细菌群体感应及其干扰策略的研究进展

细菌群体感应及其干扰策略的研究进展
细菌群体感应及其干扰策略的研究进展

细菌耐药机制的国内外最新研究进展_丁元廷

·实验技术及其应用·细菌耐药机制的国内外最新研究进展 丁元廷 (贵阳中医学院第一附属医院检验科,贵州贵阳550001) 摘要:全球性的细菌抗生素耐药是近年来感染性疾病治疗所面临的一大难题,细菌可对某类抗菌药物产生耐药性,也可 同时对多种化学结构各异的抗菌药物耐药。随着各种新型抗生素在临床的应用,细菌的耐药也越来越广。本文对细菌耐 药机制近年来国内外的研究进展进行简要综述,并探索有效的防治措施。 关键词:细菌耐药性;耐药机制;进展 中图分类号:R446.5文献标志码:A文章编号:1003-8507(2013)06-1109-03 The research progress on mechanism of bacterial resistance at home and aboad DING Yuan-ting. Department of Clinical Laboratory,The First Affiliated Hospital,Traditional Chinese Medical College of Guiyang, Guiyang550001,China Abstract:A big problem we meet during the treatment of infectious diseases is the global antibiotic resistance of baceria.Bacte- ria can develop resistance to not only a certain kind of antimicrobial agent,but also a variety of different chemical structure of the antimicrobial drugs.With a variety of new antibiotics applied in clinical practice,more and more extensive drug-resistant bacteria appear.The aim of this paper was to give a brief overview of the progress of bacterial resistance at home and abroad in recent years,and also to explore effective control measures. Key words:Bacterial resistance;Mechanisms of resistance;Progress 随着抗菌药物的大量使用,尤其抗生素的滥用导致细菌在抗生素及环境压力下,细菌群体中的敏感株被灭杀,耐药株被选择或诱导出来并繁殖生长而成为优势菌群,通过多种形式获得了对抗生素耐药性。细菌耐药性不仅可通过基因水平在相同或不同种属细菌中传播,而且结构完整的耐药菌株还可以在医院之间乃至全球播散,所致感染治疗棘手,病死率高,严重威胁人类健康,已成为全球关注的热点[1]。而临床在应用抗生素过程中,不适当治疗和滥用更加速和扩大了细菌对抗生素产生耐药性。据报道,一种新抗生素从研制到临床应用一般需要5~10年,而产生细菌耐药仅需要2年[2]。因此,在临床上减缓耐药性产生与追求抗菌疗效同等重要。了解细菌耐药发生机制的研究状况对于指导合理应用抗生素、预防菌株耐药和有效抗感染治疗具有重要的意义,本文就有关细菌耐药机制主要从基因水平、蛋白质水平及细菌多重耐药性角度对近年来研究进展进行综述。 1细菌耐药性概况 细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效,这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,20世纪30年代末磺胺药上市,40年代临床广泛使用磺胺药后,1950年日 作者简介:丁元廷(1975-),男,硕士,副主任检验技师,研究方向:分子生物学本报道80%~90%的志贺痢疾杆菌对磺胺药耐药了;1940年青霉素问世,1951年发现金黄色葡萄球菌能产生β-内酰胺酶灭活青霉素;60~70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生β-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降;80~90年代,阴性杆菌产生的超广谱β-内酰胺酶和染色体介导的I类酶,三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌,阳性球菌中出现了非常难治的多重耐药菌感染。近年来由于出现了万古霉素中介金葡菌,关注对耐万古霉素MRSA的监测。近年来还开始注意红霉素耐药β-溶血性化脓性链球菌的发展,特别是耐大环内酯类-林可霉素类-链阳霉素B的β-溶血性化脓性链球菌的耐药性发展。 2细菌耐药机制 2.1基因水平(耐药性产生的遗传方式)遗传学机制 细菌可通过自身基因的突变产生耐药性,也可以通过染色体垂直传播和通过质粒或转座子水平传播而获得外源耐药性基因,还可通过整合子捕获外源基因并使之转变为功能性基因来传播耐药性基因。包括细菌先天固有耐药和染色体突变或获得新的脱氧核糖核酸分子。 2.1.1固有耐药天然或基因突变产生的是细菌染色体基因决定的代代相传的天然耐药性,亦称突变耐药。通过染色体遗传基因DNA发生突变,细菌经突变后的变异株对抗生素耐药。一般突变率很低,由突变产生的耐药菌生长和分裂缓慢,故由突变造成的耐药菌在自然界中不占主要地位,但染色体介导的

群体感应

费氏弧菌Vibrio fischeri 群体感应系统首先是在海洋细菌费氏弧菌,费氏弧菌定殖于夏威夷鱿鱼的发光器官内,当细菌达到一定的密度后,就会诱导发光基因的表达。细菌的生物发光为鱿鱼提供光源,掩盖其影子来保护自身。同时,细菌也获得一个合适的栖息场所。 Nealson等在1970 年首次报道了该菌菌体密度与生物发光呈正相关,该发光现象受细菌本身的群体感应调 节系统(Quorum-Sensing System , 简称QS 系统) 所控制。

通用语言呋喃硼酸二酯 Peptides 呋喃硼酸二酯 高丝氨酸内酯 γ-丁酸内酯 synthesizes autoinducer homoserine Autoinducer diffuses into the medium where it accumulates. At threshold concentration AI diffuses back into the cell and binds to activator protein LuxR. 酰基高丝氨酸内酯(AHL)的结构 AHL 由LuxI 类蛋白酶催化脂肪酸代 谢途径中的酰基-酰基载体蛋白(acyl-ACP)的酰基侧链与S-腺苷甲硫氨酸中高丝氨酸部分的接合, 并进一步内 酯化而生成的 不同的细菌产生不同的AHLs ,差异只在于酰基侧链的长度与结构,高丝氨酸内酯部分是相同的。

以及与启动子DNA的结合 The genes encoding the AHL synthase regulatory protein, respectively. In the presence of sufficient AHL signal, the R regulatory protein is activated, possibly by dimerization. The activated R regulatory protein binds to a specific binding site and stimulates (or represses) transcription initiation by RNA Polymerase holoenzyme ?LuxR型蛋白也有特殊的酰基结合框,在有多种细菌存在 的环境下,存在许多种AHL分子,每一种细菌都能对其自 身的群体感应信号识别、监控、作出反应 除了 链霉菌中调控抗生素合成的γ 黄色粘球菌

群体感应

群体感应 1.群体感应概念 细菌分泌一种或者几种小分子量的化学信号分子促进细菌个体间相互交流,协调群体行为,该现象称为群体感应( quorum sensing ,QS)。 细菌利用信号分子感知周围环境中自身或其他细菌的细胞群体密度的变化,并且信号分子随着群体密度的增加而增加,当群体密度达到一定阈值时,信号分子将启动菌体中特定基因的表达,改变和协调细胞之间的行为,呈现某种生理特性,从而实现单个细菌无法完成的某些生理功能和调节机制。 20世纪70年代,QS系统首先是在海洋细菌费氏弧菌(Vibrio fiscberi)中发现的,V. fiscberi 可以与某些海生动物共生,宿主利用其发出的光捕获食物、躲避天敌以及寻觅配偶,而V.fiscberi也获得了一个营养丰富的生存环境。 对细菌的QS 研究始于20 世纪90 年代初. 从已有的研究成果看: 其一, 大部分细菌一般均有两套群体感应系统, 一套用于种内信息交流, 一套用于种间信息交流; 其二, QS 对细菌的许多生理功能都有调节作用, 如生物发光、毒素的产生、质粒的转移、根瘤菌的结瘤、抗生素的合成, 等等. 群体感应参与调控细菌的多种生活习性以及各种生理过程,如生物发光、质粒的接合转移、生物膜与孢子形成、细胞分化、运动性、胞外多糖形成等[ 1 , 3],尤其致病菌的毒力因子的诱导、细菌与真核生物的共生、抗生素与细菌素合成等与人类关系密切的细菌生理特性相关。因此, 细菌QS系统研究,深受医学、生物工程、农业和环境工程、食品科学等领域研究者广泛关注。当前, 对致病菌的QS系统及以其为靶点的新型疗法和抗菌药物研究、根瘤菌QS系统及其在根瘤菌与植物互作中的作用研究、植物病原菌QS系统及寻找生物技术防治细菌病害的新靶点研究较为深入 意义:一方面有助于人们了解单细胞微生物的信息交流与行为特性的关系,建立起化学信号物质和生理行为之间的联系;另一方面则可通过人为地干扰或促进微生物的群体感应系统从而调控其某种功能,以达成其在实际意义上的应用。 2.群体感应分类 2.1革兰氏阴性菌的群体感应系统

细菌耐药机制研究进展

细菌耐药机制研究进展 发表时间:2013-01-08T13:58:09.640Z 来源:《中外健康文摘》2012年第42期供稿作者:黄碧娇 [导读] 药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制 黄碧娇 (井冈山大学附属医院江西吉安 343000) 【中图分类号】R915 【文献标识码】A【文章编号】1672-5085(2012)42-0085-02 【摘要】了解细菌对β—内酰胺类,喹诺酮类及大环内酯类等临床常用抗菌药物耐药机制的研究进展,有助于抗菌药物的正确使用,尽量减少抗菌药物的耐药出现,为新的抗菌药物的开发及利用打下坚实的基础。 【关键词】细菌耐药性抗菌药物 细菌耐药,为人类战胜病原菌提出了一个严峻的挑战,细菌耐药机制非常复杂,通常认为涉及到以下几个方面: 1 细菌对抗菌药物产生耐药性的可能性机制 主要有四种:①产生灭活酶和钝化酶,细菌能产生破坏抗生素或使之失去抗菌作用的酶,使药物在作用于菌体前即被破坏或失效;②抗菌药物渗透障碍,细菌外层的细胞膜和细胞壁结构对阻碍抗生素进入菌体有着重要的作用,膜上有亲水性的药物通过蛋白,称外膜蛋白,主要有两种分子较大的为ompf和分子较小ompc,最近又发现了第三种蛋白phoe,外膜蛋白的缺失可导致细菌耐药性的发生,在某些药物的外膜上含有特殊药物泵出系统,使菌体药物的浓度不足以发挥抗菌作用而导致耐药;③药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制;④代谢途径的改变绝大多数细菌不能利用已有叶酸及其衍生物必须自行合成四氢叶酸,肠球菌属等某些营养缺陷细菌能用外源性胸苷或胸腺嘧啶,表现对磺胺和甲氧嘧啶等药物的耐药。 从分子生物学角度认识细菌的耐药机制过去主要集中在基因突变的研究中,认为基因突变的积累使细菌产生耐药性的重要机制,但近来研究发现,没有接触过抗生素的病原菌,对抗生素也有抗药性,耐药性具有转移的特点,螯分子被认为是抗性基因在水平传播的重要因子,由两部分组成,5’与3’端保守区域(简称cs)以及中间的基因簇,选择性的整合到螯分子上面获得耐药性,通过螯合子的螯合作用,抗性基因之间能够互相转换,再借助于转化,转导与结合作用,使得耐药性在畜禽与畜禽,畜禽与人类,人类与人类之间的病原菌广泛传播,给人类健康造成严重威胁。 2 细菌对β—内酰胺类抗药性的耐药机制。 2.1产生β—内酰胺酶 β—内酰胺环为β—内酰胺类抗菌药物的活性部位,一旦被β—内酰胺酶水解就将失去其抗菌活性,细菌对β—内酰胺类抗菌药物的耐药性约80%通过产生β—内酰胺酶实现,β—内酰胺酶种类繁多,已经报道通过的就有200余种。具有不同特性的β—内酰胺酶的细胞对不同的β—内酰胺酶抗菌药物的耐受性不同。G+菌、G-菌、分枝杆菌和诺卡菌种都发现有各种不同特性的β—内酰胺酶。 针对这一耐药机制,临床上目前应用的药物有2类:①具有对β—内酰胺酶稳定的化学结构的药物,包括苯唑西林、双氯西林、甲氧西林、异口恶唑青霉素等半合成青霉素以及亚胺培南、美罗培南等碳青霉烯类药物等。②β—内酰胺酶抑制剂,包括克拉维酸,舒巴坦、他唑巴坦等,它们与β—内酰胺类药物联用,对产酶菌有很强的增效作用。其复合制剂有:由阿莫西林与克拉维酸组成的奥格门汀,由羧苄西林与克拉维酸组成的替门汀,由氨苄西林与舒巴坦组成的优立新及由哌拉西林与他唑巴坦组成的他唑辛等。 2.2药物作用的靶蛋白改变 β—内酰胺类抗菌药物的作用靶位为青霉结合蛋白(PBP),对β—内酰胺类抗菌药物耐药的细菌除了由于产生大量β—内酰胺酶破坏进入胞内的抗菌药物外,还由于PBP发生了改变使之与这类抗菌药物(如青霉素类、头孢菌素类、单环β—内酰胺类和碳青霉烯类等)的亲和力降低,或是出现了新的PBP所致,这种耐药机制在金萄球菌、表皮葡萄球菌、皮炎链球菌、大肠杆菌、绿脓杆菌和流感嗜血杆菌等耐药菌种均已证实。 2.3细胞外膜渗透性降低细菌的细胞膜使细菌与环境离开。细胞外膜上的某些特殊蛋白即孔蛋白是一种非特异性的、跨越细胞膜的水溶物质扩散通道。一些半合成的β—内酰胺类抗菌药物很容易透过肠细菌的孔蛋白通道;但一些具有高渗透性外膜的对抗菌药物敏感的细菌可以通过降低外膜的渗透性产生耐药性,如原来允许某种抗菌药物通过的孔蛋白通道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细菌就会对该抗菌药物产生很高的耐药性。亚胺培南是一种非典型的β—内酰胺类抗菌药物,其对铜绿假单胞菌的活性,主要是通过一个特殊的孔蛋白通道OprD的扩散而实现的,这就意味着一旦这一简单的孔蛋白通道消失,则铜绿假单胞菌对亚胺培南就会产生耐药性。事实上,最近已经分离到许多具有这种耐药机制的耐亚胺培南的铜绿假单胞菌。 3 细菌喹诺酮类抗菌药物的耐药机制 3.1喹诺酮类药物的作用机制是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用,细菌DNA拓扑异构酶有Ⅰ、Ⅱ、Ⅲ、Ⅳ分2大类:第一类有拓扑异构酶Ⅰ、Ⅲ主要参与DNA的松解;第二类包括拓扑异构酶Ⅱ、Ⅳ,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中,但拓扑异构酶Ⅰ和Ⅲ对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ。革兰阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰阳性菌中拓扑异构酶Ⅳ是第一靶位。 DNA促旋酶是通过暂时切断DNA双链,促进DNA复制转导过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型,喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA—拓扑异构酶—喹诺酮类3者复合物,阻止DNA拓扑异异构变化,妨碍细菌的DNA复制转录,已达到杀菌的目的。 3.2作用靶位的改变,编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ和ParC和ParE亚单位中任一亚基的基因发生突变均可引起喹诺酮类药物的耐药性,在所有的突变型中,以gxyA的突变为主,主要为Thr—83→Ile,Ala和ASp—87→Asn,Gly、Thr两者均占75%以上,而其他的突变型罕见,GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gyxA上的83和87位的氨基酸在提供喹诺酮类结合位点时具有重要的作用,而gyrB的突变株则较gyrA上突变少见,主要为Glu—470→Asp,Ala—477→val和ser—468→phe,Parc 的突变主要为Ser—87→Leu,Trp位值得注意的是所有存在parc改变的发生是在gyxA突变之后才发生的,在同时具有gyxA和parc突变的菌株中,以gxyA上的Thx—83→Ile和parc上的ser—87→leu类型为最多见,ParE的突变型为ASp—419→Asn、Ala—425→val但现在parE出现突变极为罕见3/150 3.3 膜通透性改变,喹诺酮类药物与其他抗菌药物一样,依靠革兰阴性菌的外膜蛋白(oMp)和脂多糖的扩散作用而进入细菌体内,

群体感应系统在乳酸菌产细菌素中的作用

群体感应系统在乳酸菌产细菌素中的作用 满丽莉1,2,孟祥晨1,*,王 辉1,赵日红1 (1.东北农业大学 乳品科学教育部重点实验室,黑龙江 哈尔滨 150030; 2.黑龙江农业经济职业学院,黑龙江 牡丹江 157041) 摘 要:许多乳酸菌能够产生抗菌活性肽——细菌素,细菌素具有不同的结构、作用方式、抑菌谱和效价,通常认为乳酸菌和其所产的细菌素都是安全的,乳酸菌所产细菌素作为天然食品防腐剂已显示了巨大的潜能。基于群体感应的细胞间交流已成为细菌素合成的关键调控机制,群体感应作为细胞密度函数,可使细菌素产生保持同步性。群体感应需通过信号分子介导感知菌体密度,信号分子随着菌体密度增加而增加,并激活信号转导级联使菌体产生细菌素。本文通过对乳酸菌群体感应信号分子种类、信号转导机制及群体感应系统对两类细菌素合成的调控进行综述,以初步了解群体感应系统在乳酸菌产细菌素过程中的作用机制。关键词:群体感应;细菌素;信号分子;乳酸菌 Regulation of Bacteriocin Synthesis by Quorum Sensing in Lactic Acid Bacteria: A Review MAN Li-li 1,2,MENG Xiang-chen 1,*,WANG Hui 1,ZHAO Ri-hong 1 (1. Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China ; 2. Heilongjiang Agricultural Economy Vocational College, Mudanjiang 157041, China)Abstract :Several lactic acid bacteria (LAB) produce peptides with antimicrobial activity usually referred to as bacteriocins.Bacteriocins are diverse in terms of structure, mode of action, antimicrobial spectrum, and potency. Both LAB and their bacteriocins are generally regarded as safe. Bacteriocins produced by LABs have demonstrated great potential as natural preservatives Intercellular communication has emerged as the key regulatory mechanism that controls the synthesis of bacteriocins via a regulatory strategy denominated quorum sensing, which allows population-wide synchronised produc-tion of antimicrobial peptides as a function of cell density. The intercellular communication phenomenon required for sensing of the cell density is mediated by secreted signaling molecules that accumulate in the environment as the cell density increase and activate signal transduction cascades, resulting in the production of bacteriocins. This review aims at describing the types of signal molecules, signal transduction mechanism and the regulation of quorum sensing in bacterio-cins synthesis of LAB and understanding the regulation mechanism of quorum sensing involved in the production of two classes of bacteriocin in LAB. Key words :quorum sensing ;bacteriocin ;signal molecules ;lactic acid bacteria 中图分类号:TS252.1 文献标识码:A 文章编号:1002-6630(2011)13-0360-05 收稿日期:2010-09-23 基金项目:教育部“创新团队发展计划”项目(IRT0959);哈尔滨市科技创新人才专项资金资助项目(2011RFLXN017)作者简介:满丽莉(1981—),女,博士研究生,研究方向为乳品科学与工程。E-mail :manlili6@https://www.360docs.net/doc/5313077882.html, *通信作者:孟祥晨(1970—),女,教授,博士,研究方向为食品微生物与生物技术。E-mail :xchmeng@https://www.360docs.net/doc/5313077882.html, 群体感应(quorum sensing ,QS)现象[1]首先是在一种海洋发光细菌Vibrio fischeri 中被发现并描述。群体感应又称为“自动诱导”或“细胞与细胞的交流”。细菌在繁殖过程中向周围环境分泌特定的信号分子,这种信号分子被称为自诱导物(autoinducer ,AI)。群体感应是细菌监控自身群体密度的环境信号感受系统,细菌在繁殖过程中分泌一些特定的信号分子,信号分子从胞内 扩散到胞外,当这种信号分子达到一定的阈值时,细菌感受到自身的细胞密度,启动某些基因的表达,这一过程称为群体感应。感应现象也被称为细胞密度依赖的基因表达[2],即细菌通过检测胞外信号分子的浓度来“数”种内、种间其他细菌的数量,从而改变特定基因的表达[3]。 乳酸菌是一种广泛应用于食品工业的革兰氏阳性细

大肠埃希菌耐药机制研究进展

大肠埃希菌耐药机制研究进展 【摘要】大肠埃希菌是典型的革兰氏阴性杆菌,致病性大肠埃希菌更是临床上最常见的病原菌之一。近年来,大肠埃希菌的耐药株不断增多,特别是多重耐药株的出现增多,使临床大肠埃希菌病的预防和治疗十分困难。本文对大肠埃希菌耐药现状以及耐药性机制的研究进行了综述,为防治大肠埃希菌耐药性的产生及合理用药提供帮助。 【关键词】大肠埃希菌;耐药机制;细菌生物膜 【文章编号】1004-7484(2014)05-2897-02 大肠埃希菌是存在于人和动物肠道内的一类正常菌群,但当大肠埃希菌侵入到人体其他部位或器官时,则会导致感染。近些年,致病性大肠埃希菌特别是泛耐药大肠埃希菌临床监测率逐年升高,本文针对大肠埃希菌耐药性机制以及耐药现状的研究进行综述。 1 大肠埃希菌的生物学特性 1.1大肠埃希菌概述 大肠埃希菌(E. coli)是肠杆菌科埃希氏菌属的代表菌,于1885年被Escherichia首次发现并命名为大肠埃希菌,简称大肠埃希菌。为兼性厌氧菌,生长温度范围为15~45℃。营养要求不高。大多数大肠埃希菌能发酵多种糖类并产气。一般大小为0.4-1μm,长1.7-3μm。无芽孢,多数菌株周身有鞭毛,能运动。有菌毛。

大肠埃希菌有O、K、H、F四种抗原,抗原构造比较复杂,O抗原为脂多糖,组成细胞壁的耐热成分;K抗原位于O抗原外层,与细菌的侵袭力有关,为酸性多糖;H抗原是位于鞭毛上的蛋白质,氨基酸的含量及排列顺序决定其特异性; F 抗原与大肠埃希菌的粘附作用有关。 1.2 大肠埃希菌分类和致病机理 大肠埃希菌是肠道内重要的正常菌群,在宿主免疫力下降或细菌侵入肠道外组织器官后就可以成为条件致病菌,引起肠道外感染。根据引起疾病的不同可将病原性大肠埃希菌分为三个致病型:肠道感染/腹泻型、尿道感染型和化脓性/脑膜炎型。致病性大肠埃希菌除具有一般的毒力因子,如内毒素、荚膜、Ⅲ型分泌系统等还具有自身一些特殊的毒力因子如粘附素与外毒素,二者主要能引起泌尿道感染和肠道感染。 肠道感染/腹泻型大肠埃希菌根据携带毒力因子的不同可以分为5类:肠产毒性大肠埃希菌(ETEC)、肠致病性大肠埃希菌(EPEC)、肠出血性大肠埃希菌(EHEC)、肠粘附性大肠埃希菌(EAEC)、肠侵袭性大肠埃希菌(EIEC)。引起泌尿道感染的大肠埃希菌大多来源于结肠,污染尿道,上行至膀胱,甚至肾脏与前列腺,为上行性感染。化脓性/脑膜炎型大肠埃希菌感染则可能得大肠埃希菌败血症。常由大肠埃希菌尿道和胃肠道感染引起。据陈立涛的研究的血流感染中产ESBLs大肠埃希菌检出阳性率约60%,且多药耐药严重[1]。此外新生儿脑膜炎的主要致病因子即为大肠埃希菌与B组链球菌约75%的大肠

细菌群体感应调节系统

细菌的群体感应调节系统Quorum sensing 苏晓娜 (10动物丁颖班201030710318) 摘要:传统观念认为细菌是一种个体的、非社会性的生物体。近来的研究表明细菌可以产生化学信号并通过它们实现细菌间信息传递。细菌的群体感应调节系统(Quorum sensing, QS)调节着个体细胞之间的相互合作,使其表现出类似多细胞的群体行为。本综述参考了近几年的文献报道,对QS的发现、分类、特点、功能、应用及前景等作简要介绍。 关键词:细菌群体感应调节系统信号传递进化应用合作 细菌分泌一种或者几种小分子量的化学信号分子促进细菌个体间相互交流,协调群体行为,该现象称为群体感应(quorum sensing ,QS)。[1]传统观念认为细菌是一种个体的、非社会性的生活方式。而实际上, 细菌往往生活在一个相互作用的群体(Population)中, 通过各种各样分泌到细胞外的化合物行使着不同类型的相互作用。[2]。QS现象是于1977年在一种海洋发光细菌Vibrio fischeri中首次发现的,是细菌通过分泌可溶性信号分子来监测群体密度并协调细菌生物功能的信息交流机制。[3]本文介绍细菌群体感应调节系统的发现及研究的过程,并从中探讨研究细菌群体感应调节系统的意义。 1细菌群体感应调节系统的概念 细菌根据特定信号分子的浓度可以监测周围环境中自身或其它细菌的数量变化,当信号达到一定的浓度阈值时,能启动菌体中相关基因的表达来适应环境中的变化,这一调控系统被称为细菌的群体感应调节系统。[4]很多细菌会低水平地合成并分泌被称为自诱导物 ( autoinducer) 的小分子信号分子, 细菌通过这些信号分子进行信息的交流。当信号分子浓度较低时, 它不足以诱导目的基因的表达。但是信号分子的浓度会随着细菌浓度的增大而增大, 当其浓度达到阈值时, 就会诱导一些结构基因表达, 同时也诱导其自身合成基因的表达, 产生更多的信号分子来诱导结构基因和自身基因大量表达, 如此形成一种正反馈机制。[5]。例如根癌农杆(Agrobacteriumtumefaciens) 、胡萝卜软腐欧文氏菌( Erwinia carotovora) 等植物病原菌,至少要在营养缺乏的土壤和防御严密营养丰富的寄主两种复杂生境中交替生活。当病原菌侵染寄主时,必需达到一定的基数才能侵染成功,因为此时的信号分子浓度才能启动侵染寄主起关键作用基因的表达,否则其侵染不能成功;另外枯草芽胞杆菌( Bacillussubtilis) 也利用QS 系统对自身发育进行调控,当菌体密度高时,信号分子浓度相应增高启动了芽胞形成基因的表达。[4]

细菌群体感应系统研究进展

综 述 细菌群体感应系统研究进展 张晓兵,府伟灵 (第三军医大学第一附属医院检验科,重庆400038) 关键词:群体感应;信号分子;研究进展 中图分类号:R378 文献标识码:A 文章编号:1005 4529(2010)11 1639 04 细菌分泌一种或者几种小分子量的化学信号分子促进细菌个体间相互交流,协调群体行为,该现象称为群体感应(quorum sensing,Q S)。细菌利用信号分子感知周围环境中自身或其他细菌的细胞群体密度的变化,并且信号分子随着群体密度的增加而增加,当群体密度达到一定阈值时,信号分子将启动菌体中特定基因的表达,改变和协调细胞之间的行为,呈现某种生理特性,从而实现单个细菌无法完成的某些生理功能和调节机制。 20世纪70年代,研究海洋细菌费氏弧菌(Vibr io f is ch er i)和哈氏弧菌(夏威夷弧菌;V.har vey i)生物发光现象发现群体感应[1]。群体感应参与调控细菌的多种生活习性以及各种生理过程,如生物发光、质粒的接合转移、生物膜与孢子形成、细胞分化、运动性、胞外多糖形成等,尤其致病菌的毒力因子的诱导、细菌与真核生物的共生、抗菌药物与细菌素合成等与人类关系密切的细菌生理特性相关。笔者就QS 机制、临床意义、医学前景做一简单综述。 1 QS机制 1.1 革兰阳性菌Q S系统 革兰阳性菌主要用翻译后修饰的寡肽物质作为QS信号分子,感应菌群密度和环境因子的变化,并将环境信息传递给双组分信号转导系统(T CS),后者再调控相关基因表达。A IP通常由5~17氨基酸组成,而氨基酸侧链通常含有修饰性基团,如异戊烯基基团(芽胞杆菌属)、硫内酯环(葡萄球菌属)。在细胞质中合成前体肽,然后经过加工、修饰并转运到细胞外环境中形成多个AI P。不同菌中前体肽的长度及组成差异较大,转录后加工增加了A IP的稳定性、特异性和功能性。AI P之间的细微差别提供了信号的特异性。当胞外的AI P达到阈浓度时可被菌体上的A IP识别系统识别。该识别系统为双组分磷酸激酶,与A IP结合后,引起激酶的组胺酸残基磷酸化,经过一个复杂的传递过程,最终使胞内受体蛋白的天冬氨酸残基磷酸化,磷酸化后的受体蛋白能与DN A特定靶位结合,从而调控靶基因的转录表达。 不同革兰阳性菌其信号肽的结构也不同。由于与受体结合效率和AI P化学结构高度相关,通常大多数革兰阳性菌,还有部分革兰阴性菌利用该系统进行种内之间的联系[2]。 收稿日期:2010 02 07; 修回日期:2010 04 091.2 革兰阴性菌Q S系统 革兰阴性菌QS信号分子,也被称为自诱导物(A I) 1(A I 1)。A HL s由一个疏水性的保守高丝氨酸内酯环的头部和一个亲水性的可变的酰胺侧链的尾部组成,可变的酰基链的尾部决定了A HL s多样性。A H Ls 间的差异主要体现在酰胺基侧链的有无和长短、酰胺链上的第3位碳原子上的取代基团差异(氢基、羟基或羰基)以及侧链有无一个或多个不饱和键。A H Ls差异是在其合成过程中,即是由高丝氨酸结合了不同的酰基 酰基载体蛋白的酰基侧链形成的。A H L s带有短的酰胺侧链使其被动地进出细菌细胞壁,这与带有长的酰胺侧链的A H Ls和A IP不同,后二者靠主动转运机制跨过细菌细胞膜[2]。 大多数革兰阴性菌,L ux I蛋白和Lux R蛋白参与到群体感应系统中。L uxI蛋白是自体诱导物合成酶,能够合成信号分子AH L s,L ux R蛋白是细胞质内自体诱导物感受因子,同时也是一种DN A结合转录激活元件,A HL s扩散到细胞外后,随着细胞密度的增加而积累,当这种信号密度积累到临界密度时就与Lux R结合,结合后的复合物能激活基因转录。由于L uxR蛋白仅结合特异性AH L s,那么L uxI/L ux R 系统也主要用于种内间的群体感应。然而,能够结合几种A H Ls的Lux R蛋白已有报道,例如,沙门菌属SdiA蛋白主要与细菌种间感应有关[3]。 1.3 革兰阳性菌与革兰阴性菌共有Q S系统 20世纪90年代,在多个革兰阴性菌发现另外一套QS系统,该系统信号物质为由L ux S蛋白形成的自诱导物(A I) 2(AI 2),其主要成分为呋喃酮酰硼酸酯(furanosyl bor ate ester)。A I 2在50多种不同细菌中得到报道,包括革兰阳性菌和革兰阴性菌[4]。哈氏弧菌,AI 2分子的受体是L uxP蛋白,L uxP A I 2复合物结合到另一种蛋白Lux Q,后者含有包含一个传感器激酶区和反应调节区。当细菌密度低并且缺乏A I 2时,在L uxU中间蛋白的帮助下,L uxQ将L ux O磷酸化,反过来,磷酸化的L uxO激活了抑制荧光素酶操纵子转录的抑制蛋白的转录。当细菌密度过高时,A I 2的出现,促使L ux Q磷酸化酶活性降低,从而L ux O失活,这样导致Lux R介导荧光素酶的转录[5]。哈氏弧菌与费氏弧菌L ux R构成有一定的区别。虽然在大多数肠道细菌,A I 2直接调节编码A BC转运系统的基因,这表明A I 2主要功能是参与代谢调节[6],但在群体感应系统中,A I 2还应该被认为是细菌间联系的通用信号![7]。

细菌耐药的生化机理研究进展

?综述? 细菌耐药的生化机理研究进展 谭文彬3 (济宁医学院人体寄生虫学教研室,山东日照276826) 【摘要】 抗生素的广泛、不规范使用使得细菌耐药问题日趋严重,在对细菌抗生素耐药机制的研究中,了解其生化机理尤为重要。本文对耐药菌灭活酶,靶位结构的改变、主动外排、摄取减少,形成生物被膜,建立新代谢途径等作一综述。【关键词】 抗生素;细菌耐药;生化机理;综述 【中图分类号】 R37 【文献标识码】 A 【文章编号】 167325234(2009)0920698202 [J ournal of Pathogen B iology .2009Sep ;4(9):698-699,702.] Progress of research on biochemical mechanisms of bacterial antibiotic resistance TAN Wen 2bin (H uman Parasitolog y I nstitute ,J ining Medical College ,Riz hao 276826,S handong ,China ) 【Abstract 】 The widespread and non 2standard use of antibiotics has resulted in the increasingly serious problem of bacte 2 rial resistance.Reseach on biochemical mechanisms is a crucial part of the study of the mechanisms of antibiotic resistance of bacteria.This paper has reviewed inactivated enzymes ,changes in the target structure ,active efflux ,reduced uptake ,formation of biofilms ,and the establishment of new metabolic pathways in research on the biochemical mechanisms of an 2tibiotic resistance in bacteria. 【K ey w ords 】 Antibiotics ;bacterial antibiotic resistance ;biochemical mechanism ;review  20世纪40年代,人类发现第一种抗生素青霉素,大大地提高了细菌感染者的生存率。然而随着抗菌药物的不断发展与应用,病原菌对常用抗菌药物的耐药性也不断增加[1],严重威胁着人类健康,因此成为全球关注的热点[2]。本文对细菌耐药生化机理作一综述,以期为进一步研究和控制细菌耐药性提供依据。 1 灭活酶或钝化酶对抗生素结构的修饰和破坏 产生灭活酶是引起细菌耐药性的最重要机制,产酶菌往往表现明显的耐药性。细菌产生的灭活酶有多种,主要有β2内酰胺酶、氨基糖甙灭活酶、乙酰转移酶CA T 、核苷酸转移酶、酯酶等[3]。 细菌通过β2内酰胺酶水解破坏抗生素的β2内酰胺环从而使其失活,这是大多数致病菌对β2内酰胺类抗生素产生耐药性的主要机理。该类酶可以为染色体介导,也可为质粒介导。根据底物及酶抑制剂的作用类型将β2内酰胺酶分为4组[4]:A 组:β2内酰胺酶(主要水解青霉素类,包括BC6和$DE );B 组:金属酶(其活性部分是结合锌离子的硫醇);C 组:β2内酰胺酶 (主要水解头孢菌素类);D 组:β2内酰胺酶(苯唑西林水解酶,包 括OX 和PSE2)。 Bush 等[5]1995年进一步完善了分类。现已发现的β2内酰 胺酶有200种以上,所有的β2内酰胺酶都可打开常见的青霉素类、头孢菌素类、碳青霉素类(亚胺培南和美罗培南)和单环类 (氨曲南)中的β2内酰胺的四元环 [6] 。由革兰阳性菌产生的β2 内酰胺酶以金黄色葡萄球菌属产生的青霉素酶最重要,而在革兰阴性菌中,β2内酰胺酶按产生部位可分为染色体介导和质粒介导的β2内酰胺酶两类。前者为AmpC 2β2内酰胺酶,属Bush 2J 2 M1群,该酶虽然可水解青霉素类和头孢菌素类抗生素,但并非 所有菌种均可产生,并且浓度较低。只有在某些诱导剂的作用下,其产量才能显著增高,因而对氨基青霉素类和第一代头孢菌素产生耐药。后者以TEM 21、TEM 22、SHV 21最为常见,属 Bush 2J 2M2群,其特点为可水解青霉素类和头孢菌素类抗生素, 许多菌种可产生且浓度很高[7]。超广谱β2内酰胺酶(extended 2spectrum 2β2lactamase ,ESBL )是指由质粒介导的能赋予细菌对多类β2内酰胺类抗生素耐药的一类酶,发现于TEM 21、TEM 22和SHV 21的突变株,现已达50种以上[8]。细菌对其他抗生素如氨基糖苷类、喹诺酮类耐药也与ESBL 有关,现在在临床上愈来愈受到重视。 对氨基糖苷类抗生素发生耐药的主要机理是酶的修饰钝化作用。氨基糖苷类药物修饰酶主要有氨基苷类钝化酶,如乙酰化酶(AAC )、磷酸化酶、腺苷化酶(AAD )等,通常由质粒和染色体所编码,同时也与可动遗传因子(整合子、转座子)有关,能将氨基糖苷类抗生素的游离氨基乙酰化、游离羟基磷酸化或核苷化,使药物不易进入细菌体内,也不易与细菌内靶位(核糖体 30S 亚基)结合,从而失去抑制蛋白质合成的能力。2 细菌体内靶位结构的改变 细菌体内靶位结构的改变是指由于抗生素作用的靶位(如核糖体和核蛋白)发生突变[9]或被细菌产生的某种酶修饰而使抗菌药物失去作用,以及抗生素的作用靶位(如青霉素结合蛋白和DNA 回旋酶)结构发生改变而使之与抗生素的亲和力下降,这种耐药机理在细菌耐药中普遍存在。β2内酰胺类抗菌药物的作用靶位为青霉素结合蛋白(PBP )[10],氨基糖苷类和四环素抗菌药物的作用靶位为50S 核糖体,大环内酯类和氯霉素以及克林霉素的作用靶位为30S 核糖体,利福霉素类的作用靶位为依赖于DNA 的RNA 聚合酶,喹诺酮类的作用靶位为DNA 促旋酶,磺胺类作用靶位为二氢碟酸合成酶和二氢叶酸还原酶,万古霉素的作用靶位为细胞壁五肽末端的D 2丙氨酰2D 2丙 ? 896?中国病原生物学杂志 J ournal of Pathogen B iolog y  2009年9月 第4卷第9期 September 2009, Vol.4,No.9 3 【通讯作者(简介)】 谭文彬(1975-),男(汉族),2007年毕业于 南京医科大学,博士,讲师。主要从事病原生物学防治机理的研究。 E 2mail :1392144@https://www.360docs.net/doc/5313077882.html,

相关文档
最新文档