基于LMS算法的自适应滤波器在声学回声消除中的应用

基于LMS算法的自适应滤波器在声学回声消除中的应用
基于LMS算法的自适应滤波器在声学回声消除中的应用

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

解密回声消除技术汇总

因为工作的关系,笔者从2004年开始接触回声消除(Echo Cancellation)技术,而后一直在某大型通讯企业从事与回声消除技术相关的工作,对回声消除这个看似神秘、高端和难以理解的技术领域可谓知之甚详。 要了解回声消除技术的来龙去脉,不得不提及作为现代通讯技术的理论基础——数字信号处理理论。首先,数字信号处理理论里面有一门重要的分支,叫做自适应信号处理。而在经典的教材里面,回声消除问题从来都是作为一个经典的自适应信号处理案例来讨论的。既然回声消除在教科书上都作为一种经典的具体的应用,也就是说在理论角度是没有什么神秘和新鲜的,那么回声消除的难度在哪里?为什么提供回声消除技术(不管是芯片还是算法)的公司都是来自国外?回声消除技术的神秘性在哪里? 二、回声消除原理 从通讯回音产生的原因看,可以分为声学回音(Acoustic Echo)和线路回音(Line Echo),相应的回声消除技术就叫声学回声消除(Acoustic Echo Cancellation,AEC)和线路回声消除(Line Echo Cancellation, LEC)。声学回音是由于在免提或者会议应用中,扬声器的声音多次反馈到麦克风引起的(比较好理解);线路回音是由于物理电子线路的二四线匹配耦合引起的(比较难理解)。 回音的产生主要有两种原因: 1.由于空间声学反射产生的声学回音(见下图): 图中的男子说话,语音信号(speech1)传到女士所在的房间,由于空间的反射,形成回音speech1(Echo)重新从麦克风输入,同时叠加了女士的语音信号(speech2)。此时男

子将会听到女士的声音叠加了自己的声音,影响了正常的通话质量。此时在女士所在房间应用回音抵消模块,可以抵消掉男子的回音,让男子只听到女士的声音。 2.由于2-4线转换引入的线路回音(见下图): 在ADSL Modem和交换机上都存在2-4线转换的电路,由于电路存在不匹配的问题,会有一部分的信号被反馈回来,形成了回音。如果在交换机侧不加回音抵消功能,打电话的人就会自己听到自己的声音。 不管产生的原因如何,对语音通讯终端或者语音中继交换机需要做的事情都一样:在发送时,把不需要的回音从语音流中间去掉。 试想一下,对一个至少混合了两个声音的语音流,要把它们分开,然后去掉其中一个,难度何其之大。就像一瓶蓝墨水和一瓶红墨水倒在一起,然后需要把红墨水提取出来,这恐怕不可能了。所以回声消除被认为是神秘和难以理解的技术也就不奇怪了。诚然,如果仅仅单独拿来一段混合了回音的语音信号,要去掉回音也是不可能的(就算是最先进的盲信号分离技术也做不到)。但是,实际上,除了这个混合信号,我们是可以得到产生回音的原始信号的,虽然不同于回音信号。 我们看下面的AEC声学回声消除框图(本图片转载)。

基于LMS算法的自适应组合滤波器中英文翻译

Combined Adaptive Filter with LMS-Based Algorithms ′ Abstract: A combined adaptive ?lter is proposed. It consists of parallel LMS-based adaptive FIR ?lters and an algorithm for choosing the better among them. As a criterion for comparison of the considere d algorithms in the proposed ?lter, we take the ratio between bias and variance of the weighting coef?cients. Simulations results con?rm the advantages of the proposed adaptive ?lter. Keywords: Adaptive ?lter, LMS algorithm, Combined algorithm,Bias and var iance trade-off 1.Introduction Adaptive ?lters have been applied in signal processing and control, as well as in many practical problems, [1, 2]. Performance of an adaptive ?lter depends mainly on the algorithm used for updating the ?lter weighting coef?ci ents. The most commonly used adaptive systems are those based on the Least Mean Square (LMS) adaptive algorithm and its modi?cations (LMS-based algorithms). The LMS is simple for implementation and robust in a number of applications [1–3]. However, since it does not always converge in an acceptable manner, there have been many attempts to improve its performance by the appropriate modi?cations: sign algorithm (SA) [8], geometric mean LMS (GLMS) [5], variable step-size LMS(VS LMS) [6, 7]. Each of the LMS-bas ed algorithms has at least one parameter that should be de?ned prior to the adaptation procedure (step for LMS and SA; step and smoothing coef?cients for GLMS; various parameters affecting the step for VS LMS). These parameters crucially in?uence the ?lter output during two adaptation phases:transient and steady state. Choice of these parameters is mostly based on some kind of trade-off between the quality of algorithm performance in the mentioned adaptation phases. We propose a possible approach for the LMS-based adaptive ?lter performance improvement. Namely, we make a combination of several LMS-based FIR ?lters with different parameters, and provide the criterion for choosing the most suitable algorithm for different adaptation phases. This method may be applied to all the

楼宇对讲回音消除解决办法

楼宇对讲回音消除解决方法 近年,随着大数据时代的来临,很多楼宇对讲系统也相应的进入改造行列。传统的双线四线制对讲慢慢地进入衰老淘汰期,新兴的以太网传输网络一遍火热。但是在改造的过程中工程师们也将面临着一个新的挑战——回音消除! “回音”是通讯产品及配件在实际使用的过程中,时常遇到的问题。客观地说,无论模拟式通讯、还是数字式通讯,在使用过程中,都一定存在回音的现象。因此,回音消除器产品成为了通讯业至今不息的论题。 在设计一款“回音消除”产品、或者模块化电路的时候,设计人员首先要了解“回音”产生的机理,而后从实际的条件入手,选择适合的产品方案。以下所讨论的,仅限于视频会议行业常规的使用条件下的产品。 回音的产生,最早是人们在一个空旷的峡谷中喊话,会多次听到自己的声音,这种现象是“声学回音”,指声源产生后,声波在某个物体的表面得到发射,形成“二次声源”,如果声波得到多次的反射,就会形成在峡谷中喊话的效果了。中国北京天坛回音壁就是人为地采用了这种回音原理,建造出的历史景点。 在电话出现后,人们又发现,在通话过程中,会在一定的短暂延时之后,听到自己说的话。这种回音现象,我们称之为“网络回音”,特别是采用两线式的电话系统,在两条铜线上要承载双向的语音信号,在电波延时后,就会出现“二次信号”了。 通讯中的回音,如果造成“多谐波”,就会发生“自激啸叫”,影响通讯效果。但是在电话通讯中,一定水平的“网络回音”(侧音)是有利于通话双方的沟通感觉。 目前楼宇对讲中所讨论的回音,同时包含了电路的信号延时产生的侧音和会场环境造成的声学回音两种因素,以下主要是由于声学回音Acoustic Echo造成,在下图中,解释了产生的原因: 在通讯中,室内机用户和本端用户形成了通讯的环路(Loop),一个双向的通信线路组成了一个封闭的环路。 图中所示:室内机用户的语音信号经过话筒的采集后,以数据信号的方式通过通信线路传递到室外机设备,通过扬声器播放出来;播放出来的声音和室外机用户讲话的声音同时进入话筒,

自适应滤波器设计与Matlab实现

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。 数学原理编辑 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。 20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。 以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, k s为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。

自适应滤波算法的研究分析

自适应滤波算法的研究 第1章绪论 1.1课题背景 伴随着移动通信事业的飞速发展,自适应滤波技术应用的范围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器己成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。[1] 自适应滤波是一种最佳滤波方法。它是在维纳滤波,Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。 自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

LMS算法

自适应信号处理算法(LMS算法) 近来有许多同学想我询问LMS算法的仿真程序,这里提供一个从别处下载下来的,要验证。%自适应信号处理算法 clear all; hold off; sysorder=5; %抽头数 N=1000; %总采样次数 n1=randn(N,1);%产生高斯随机系列 n2=randn(N,1); [b,a]=butter(2,0.25); Gz=tf(b,a,-1); %逆变换函数 h=[0.0976;0.2873;0.3360;0.2210;0.0964;]; %信道特性向量 y = lsim(Gz,n1);%加入噪声 noise = n2 * std(y)/(10*std(n2));%噪声信号 d = y + noise;%期望输出信号 totallength=size(d,1);%步长 N=60 ; %60节点作为训练序列 %算法的开始 w = zeros ( sysorder , 1 ) ;%初始化 for n = sysorder : N u = inp(n:-1:n-sysorder+1) ;% u的矩阵 y(n)= w' * u;%系统输出 e(n) = d(n) - y(n) ;%误差 if n < 20 mu=0.32; else mu=0.15; end

w = w + mu * u * e(n) ;%迭代方程end %检验结果 for n = N+1 : totallength u = inp(n:-1:n-sysorder+1) ; y(n) = w' * u ; e(n) = d(n) - y(n) ;%误差 end hold on plot(d) plot(y,'r'); title('系统输出') ; xlabel('样本') ylabel('实际输出') figure semilogy((abs(e))) ;% e的绝对值坐标title('误差曲线') ; xlabel('样本') ylabel('误差矢量') figure%作图 plot(h, 'k+') hold on plot(w, 'r*') legend('实际权矢量','估计权矢量') title('比较实际和估计权矢量') ;

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

VoIP声学回声消除算法研究.

VoIP声学回声消除算法研究 0 引言 近年来,VoIP(Voice over IP)技术及其业务的迅速发展,对传统的电信业务造成了巨大的冲击,与传统电话相比,IP电话以其网络带宽利用率高,通话成本低,可灵活地提供丰富的增值功能而备受市场青睐。然而,由于VoIP 的语音在与其他数据一起在网络中传输时要经过压缩、编码、打包等一系列处理,造成回声路径的延迟较大,延迟抖动也较大,严重影响了话音质量,阻碍了VoIP市场的拓展。因此,在VoIP终端上增加回声消除算法已成为必然。 1 声学回声消除技术的原理 1.1 声学回声产生原理 根据回声的产生原因,回声可以分为声学回声和电学回声两类。电学回声是由于电路阻抗不匹配造成的,通常影响比较小。随着消除回声技术的发展,当前回声消除研究的重点已由“电学回声”的消除转向了“声学回声”的消除。声学回声指设备的一部分声音信号回馈到同一设备的受话器,分为直接回声和间接回声。直接回声指扬声器的声音未经任何反射直接进入麦克风,这种回声延迟最短。间接回声是指扬声器播放的声音经不同的路径一次或多次反射后进入麦克风所产生的回声集合,其主要特点是回声路径冲激响应变化范围大,变化快,冲激响应持续时间长,一般在50~300 ms。这使得自适应建模滤波器的阶数很高,因而成为语音通信系统回声的主要难题。 1.2 声学回声消除的原理 自适应回声抵消的基本思想是估计回声路径的特征参数,产生一个模拟的回音路径,得出模拟回声信号,从接收信号中减去该信号,实现回声抵消。图1给出了单向传输的声学消回声器AEC的原理图。 图1中,y(n)代表来自远端的信号;r(n)是经过回声通道而产生的不期望的回声;x(n)是近端的语音信号;D口的近端信号叠加有不期望的回声。对消回声器来说,接收到的远端信号作为参考信号,消回声器根据由自适应滤波器产生回声估计值,将r1(n)从近端带有回声的语音信号减去,就得到近端传送出去的信号μ(n)=x(n)+r(n)-r1(n)。在理想情况下,经过消回声处理后,残留的回声误差e(n)=r(n)-r1(n)将为0,从而实现回音消除。 2 自适应回声消除算法理论 回声消除理论的难点是估计回声与近端输入信号之间的同步问题以及如何对双端讲话进行处理的问题,若这两个问题处理不好,就会造成滤波器的发散,不但不能消除回声,反而会引入更烦人的噪声。 2.1 双端话音处理与MDF算法结合 在NLMS算法中,假设输入近端背景噪声与远端信号均为白噪声,那么两信号间为时间无关的,因此可以求得最优步长因子: 式中:r(n)为残留回声的方差的估计值;e(n)为误差信号的方差的估计值。 但是用LMS/NLMS算法来进行语音信号的声学回声消除时,两信号时间

回声消除

回声消除 1.回声消除原理 从通讯回音产生的原因看,可以分为声学回音(Acoustic Echo)和线路回音(Line Echo),相应的回声消除技术就叫声学回声消除(Acoustic Echo Cancellation,AEC)和线路回声消除(Line Echo Cancellation, LEC)。声学回音是由于在免提或者会议应用中,扬声器的声音多次反馈到麦克风引起的(比较好理解);线路回音是由于物理电子线路的二四线匹配耦合引起的(比较难理解)。 回音的产生主要有两种原因: 1.由于空间声学反射产生的声学回音(见下图): 图中的男子说话,语音信号(speech1)传到女士所在的房间,由于空间的反射,形成回音speech1(Echo)重新从麦克风输入,同时叠加了女士的语音信号(speech2)。此时男子将会听到女士的声音叠加了自己的声音,影响了正常的通话质量。此时在女士所在房间应用回音抵消模块,可以抵消掉男子的回音,让男子只听到女士的声音。 2.由于2-4线转换引入的线路回音(见下图):

在ADSL Modem和交换机上都存在2-4线转换的电路,由于电路存在不匹配的问题,会有一部分的信号被反馈回来,形成了回音。如果在交换机侧不加回音抵消功能,打电话的人就会自己听到自己的声音。 不管产生的原因如何,对语音通讯终端或者语音中继交换机需要做的事情都一样:在发送时,把不需要的回音从语音流中间去掉。 试想一下,对一个至少混合了两个声音的语音流,要把它们分开,然后去掉其中一个,难度何其之大。就像一瓶蓝墨水和一瓶红墨水倒在一起,然后需要把红墨水提取出来,这恐怕不可能了。所以回声消除被认为是神秘和难以理解的技术也就不奇怪了。诚然,如果仅仅单独拿来一段混合了回音的语音信号,要去掉回音也是不可能的(就算是最先进的盲信号分离技术也做不到)。但是,实际上,除了这个混合信号,我们是可以得到产生回音的原始信号的,虽然不同于回音信号。 我们看下面的AEC声学回声消除框图(本图片转载)。 其中,我们可以得到两个信号:一个是蓝色和红色混合的信号1,也就是实际需要发送的speech和实际不需要的echo混合而成的语音流;另一个就是虚线的信号2,也就是原始的引起回音的语音。那大家会说,哦,原来回声消除这么简单,直接从混合信号1里面把把这个虚线的2减掉不就行了?请注意,拿到的这个虚线信号2和回音echo是有差异的,直接相减会使语音面目全非。我们把混合信号1叫做近端信号ne,虚线信号2叫做远端参考信号fe,如果没有fe这个信号,回声消除就是不可能完成的任务,就像“巧妇难为无米之炊”。 虽然参考信号fe和echo不完全一样,存在差异,但是二者是高度相关的,这也是echo 称之为回音的原因。至少,回音的语义和参考信号是一样的,也还听得懂,但是如果你说一

自适应滤波算法理解与应用

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

回声消除技术介绍

回声消除技术介绍 “在PBX或局用交换机侧,有少量电能未被充分转换而且沿原路返回,形成回声。如果打电话者离PBX或交换机不远,回声返回很快,人耳听不出来,这种情况下无关紧要。但是当回声返回时间超过10ms时,人耳就可听到明显的回声了。为了防止回声,一般需要回声消除技术,在处理器中有特殊的软件代码监听回声信号,并将它从听话人的语音信号中消除。对于IP电话设备,回声消除技术是十分重要的,因为一般IP网络的时延很容易就达到40~50ms。” 一、因特网语音通信中回声的特点 与传统电话相比,因特网上进行语音的实时传输,有其致命的弱点,那就是语音质量较差,影响因特网语音质量的因素是多方面的,最关键的因素之一是回声的影响。因此,要提高因特网的语音质量,就必须在因特网的语音传输过程中进行消回声的处理,也就是说,IP电话网关作为因特网的语音接入设备,几须具有回声的消除功能。由于因特网的语音传输是采用分组交换技术实现的一种全新的电信业务,传送的语音信号要经过编码、压缩、打包等一系列处理,这不仅造成回声路径的延迟较大,而且延迟抖动也较大。因此,在因特网的语音传输过程中,回声问题显得尤其突出,并具有如下特点。 1、回声源复杂 在传统电话系统中,存在着一种所谓的"电路回击"。该回声产生的主要原回是在系统中存在2-4线的转换。完成2-4转换的混合器因阻抗匹配,造成"泄漏",从而导致了"电路回声"。从因特网IP电话网关的连接方式可以看出,IP电话网关一端连接PSTN,另一端连接因特网。 尽管电路回声产生于PSTN中,但同样会传至于IP电话网关,是因特网语音传输中的回声源之一,因特网语音传输中的第二种回声源是所谓的"声学回声"。声学回声是指扬声器播放出来的声音被麦克风拾取后发回远端,这就使得远端谈话者能听到自己的声音。声学回声又分为直接回声和间接回声。直接回声是指扬声器播放出来的声音未经任何反射直接进入麦克风。这种回声延迟最短,它与远端说话者的语音能量,扬声器与话筒之间的距离、角度、扬声器的播放音量以及话筒的拾取灵敏度等因素相关。间接回声是指扬声器播放的声音经不同的路径一次或多次反射后进入麦克风所产生的回声集合。因为周围物体的变动,例如人的走动等,都会改变回声的返回路径,因为这种回声的特点是多路径、时变的。另外,背景噪声也是产生回声的因素之一。 2、回声路径的延迟大 在因特网中的语音传输中,延迟来源有三种:压缩延迟、分组传输延迟和处理延迟。语音压缩延迟是产生回声的主要延迟,例如在G.723.1标准中,压缩一帧

回声消除技术

连载八:回声消除技术 一、因特网语音通信中回声的特点 与传统电话相比,因特网上进行语音的实时传输,有其致命的弱点,那就是语音质量较差,影响因特网语音质量的因素是多方面的,最关键的因素之一是回声的影响。因此,要提高因特网的语音质量,就必须在因特网的语音传输过程中进行消回声的处理,也就是说,IP电话网关作为因特网的语音接入设备,必须具有回声的消除功能。由于因特网的语音传输是采用分组交换技术实现的一种全新的电信业务,传送的语音信号要经过编码、压缩、打包等一系列处理,这不仅造成回声路径的延迟较大,而且延迟抖动也较大。因此,在因特网的语音传输过程中,回声问题显得尤其突出,并具有如下特点。 1、回声源复杂 在传统电话系统中,存在着一种所谓的"电路回击"。该回声产生的主要原因是在系统中存在2-4线的转换。完成2-4转换的混合器因阻抗匹配,造成"泄漏",从而导致了"电路回声"。从因特网IP电话网关的连接方式可以看出,IP电话网关一端连接PSTN,另一端连接因特网。 尽管电路回声产生于PSTN中,但同样会传至于IP电话网关,是因特网语音传输中的回声源之一,因特网语音传输中的第二种回声源是所谓的"声学回声"。声学回声是指扬声器播放出来的声音被麦克风拾取后发回远端,这就使得远端谈话者能听到自己的声音。声学回声又分为直接回声和间接回声。直接回声是指扬声器播放出来的声音未经任何反射直接进入麦克风。这种回声延迟最短,它与远端说话者的语音能量,扬声器与话筒之间的距离、角度、扬声器的播放音量以及话筒的拾取灵敏度等因素相关。间接回声是指扬声器播放的声音经不同的路径一次或多次反射后进入麦克风所产生的回声集合。因为周围物体的变动,例如人的走动等,都会改变回声的返回路径,因为这种回声的特点是多路径、时变的。另外,背景噪声也是产生回声的因素之一。 2、回声路径的延迟大 在因特网中的语音传输中,延迟来源有三种:压缩延迟、分组传输延迟和处理延迟。语音压缩延迟是产生回声的主要延迟,例如在G.723.1标准中,压缩一帧(30ms)的最大延迟是37.5ms。分组传输延迟也是一个很重要的来源,测试表明,端到端的最大传输延迟可达250ms以上。处理延迟是指语音包的封装时延及其缓冲时延等。 3、回声路径的延迟抖动大 在因特网的语音传输过程中,由于回声路径、语音压缩时延、分组传输路由等存在诸多不确定因素,而且波动范围较大,一般在20~50ms之间。 二、声学回声消除器的结构和相关算法 随着消回声技术的发展,当前回声消除研究的重点,已由"电路回声"的消除,转向了"声学回声"。 1、声学回声的消除法 (1) 周围环境的处理 分析声学回声的产生的机理,可以知道:声学回声最简单的控制方法是改善扬声器的周围环境,尽量减少扬声器播放声音的反射。例如,可以在周围的墙壁上附加一层吸音材料,或增加一层衬垫以增加散射,理想的周围环境是其回响时间或RT-60(声音衰减60dB所需要的时间)在300ms~600ms之间。因为这样的

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

相关文档
最新文档