精选出人文、社会科学论文的全文,按专题分类编辑,,文献归为教育、文史、经济、政治四大类,每类按年度(最近一年按季度)编排。现有文献记录共约15.8万条,每条记录包括文章的题录、文摘、全文和有关的著录项。 《高等学校文科学术文摘》创刊于1984年,原名《高等学校文科学报文摘》,由原中央教育部决定创办,并委托上海市主办,由复旦大学、华东师范大学、上海师范大学、上海外国语大学、上海财经大学、华东政法大学等六所高校联合编辑出版。杂志社设在上海师范大学。2003年原《高等学校文科学报文摘》经国家教育部和新闻出版总署批准,更名为《高等学校文科学术文摘》。重点反映人文社会科学各学科研究中具有原创性或体现新观点、新思路、新材料,提出

或解决相关学术问题的优秀论文,以及学科研究中具有前瞻性、探索性或多学科与跨学科研究等方面的前沿成果,积极推荐人文社会科学研究中与国家社会经济改革和发展密切 联系的具有全局性、战略性或具有重大理论和现实意义的优秀成果;转载推出一大批人文社会科学重要论文,为活跃理论学术界的探讨研究,国家、地方有关部门的决策提供了有力支持,为中国人文社会科学的繁荣发展贡献了一份力量。那么,继续溯及原因,这四种文摘之所以被认定权威,主要是因为它们“被具有”评价期刊的功能。这是CSSCI在构建期刊评价体系时的一个指标:二次文献转载。该指标是指我国几种重要的二次文献对各期刊中论文全文转载的数量统计,采用四种二次文献数据:人民出版社主办的《新华文摘》、中国社会科学院主办的《中国社会科学文摘》、中国人民大学主办的《人大报刊复印资料》,以及上海师范大学主办的《高等学校文科学报文摘》,最后一种仅适用于对高校综合性学报。二次文献转载指数的权重分配主要按照期刊论文被这几个二次文献转载的难易程度进行了分配,其占比例分别为:新华文摘(45%)、中国社会科学文摘(35% )、人大报刊复印资料(20% )。这个比例主要是针对评价综合性期刊的。如果评价对象是高校综合性学报,那么,这三种二次文献要分给《高等学校文科学报文摘》一定的权重,具体而言,新华文摘(35% )、中国社会科学文摘(20% )、人大报刊复印资

信息检索作业答案卷

简答题 1.什么是检索工具,检索工具应该具备哪几个条件? 答: 检索工具是指用以报导、存贮和查找文献线索,是目录、索引、指南等的统称。它是附有检索标识的某一范围文献条目的集合,是二次文献。通俗地说是根据某种信息需要而按照一定的规则组织编制(建立)的工具或者系统。传统的信息检索工具如字词典、百科全书、文摘、书目、索引等,现在流行的检索工具如数据库、搜索引擎、专业性网站等。 检索工具应该具备的条件:①明确的收录范围;②有完整明了的文献特征标识;③每条文献条目中必须包含有多个有检索意义的文献特征标识,并标明供检索用的标识;④全部条目科学地、按照一定规则组织成为一个有机整体;⑤有索引部分,提供多种必要的检索途径。 2.文摘型检索工具的特点以及利用文摘型检索工具的重要性。 答:特点:文摘型检索工具是将大量分散的文献,选择重要的部分,以简炼的形式做成摘要,并按一定的方法组织排列起来的检索工具。按照文摘的编写人,可分为著者文摘和非著者文摘。著者文摘是指按原文著者编写的文摘;而非著者文摘是指由专门的熟悉本专业的文摘人员编写而成。就其摘要的详简程度,可分为指示性文摘和报导性文摘两种。指示性文摘以最简短的语言写明文献题目,内容范围,研究目的和出处,实际上是题目的补充说明,一般在100字左右;报导

性文摘以揭示原文论述的主题实质为宗旨,基本上反映了原文内容,讨论的范围和目的,采取的研究手段和方法,所得的结果或结论,同时也包括有关数据,公式,一般e线图情。五百字左右,重要文章可多达千字。 文摘型检索工具的重要性主要有:目的明确,专业范围明确;同专业收录文献量大;检索功能强大,漏检率低;可与不同的全文数据库链接,节省时间等。 3.网络以其方便快捷和数据共享的优势而成为获取信息的首选途径,这样是否意味着它可以取代其它信息源?请说出你自己的理解。 答:我认为不可以。虽然利用网络是当今我们获取信息的最主要的一个途径。无论在服务内容、方式、深度、广度、效果和效益等方面,网络信息资源几乎胜过了以往所有传统的信息资源,成为人们查找信息的首选目标。但是网络信息源也有它自身的一些缺陷,比如检准率比较低,缺乏有效的检索工具和方式,信息的专业性比较弱等等,这都需要利用其它信息源。与其同属于电子信息源范畴的数据库信息源,就有专业性强,信息质量高,检索简单方便的优点。而传统的文献信息源仍是现在最常用的信息源。口头信息源以其无所不在而成为其他信息源的有效补充。任何一种信息源都有其优缺点,要提高信息的检全率和检准率,不能单一的采用某一种信息源,而应综合利用,扬长避短 4.比较百度和google两大搜索引擎的特点,并举例说明。

四大文摘与四类期刊

四大文摘与四类期刊 2004-07-08 来源:光明日报作者:江泰然我有话说 对“四大文摘”和“四类期刊”,学术界褒贬不一,笼统地夸大其 作用,或含糊地贬低其价值,都不利于学术研究,不利于学术期刊发展。 只有全面客观地认识其特性、功能、影响,并实事求是地分析两者之间 的关系,才能更好地推动学术研究,繁荣发展哲学社会科学。 “四大文摘”的特性 是《新华文摘》、《中国社会科学文摘》、《高等 学校文科学术文摘》和《人大复印报刊资料(系 列)》。它们各有各的学术特性与功能定位。从《新 华文摘》的“政治”、“哲学”、“经济”、“历 史”、“文艺作品”、“科学技术”和“论点摘编” 等栏目,可以看出该刊具有权威性、学术性和普及性特点与功能;从《中 国社会科学文摘》的“批评与争鸣”、“专题研究”、“论著精华”、 “热点问题”、“学者视野”、“对策研究”和“论点摘要”等栏目, 可以看出该刊具有前沿性、学术性和对策性特点与功能;从《高等学校 文科学术文摘》的“哲学研究”、“经济学研究”、“法学研究”、“教 育学研究”、“文学研究”、“历史研究”和“学术卡片”等栏目,可 以看出该刊具有专业性、学术性和综合性特点与功能;从《人大复印报 刊资料(系列)》的《毛泽东思想》、《哲学原理》、《社会学》、《政 治学》、《理论经济》、《历史学》和《文艺理论》等专题,可以看出

该刊具有专题性、学术性和学科特点与功能、它们既有权威性、对策性、专业性、实用性这些个性,也有学术性、信息性、收藏性、检索性这些共性,都力图反映出最新学术研究成果和学术研究动态。它们同时也意识到,转载或摘登别的报刊上的文章,并不说明自己就能取代别的报刊,因为别的报刊属于原始文本,而自己则属于二次文献,它只能说明原始文本中有适合自己栏目或专题的文章。“四大文摘”的出现,弥补了学术研究信息资源上的不足。 “四类期刊”的特性 学术期刊有自然科学期刊与社会科学期刊两大 块。在目前中国9000种期刊中,两者相加差不多 占了一半。社会科学期刊主要有四类:社会科学院 社科联主办的期刊、高等院校党政学校军校主办的 期刊、各学会研究会研究机构主办的期刊和党政机 关群众团体主办的期刊。其中,第一类期刊历史文化底蕴深厚,传统文化与现代意识在那儿出现了碰撞与融通,“问题意识”强,具有很强的学术性和地域特点;第二类期刊薪尽火传氛围浓烈,学科建设与作者队伍建设在那儿有明显的集聚与体现,“学科综合性”强,具有突出的学术传帮带和学术特点;第三类期刊学术社会角色明显,学术研究与社会问题在那儿体现出双体共振效应,“专业学术性”强,具有很强的学理性和行业特点;第四类期刊时代现实主旨凸现,决策理念和工作实践在那儿有合理的交融与渗透,“工作指导性”强,具有强烈的指导性和时

学文摘、用文摘总结

学文摘用文摘总结 胶州市北京路小学为认真落实上级文件精神,北京路小学启动了以“读文摘、用文摘”为主题的读书活动,进一步突出了学校“自能教育”特色,彰显了阅读的浸润作用。 一、加强领导,保证时间,形成制度 学校认真贯彻上级“读文摘、用文摘”精神,专门组成领导小组,由分管副校长牵头,组织各科室、各部门制定出详实可行的“读文摘、用文摘”计划,保证教师读用文摘的时间,切实做到省时、高效。 二、创新形式学用文摘。 1.读书规划为读文摘扬帆 为使读书活动开展的扎实有效,每学期开始都根据学校读书活动规划制定教研组读书计划,从读书的内容到读书的要求进行切实可行的规划。组内教师再根据以上规划制定自己的阅读计划。尤其是对于文摘的阅读更是放在首要位臵。 2.读书时间为读文摘护航 学校规定间周二下午一二节课为语文组教师的团队阅读时间,间周三下午一二节课为数学组教师的阅读时间,间周四下午一二节课为其他老师的阅读时间,在规定时间里,教师必须认真读学校指定的十二五规划中的部分书目以及规定的文摘期数。 其中教师个人阅读时间,学校开展了三个“十”活动:晨读十分钟,午诵十分钟,晚省十分钟(晚上写出自己一天的读书体会)。 三、读书方式为读文摘开道。 1.组团阅读 教师们以学科教研组为读书小团体,在团体活动时互相推荐新书好书,无障碍发表争鸣,通过交流,将读书思考向更广的时空延伸,并形成小组阅读活动记载。组团阅读的形式灵活,注重实效,我们组建多个有个性的读书沙龙:学文摘用文摘沙龙、文学沙龙,教育教研沙龙、治班沙龙等等。 2.接力阅读 受教科所“千册教育图书漂流活动”的启发,学校兴起教研组内外“接

力阅读”图书漂流活动。每个教研组的一位老师读完文摘之后,便提交“爱书人”漂流日志,记录漂流感言。然后把这本书以自己喜欢的方式“继续放漂”给组内成员,放漂时,可以通过图书传递小纸条,向下一老师提问或者留言,也可以在精彩处留下自己的寄语,甚至还可以在书中留下自己的“插图”……有的图书,还可以漂到其他教研组,我们还统计呈现每一本书的漂流故事,看看哪一本漂得更远,参与阅读的人更多。接力式阅读漂流活动,是一个有益的尝试,我们知道漂流的不光是知识,还漂着诚信、文明、友情与责任。 3.俱乐部会员示范读 学校成立的“悟书香〃铸师魂”读书俱乐部,吸引了各教研组青年教师踊跃参加,俱乐部全体会员努力做读书写作的楷模、教书育人的典范。他们不仅自己以“完善自身,享受职业”为追求,还始终体现读书俱乐部的“智慧传播,经验共享,个性发展,携手共进。”这一理念,为自己组内的老师布臵读书任务,带动了自己教研组的读书氛围。 4.读者心语智慧读 我们在校报《书香致远》和校刊《一线风景》上开辟“读者心语”专栏,引导各教研组教师交流读书心得,报道各教研组读书工程开展情况,定期刊登教师的读书体会,使全校教师人人参与到读书活动中来,这激励了各教研组教师阅读的兴趣,掀起“读教育名著、做智慧教师”的热潮。其次,学校在周工作安排中开辟“每周一语”专栏,向教研组教师征集文摘中的智慧格言。“生活即教育,社会即学校,教学做合一。——陶行知““教育就是培养习惯——叶圣陶”等名家名言读来如饮琼浆,启迪心智,如沐春风,催人奋进。 5.聚众力沙龙读 每个教研组每学期至少共读几期文摘,做到边读书,边反思。在共同阅读后,每位教师积极和组内教师相互交流。大家读了文摘中的好文章之后,进行了促膝交谈,大家都被名师高尚的人格魅力深深地打动着,全组教师决心学习名师教育理念,寻找自己前进的方向,获取自己进取的途径与经验,做一个先进教育理念的教师…… 6.好书推介传统读 为全面推动教师读书活动的开展,每个教研组每月举办一次好书推介会。老师们将自己读过文摘中的好文章向同事们推荐,可以是内容简介,可以是品读赏析,也可以是人物分析……推介以后,要求全组教师在接下来的一个月时间里,利用课余时间认真读完这本书,以读书来促进自己业务能力的提高。

常用的期刊评价的检索工具

3、常用于文献评价的权威检索工具有哪些? 答:目前,大多数高校科研管理部门将下列四种数据库作为文献评价的权威检索工具:SCI (科 学引文索引)、ISTP(科学技术会议录索引)、EI(工程索引)和CSCD(中国科学引文数据库)。 评价期刊最常用的检索工具: 美国《期刊引文报告JCR》、《中国科技论文统计源期刊目录》、 《中文核心期刊要目总览》。 还有一些重要的检索工具也可作为文献评价的数据源: 国外文献检索工具---美国《科学评论索引ISR》、美国《社会科学引文索引SSCI》、美国《艺 术与人文科学引文索引A&HCI》、美国《化学文摘CA》、英国《科学文摘SA》、日本《科学技术 文献速报CBST》、俄罗斯《文摘杂志AJ》、德国《数学文摘Zbl Math》、美国《数学评论MA》、 法国《文摘通报BS》、美国《生物学文摘BA》等。 国内文献检索工具---《中国科学引文数据库CSCI或CSCD》、《中文社会科学引文索引CSSCI》、 《中国人民大学书报资料中心复印报刊资料索引》。 《期刊引文报告》(SCI Journal Citation Reports,JCR)期刊引用报告(Journal Citation Reports)简称JCR,是由美国科学信息研究所(ISI)编制出版、国际上一种权威的 用于期刊评价的重要工具。JCR从1975开始,ISI在《科学引文索引》(SCI)年度累积本中,增加 “期刊引用报告”部分。JCR提供的信息包括:每种期刊在当前年被引用的总次数(Total Cites)、 每种期刊的影响因子(即该刊前两年发表的文章在当前年的平均被引次数(Impact Factor))、每 种期刊当前年发表的文章在当前年的平均被引次数(Immediacy Index)、每种期刊当前年的文章 总数(Articles)、每种期刊论文研究课题的延续时间(Cited Half-life)、每种期刊的引用期刊 列表(Citing Journal)、每种期刊的被引用期刊列表(Cited Journal)、每种期刊的影响因子在

学习文摘

湖南联通应对EVA考核的策略研究 [ 发布时间:2010年05月13日] (综合部李荣华) 在5月4日联通总部印发的《2010年省级分公司综合绩效考核办法》中,“EVA改善”居于十大考核指标第三位。这是中国联通为落实国资委今年开始在央企第三任期中全面引入EVA (Economic Value Added经济增加值)这一新的考核方法,采取的重要举措之一。 这意味着央企考核中,EVA将与现行的核心指标----利润处于同等重要地位。往年央企业绩考核单纯以利润总量排名。但利润总量高、利润率高未必带给股东的回报就多,EVA考核将把给股东带来的回报,作为央企业绩考核的最核心指标。这一新概念的引入,将引领央企以更小的投入换取更高的回报,而不是单纯做大规模,做大利润总量。面对EVA考核,湖南联通应该苦练内功,在综合绩效方面再造辉煌。 一、EVA----企业的“保健品” 国资委以出资人身份对央企负责人进行考核始于2003年。按照国资委规划,三年为一个任期。过去六年,央企考核走过了两个任期。 第一任期的关键词是“目标”,对央企负责人考核以提高经济效益为导向;第二任期的关键词是“战略”,以建立全面预算管理和实施战略规划为导向。这两个任期的考核体系、考核办法带有明显的过渡特征,最主要的问题有三个方面:(1)考核指标以财务指标为主。企业作为“公民企

业”除对股东负责外,还要对企业利益相关者负责,对社会承担责任。(2)考核企业的财务指标以绝对量指标为主,如利润。绝对量指标仅能反映企业自己与过去比,而难以横向比较,甚至有可能造成使企业盲目扩大规模、追求数量而忽视质量。(3)考核指标的确定是一对一的谈判、博弈,难以客观、准确。 在第三任期(2010--2012年)推行的EVA,意为经济增加值,算得上是一个舶来品。简单地说就是指,公司税后净营业利润扣除债务和股权成本后的利润余额。EVA理论源于获诺贝尔奖的经济学家默顿?米勒和弗兰克?莫迪利亚尼关于公司价值的经济模型研究成果。 EVA指的是一种经济利润(或称剩余收入)。其核心思想是注重资本成本、鼓励价值创造、突出主业经营、提高资金使用效率、兼顾出资人与经营者的利益。其文化含义是,既不认可靠投机获取的价值,也不鼓励靠扩张来体现增长的行为,而是营造创造价值、提高效率、协同共盈的文化氛围。 有人将EVA形象地比喻为企业的“保健品”,EVA和以往的考核指标相比,它更加注重股东投入资本的回报、资金使用效率,同时也更加注重企业成长的可持续性。 举例来说,国资委给一个央企注入100亿,企业利润两个亿,简单说利润率是2%,但如果把这笔钱存在银行,一年利息收入可能接近3个亿。从这个角度上说,EVA是负值。 2008年自愿参加国资委EVA考核的企业已有93户。一半以上央企的EVA为负值,尤其是处于规模扩张期的央企,排名比较靠后。

读书学习文摘

与书为友 每每读一本好书,仿佛经受一次次心灵的洗礼。我想,安静而又朴实的我能与书为友那一定是顺理成章的事吧?我喜欢读书,如果有一本好书相伴,就能让孤独的午后不再体会到寂寞;就能给寒冷的冬夜增添些许温馨;就能让迷茫的我找到前进的方向。 我喜欢读书,读各种各样喜欢的书,喜欢《读者》,那对人生百态的透彻见解,那对生命价值的探索,会让我顿感大彻大悟,学会从容与坦然。喜欢《知音》,那展现的人世间各种悲欢离合,会让我分外珍惜眼前的幸福。喜欢《莫愁. 家教与成才》,真感觉有了莫愁,对于孩子的家庭教育就莫再发愁。 《莫愁?家教与成才》中一篇名为“赞美,要大声说出来”讲述了一个小女孩虽然很漂亮,但父母在平时却从来没有赞美她的习惯。于是,小女孩越来越觉得自己是只“丑小鸭”。越来越觉得没有人喜欢她。久而久之,开始变得很自卑。等父母意识到这点后,开始采取补救措施,收效却甚微。但有一天放学回家却异常开心,原因却是英语老师批评她了,让她重写英语作业,父母觉得不可思议。原来老师是这样批评她的:“你这个小女孩,长得这么漂亮,上课也很认真听讲,积极回答问题,可就是写的字,怎么那么不认真,重写!”女孩从老师的这句话中找到了自信,她是个漂亮的小女孩,是那么威严的老师这样说的,那肯定是真的,虽然是在批评的时候不经意说的。小女孩从此变得自信起来,打开了心结。 可见,赞美的魅力是如此强烈,而我们老师面对一群接受教育的孩子,批评是不可避免。如何让学生很乐意地接受你的批评并改正呢?我觉得文章中的这位英语老师很值得学习。先大大的表扬他们,然后再指出其不足之处,相信他们会欣然接受些。我认为批评中的表扬就是一杯苦药中的蜜。时刻提醒自己一定要给批评多加点蜜,肯定会让我们的教育开展地更顺利。 《莫愁?家教与成才》中一篇名为“做那个最大的苹果”的文章,其中的含义不仅让我常常用来教育自己的孩子和学生,同时,让我自己也受到了心灵的深刻感悟。文章中儿子认为老师不公平,选拔数奥竞赛选手为什么没有他,而和他差不多水平的另一位同学李捷却选上了,“还不是因为他妈妈是学校的老师!”儿子气乎乎的说。妈妈就问他除了这位妈妈是老师的同学,还有谁被选上了。儿子说还有陈英、李晓露,是大家公认的最优秀的同学。于是,妈妈就拿出三个苹果,一个最大,另外两个差不多。让儿子选出两个最大的,儿子先挑一个最大的,另外一个左看右看那不定主意。妈妈就趁机拿苹果做比喻:“你想想,你和李捷成绩相差无几,老师挑选他不挑选你也不能说明老师偏心啊,如果挑选你,说不定同学们还会说老师偏心你呢。因为你们两个竞争实力并不强,被选中也许只是靠一点点运气谁又能保证以后每一次幸运之神都能降临呢?而老师挑选陈英、李晓露,没有哪个同学说老师偏心,为什么呢?因为他们就像那个大苹果一样,让人一眼就看出来它的与众不同。所以要想赢得机会,不要抱怨,不要灰心,应努力去积蓄养料,使自己长成那个能脱颖而出的大苹果,用事实说话,才会让人信服。你说是吗?” 儿子使劲点点头说:“妈妈我懂了,我要努力做那个最大的苹果.” 生活中,如果你不是那个最大的苹果,而是和其他差不多大的那个,那么在被选择的时候,就不要抱怨,而是努力争取做那个最大的苹果! 是呀,读教育专著,不太习惯读那些深奥的纯理论的研究著作。偏好于有血有肉有灵魂的教育书籍,那书中的作者,就好似坐在我的对面,真诚的和我娓娓道来,让我茅塞顿开。 多读书少提问 传统的语文教学,满堂灌;而后的语文教学,满堂问。进步了吗?进步了,由单向的教学进化成双向的教学。但新的问题又“应运而生”:一篇文章在琐碎的问问答答中往往被剥离得支离破碎,甚至体无完肤,文学原有的内在美和整体美犹如被打碎了的玻璃花瓶而荡然无存。在教师“打破沙锅问到底”的情况下,课堂最终成了

教育文摘和读书笔记

二、------读《给教师的建议》有感 茅进华 闲暇时,我拜读了前苏联着名教育家苏霍姆林斯基的《给教师的建议》一书,受益匪浅。其中“教给儿童利用自由支配的时间”一建议给我印象深刻。 卢梭的“寓教于乐”总让我困惑,我常常思考:究竟怎样才能让学生在学习中感到快乐,在快乐中学习呢?纵观今天背负着“升重点,考大学”沉重包袱。 孩子们,他们哪还有心思去玩,哪里还有时间去乐呀! “一个人在求学时代最宝贵的财富就是自由支配的时间”,虽然减负已不再是一个新鲜的话题,但我们仍能听到许多学生埋怨的声音,细问起来,原来,每天做完老师布置的家庭作业,回家还得完成家长的若干作业。邻居家的小男孩,放学回家很少出门活动,就连寒暑假也不例外,每天都关在小房间里做妈妈布置的什么《江苏正卷》、《课外补充阅读题》等习题集,碰到难题(特别是些联系生活谈感受的题目)必过来问我,细看一下整本习题集,无非是些常见的题目,好些题目与学校统一的练习册雷同,甚至一模一样,而真正能开发智力的题目寥寥无几,孩子就在这样每天练了又练的习题中荒废了自己美好的童年时光。“最宝贵的财富”也在不知不觉中浪费了。 每每想到这儿,初为人母的我都会发誓将来要让自己的女儿从繁重的“家作”中解放出来,我会和她做游戏,看她画画,欣赏她唱歌跳舞,引导她读书明理,带着她去看路边艺人奇妙的手艺……带着她认识大自然,认识社会学习在学校中看不到学不到的知识。 在社会要求学校给学生减负的同时,我们也呼吁各位家长给孩子减负。现在正是他们对世界充满好奇的年纪,正是他们好动好玩的年纪,如果每一位家长都能正确对待他们稚嫩的问题,欣赏他们童趣十足的举动,多给他们“最宝贵的财富”,我相信每个童年在记忆中都会是五彩缤纷的。 三、读《教师人文读本》有感 我们是教师,都是些普通人,但我们从事着神圣的事业。我们每天面对的是人,我们的学生,他们天真、可爱、充满生命的活力和幻想,他们对我们无限的信任和敬慕。我们付出了爱,得到的是更多的爱。 读过《教师人文读本》这本书,感受最深的是爱,对教育,对学生贯穿始终的是爱,最多的爱。 读过这本书,经常思考的问题是:如何在人生的大航船上确定自己的位置,是船员还是舵手,是大副还是士兵。每个人在世界上所扮演的角色不同,关键在于定位。冥冥中有双大手在指挥着我,从师范中学习的艺术到工作中教的课好似是风马牛不相及的事情。但要想教好课不也是一门艺术吗? 有句话说:“活在当下”。其实,每个人的命运还是掌握在自己的手里。虽然从出生到长大,基本是家长在为自己做主。但今后还有漫长的几十年,仍然有自己选择的机会,是选择努力踏实地度过还是空虚而归,全在自己。在学校所学的专业直到现在也拾不起来。工作上的杂事与生活中的事情搅得没有时间,没心情(其实我知道这些都是找借口)。既然经常思考,我想这件事很快会提上我的生活日程的. 每看到书上的某一个片段,总在不停地在反思自己,自己在对待学生的态度,对待家人的态度。我慨叹自己太平凡了,平凡得没有一双慧眼,去发现学生的长处与潜力。平凡得没有一双巧手,把学生引领到更加广阔的天地中去。 工作几年,能够得到学校领导和家长的肯定,心里自然很高兴,但又觉得自己做得实在是太少了,有点愧对家长的信任,领导的表扬。 “公平公正”“爱心”“教师的发展”“教师的专业”等等,新教育为教师提出了那么多的努力方向。所谓坚持,所谓勤奋,所谓的所谓……。教师自身的前进动力,外在的推动力.不论

CA文摘

Hydrogen generation having CO2 removal with steam reforming By: Kandaswamy, Duraiswamy; Chelappa, Anand S.; Knobbe, Mack Assignee: USA A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding the desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming the desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding the hydrogen to the anode side of the fuel cell; regenerating the spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between the plurality of reforming chambers or compartments in a predetd. timing sequence; and, replacing the spent sulfur adsorbent wi t h a fresh sulfur adsorbent at a predetd. time. 一种方法制取氢气使用燃料电池关闭气体,一种硫吸附剂生产脱硫的燃料和废的硫吸附剂;碳氢燃料的方法喂脱硫的燃料和水吸附增强重整装置,包括实行多元化改革分庭或车厢内;改革一个或更多的重整催化剂和一个或多个生成氢和吸附剂;乏的CO2 CO2 吸附剂脱硫的燃料喂饲氢燃料电池;阳极一侧再生废的CO2 吸附剂使用燃料电池阴极废气、制取氢气流循环之间的多元化改革分庭或predetd 中的隔离舱。时间序列;和废的硫吸附剂替换在predetd 的新鲜硫吸附剂。时间。 Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics By: Li, Mingheng; Duraiswamy, K.; Knobbe, Mack Chemical Engineering Science Volume 67, Issue 1, 1 January 2012, Pages 26–33 Dynamics, Control and Optimization of Energy S ystems This work focuses on a preliminary investigation of hydrogen generation using adsorption enhanced reforming (AER) of methanol in packed-bed reactors. A process design of AER in conjunction wi t h proton exchange membrane fuel cell (PEMFC) is conducted using Honeywell UniSim Design software. A time-dependent model based on detailed reaction kinetics from the literature is developed to describe the reactor dynamics during both reforming and regeneration steps. It is shown that AER of methanol has a potential to efficiently generate hydrogen in portable fuel cell applications. Implications for ongoing exptl. studies are discussed.

学文摘用文摘心得体会

读“教室:出错的地方”有感 说到教育文摘,这便携的书籍给老师们带来了新视点,新理念。毫无疑问,假期我还是把教育文摘作为学习的对象,因为那里可以看到教育教学的缩影。其中,在教育随笔专栏中有这样一篇文章——“教室:出错的地方”,让我记忆深刻。文章描述了我国教师和美国教育代表团对上海一所重点中学的特级教师一堂物理课的不同评价。文章中说道“我们的教师认为这节课教学目的明确,教学内容清晰,教学方法灵活,有理论,有实验;教学过程活跃,教师问问题,学生回答问题,师生互动,气氛热烈;教师语言准确简练,教学时间安排得当。下课时,听课教师掌声雷动,可美国客人却没有表情。他们说,课上既然教师问的问题学生都能回答,这堂课还有上的必要吗? 教室是出错的地方,这是日本人的说法。你随便问一个日本学生:你回答不好,上课发言还那么积极,就不怕出错?孩子说,不怕,老师说教室就是出错的地言。如果人人都怕出错,不敢说出自己怕想法,正确的答案从哪里来呢?让老师一个人讲才是最糟糕的。英国人曾自豪地说,牛津大学和剑桥大学,似乎把学生当成了生物,让生物生长;别的大学,似乎把学生当成了矿物,让矿物定型。” 下面是两处故事情节:一位老师当着学生的面,把他的作业本哧啦哧啦撕成碎片,掷在地上,继而怒不可遏的训斥:“这几道题,我在课堂上都讲过,你还错成这样,你的脑子进水了吗?换本子

重做——每道题做10遍。”老师一边喘着粗气,一边就地转圈;而那位学生则如雷打的茄子,耷拉着脑袋,身体颤颤地蔫在那儿,一声不吭。我在办公室就经常看到一些不会做、做错或玩不成作业的学生,不是被罚站、罚做,就是闷头写检查,或是把家长叫来训斥。这些现象让我感到很惊讶,因为在课堂或课后确实存在着。曾经,我就亲眼所见亲耳所闻这些现象,我在想:这些学生可能是班里的后进生,对后进生应该用这样的方式方法吗?也许我们当老师的真应该坐下来冷静想一想,就像文章的作者所感悟的一样:当你无情地撕掉学生作业本的时候,可能会把孩子稚嫩的心灵与可怜的自尊一同撕得粉碎;当你过度惩罚孩子的时候,老师的崇高形象与师生之间的美好感情也将会随之变淡,甚而荡然无存。 再反思一下自己的教学,由于观察到一些学生因为害怕出错,而不敢张口说,所以我在课堂上经常鼓励学生,不要怕出错,学习本身就是一个从错到对的过程,没有错,怎么会有对。于是,学生们在课堂上一遇到不会的会积极地去问别人,也会很勇敢地问我,学生的提问会让我及时发现课堂教学中的一些问题,并立刻做出调整,比如,如果有五、六个学生同时问一人问题,我必须让学生停下,或者重新讲读一下,或者重复它的要点及关键。学习是允许出错的,但是不允许不劳而获的。在我的再三强调下,我的学生在课堂上会积极地提出自己不会的问题,会在做练习的时候很用心地做自己的答案,哪怕自己错了。 我刚工作时对于教育教学实践缺乏经验,闲暇之余就会搜寻一些相关知识学习,苏霍姆林斯基的《给教师的100条建议》成了我

管理学文摘

经营与会计 1.基本原则 ●经营者必须具备正确的判断事物的基准,并且这种判断基准要为全体员工所有 ●经营者必须通过具体的数字正确而及时地掌握企业各部门以及企业整体的真实情况 2.销量最大化、费用最小化 定价即经营 3.现金流经营原则:以现金为基础的经营 ●现金流量表 ●尽量消除夹在会计上的利润和手头上现金之间的东西 ●在土表正中相扑——水库式经营——经营要有余裕 ●无债经营 ●必须提高企业自有资本的比例——衡量稳定性 ●要安全经营企业,就应该在折旧加上税后利润能偿还的范围内进行设备投资 ●对企业价值的评判----将来能创造现金的能力 现金流量表+资产负债表+损益表 4.筋肉坚实的经营原则 ●使用二手设备降低生产成本 ●陶瓷石块论——不能拥有不良资产 ●OME(贴对方牌子的受托生产) ●警惕固定费用的增加 ●即用即买,不要预算制度,需要花钱的时候,提出书面申请,及时裁决 5.玻璃般透明的经营原则 ●先要稳定脚下的根基,提高利用率,然后再考虑投资 ●最低限度要确定百分之百的利用率,在此基础上进行新的投资 ●如何提高眼前经营的收益率,如何改善公司的财政状况 ●想办法增加公司内部的资金储备 ●只想依靠别人的资本和信用来拓展自己的事业,本身很危险 ●黑字破产 ●卖价恰恰是市场决定的 ●成本差额评价 ●把制造部门当做利润中心之外

消费过程中各阶段出现的关键问题 ●如何决定他所需要的一种产品 ●获得备选产品的信息资料的最好来 源是什么 ●取得一件产品的感受是紧张还是愉 悦 ●购买对消费者意味着什么 ●产品提供了欢乐,发挥了应有的作用 了码 ●最后如何处置产品,这种行为对环保 有什么影响 ●顾客对产品的看法是如何形 成和改变的 ●顾客用哪些线索来判断产品 优劣 ●时间的紧迫性或商店的陈列等是 如何影响消费者的购买决策的 ●决定消费者对一种产品是否满意 和他是否会继续购买的因素是什 么 ●这个人会告诉别人他对该产品的 体验会影响他们的购买决策吗? 消费者企业角度购买前 购买时 购买后

读书文摘

1、所有智力工作,都要依赖于兴趣。——苏霍姆林斯基 2、使学生丧失信心是教师最大的犯罪。 3、老师,你是爱,是暖,是希望,你是人间的四月天! 4、没有教师对学生直接的人格影响,就不可能有真正的教育工作。——苏霍姆林斯基 5、教师生涯的三个层次:职业谋生→专业发展→事业追求(最高境界)。 6、教育随生命开始,在我们觉察个性已建立之前,后来的教诲已很难将它移动及改变。——莎士比亚 7、实施教师评价努力达到五个最佳维度:学生喜欢,同事赞赏,家长满意,领导信用,自我认同。 8、教师专业发展的五个层次:学科新任教师→学科胜任教师→学科骨干教师→学科带头人→学科教学名师。 9、问题不在于教他各种学问,而在于培养他有爱好学问的兴趣,而且在这种兴趣充分增长起来的时候,教他以研究学问的方法。——卢梭 10、如果老师不想办法使学生产生情绪高昂的智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而给不动感情的脑力劳动带来疲劳。——苏霍姆林斯基 11、如果有一天我做了老师,就想干一件事,就是拿着花名册转着圈地表扬班里的孩子。人最本质的东西就是渴望被欣赏,我认为教育孩子的秘诀就五个字:“往死里夸他!” 12、铁匠铺里烧得很旺的炉火熔掉了铁条上的杂质,铁质就变软了,等到它纯化了,就对它敲打和加压,然后又用清水淬火使它再度硬化。一个人在他老师手里经历的也是这个过程。 13、教师是学校里最重要的表率,是直观的最有教益的模范,是学生的最活生生的榜样。他希望引导别人走正确的道路,激发别人对真和善的渴求,使别人的素质和能力得到最好的发展,因此他应当首先发展自身的这些优秀品质。——第斯多惠 14、教师要永远牢记:人人皆可成尧舜,每个学生都能成才,只是时间、地点不同。要细心捕捉教学生活每一个细节,抓住并放大每一闪光点,平等、公正的善待每一个学生,真正从内心尊重学生个体的人格和个性,保护学生的自尊心和自信心,使其处处感受到教师深爱的温暖,并时时处于自信、轻松、愉悦的心理状态。 1、激情是语文教师必备的素质。――于漪 2、一个坏的教师奉送真理,一个好的教师则教人发现真理。――第斯多惠 3、用幽默的方式说出严肃的真理比直截了当地提出更能为人所接受。――【法】演讲家因兹·雷曼麦 4、教师每天都仿佛蹲在一面镜子里,外面有几百双眼睛在不停地盯着她。——一位教育家 5、一个没有班主任经历的教师就像一个没有生育史的女人,缺少了应有的快乐。——―位名师 6、你的热情将会感染、激励和吸引他人。他们将为此而爱戴你,他们将为此愿意伴随你前行。――诺曼·文森特·皮尔 7、显而易见的是,受到关注的时候,孩子们愿意为他们喜爱和信任的人而努力学习,积极工作。――诺丁斯 8、一首好歌,能催人奋进;一幅好画,能陶冶情操;一句良言,能净化心灵;一个好教师,能让学生受益终生。 9、教师应具有的美德:洁身自好、甘于寂寞、安贫乐道、荣谢不惊、心无旁鹜、静心著读;远离世俗的浅薄嚣躁、拒绝潮流的浮华诱惑。 10、过高的期望,带来孩子的无望;/过度的保护,带来孩子的无能;/过多的干涉,带来孩子的无奈;/过多的指责,带来孩子的无措。 11、在所有的称呼中,有两个最闪光、最动情的称呼:一个是母亲,一个是老师。老师的生命是一团火,老师的生活是一曲歌,老师的事业是一首诗。——一位著名作家语 12、“不能输在起跑线上”这句话,已经成为了摧残孩子童年的可怕宣言。父母完全把孩子的将来当作一场赌博,而我们老师似乎也无可挽回地充当了这场赌博的帮凶。 13、人只能由人来建树,我们工作的对象是正在形成中的个性最细腻的精神生活领域,即智慧、感情、

精美文摘

真正强大的人,不会把太多心思花在取悦和亲附别人上。所谓人脉、圈子、资源,都是衍生品,最重要的是提高自己的内功。只有自己修炼好了,才会有别人来亲附。自己是梧桐,凤凰才会来栖;自己是大海,百川才来汇聚;花香自有蝶飞来,你只有到了那个层次,才会有相应的圈子,而不是倒过来… 在一个陌生的地方,发现一种久违的感动 一间单身公寓,保留一份果敢的自己;一抹红唇,倔强不老去等待一个人;一份白粥,让日子回到简单诚意……女人的优雅,生活的美丽都不是一蹴而就,但有些勇气却可翻山越岭,温暖却始终触手可及。 将我们以为不会忽略的生活,无声地记了下来。 愿我们都不老,能晒着太阳、饮酒读书,相互温暖。——冯唐 有了固定的居住场所,无论外面如何觥筹交错,回来后,人的心也会沉静下来。认真地生活,人就有了一种底气。 每天早起,为自己做一顿营养早餐,徐小迪认认真真地为自己的生活开始努力打算,有时她甚至后悔自己没有早点开始思考人生,没有早点享受做女人的乐趣。一个人的外表乏善可陈,那么她的人生也会乏善可陈。这段时间,徐小迪在化妆、服装搭配上都有了突飞猛进的进步,并对自己的身材要求苛刻起来。她穿着高跟鞋,挺拔地望着镜中的自己,有一种酝酿很多年的美丽,想起另一个徐小迪的话“你的黄金时期已经错过”,她不禁嗤之以鼻起来,她相信没有太迟。 卡夫卡有句名言,“人的主罪有二,其余皆由此而来:急躁和懒散。由于急躁,他们被逐出了天堂;由于懒散,他们再也回不去。

美丽不是一蹴而就的,这句话一点儿也不假。我有位朋友思蕊,白净水灵,是个标致的上海女孩,有些女孩是从小就被当作女人来养的,她就是这样。小时候睡着的时候,母亲给她剪眼睫毛和眉毛,长大后,她果然有着浓密的睫毛和眉毛,素颜也不寡淡,究竟跟母亲的用心栽培有多大干系就不得而知了。为日后的美丽埋下伏笔的事情还很多:不穿夹脚的皮鞋,为日后拥有颗颗脚趾珠圆玉润的美足;睡觉不要老仰躺,不然后脑勺很平,长大披头发不好看;换牙的时候千万不能舔,影响牙齿的整齐;学习艺术,却不用吃太多苦头只为日后的姿态优雅;夏天适当吃点黄连汤、百合汤,女孩子体内过热容易长雀斑和青春痘;刚发育的时候就要穿运动内衣,长大一点儿就在专业店配价格不菲的文胸,保证日后胸部挺拔……

读教学教育文摘心得与分享感想及体会

读《教育文摘》感言 张丕红 在假期里学校开展了让每一位老师读《教育文摘》的活动,我认真阅读了学校下发的《教育文摘》,在读的过程中,我会结合着自己的教育经历对自己的工作进行反思。教育是事业,在其献身,教育是科学,在其求真,教育是艺术,在其创新。我被这话深深地感动着,深深地吸引着。当我读到这样一篇文章:《宽容是老师应有的一种态度》时,我也有了一点自己的想法,对一名老师来说,宽容、理解、与教育的机智会时刻影响着我们自己,会时刻影响我们的学生们。 作为一名老师,当然会希望我们进入教室上课时学生能立刻安静下来。但有时学生还没有安静下来的情况也是有的。当班级中的纪律有些乱时,我们有些教师一进门,就开始要求学生们马上在学生乱哄哄的情况下立刻安静下来,一些小学生是不会在教师的要求下立刻安静的。这时的有些教师就会对学生们进行批评。点几个教师平日就认为比较不守纪律的学生的名字,再就是大声、再大声地批评其他学生。 对于我们作教师来说,宽容可以防止学生产生抵触情绪,使教育取得最佳的效果。我们采用的教育方式并不是放任自流,更不是无原则地迁就,面是以正面引导为主,用宽容的态度帮助他们寻找良性过渡的途径。在教育的过程中,我认为教育和谐的师生关系是教育达到有效性的前提,当没有各谐的师生关系,教育的内容对于一个小学生来说已不再重要了,重要的是学生已不再喜欢信任你了,这样的关系

就是你说的再有理对学生来说已没有任何效果了。

——学《文摘》用《文摘》感言 项俊兰 读罢《教育文摘》2009年第6期的《为师者请三思而言》一文,使我深受触动,并且也引发我的深思。因为与我亲身经历有相似之处亦有不同之处。 文中引用了两个事例:一个事例是讲述一位老师用她的一句话改变了一名身有残疾的二年级学生对人生的看法,并从此鼓足勇气不懈努力,终于成了一名学有所成的人。而另一个事例则是讲述一名校长在高中时因一位语文老师的话受到了深深的震撼和刺痛,并导致他放弃了爱好的语文改修数学。虽然他成为了一名校长,但他却对此事深表遗憾:“对那篇习作,我自感满意,可是,教师给的‘0’分以及拆下来在班上讲的话,把我对语文的自信全部摧毁了,使我完全丧失了对语文的兴趣,并因此改变了我后来的发展道路……”作者表示:“如果当初没有老师的那番评论,也许他会成为一名很出色的作家!”由这两个事例我们不禁要深思:“教育工作是和风细雨、润物无声的工作,面对学生稚嫩而幼小的心灵世界,教师的每一句话,都应三思而言之。因为,你的一句话,也许影响他们一辈子!” 对此,我是深有体会。作为一名教师,只有对学生施以真情的爱,在思想上严格要求,在生活中关心体贴,特别是对后进生给予真情的鼓励,哪怕只是一句简短的话语,也能使学生觉得老师没有放弃自己。我在学生中开展了“对你说句悄悄话”的活动。说“悄悄话”就是把学生当作知心朋友,态度亲切自然和孩子们进行真心的交流。

读文摘心得体会

《红蕾教育文摘》对新课改的指导意义 振华学校 孙杰龙

《红蕾教育文摘》对新课改的指导意义 莱西市马连庄镇振华中学孙杰龙 一个学期的工作结束了,利用假期总结自己工作上的得与失,并为下学期的工作做好准备。要想让自己尽快从一名新教师成长起来,单凭总结自己的经验是不够的,还需要去学习教育专家、优秀教师们的宝贵经验。书是最好的老师,阅读可以让我逐渐成长起来,利用暑假的时间我细细品读了几本教育相关的著作,其中《红蕾.教育文摘》这本杂志让我触动很大,每次阅读都会有新的收获。它的内容涉及教育的方方面面,尤其在素质教育、教师专业的发展、德育、课改与课堂教学、教育随笔、国外教育等设有专栏,对于像我这样经验不足的教师而言,是一本宝典。 《文摘》在谈到素质教育时,主张引导学生成为会思考的人。“很多时候,教师宁可让时光淹没在无穷的讲解和训练中,也不情愿拿出充足的时间带领学生一起思考。”“今天,身处繁杂而多变的知识经济社会,书本已经不再是学生获取知识的唯一途径,教师通过教学传递知识的职能实际上在弱化,而培养学生善于思考、独立判断、提出主见的思维品质,则更显重要。”“思想家罗素指出,教育就是在教师的指导下让学生学会自主思考。”是这样的,我认为一名教师除了要具有传道授业解惑的基本职责外,更重要的是教会孩子独立思考,授之以渔。不仅要教孩子学习,还要教孩子会学习,通过一种什么方式使孩子会学习,最有效的途径就是独立思考。当孩子能够独立的思

考时,在知识面前他们也能够做到游刃有余。知识的海洋是无穷的,要想在知识的海洋里漫游,思考是第一位的。 在课改与课堂教学环节中《文摘》给了我们“教学设计时的五个自问”:一、教材要给学生什么?二、教材的内容安排对学生最合适吗?三、创设的问题情境贴近学生吗?四、组织的学习活动学生乐于参与吗?五、这节课学生快乐吗,他们有什么收获?这五个问题是每位教师每天要面对的问题。 “教材要给学生什么”就是告诉我们要研究教材,感悟、领会教材,明确教材编写的意图,分析教材所渗透的教学思想和内涵。这是前提,只有对教材的充分的把握和解读才能做到在课堂上的灵活自如。 “教材的内容安排对学生最合适吗”是要求我们把教材用好、用活,在把握教材的基础上,结合学生的实际为学生量身定做教材,这样会更加适合学生。基于教材但又不完全拘泥于教材,是教学活动的一种创新。教材编制的内容有时候已经落后于我们的生活实际,在这种情况下,教师还照本宣科是一种不负责任的表现。所以,我们要做到教给学生的知识永远是最适合学生的。 “创设的问题情境贴近学生吗”问题情境的创设是一种教育智慧。在实际的教学中深有体会,有时候教师的“良苦用心”反而会影响学生对知识的理解,甚至抑制学生思维的自由放飞。所以,问题情境的设置要合情合理,充分考虑学生的认知水平,也应该考虑他们的心理特征。

相关文档
最新文档