滑差调速器原理

滑差调速器原理
滑差调速器原理

滑差调速器的技术特征与工作原理

1、滑差调速器:电磁调速异步电动机又称滑差电机,它是一种恒转矩交流无级变速电动机。由于它具有调速范围广、速度调节开滑、起动转矩大、控制功率小、有速度负反馈的自动调节系统时机械特性硬度高等一系列优点,因此在印刷机及骑马订书机、无线装订高频烘干联动机中都得到广泛应用。带有速度负反馈的电磁调速异步电动机的主要缺点是:在空载或轻载(小于10%额定转矩)时,由于反馈不足,会造成失控现象;在调速时,随着转速降低,离合器的输出功率和效率也相应地按比例下降。所以此电机适用于长期高速运转和短时间低速运转。为适应印刷机低速运转的需要,在采用电磁调速异步电动机作主驱动的印刷机中往往再配装一台三相异步电动机作为低速电机使用。

2、主要技术特性

①调速范围

电源为50HZ时:120~1200转/分;电源为60HZ时:150~1500转/分。

②转速变化率(机械特性硬度)不大于2.5%。

③输入电源:交流220V

额定输出直流电压不小于90V,额定输出电流5A;10A。

④控制电机容量

JZT3型调速器适用于控制0.6~30KW电磁调速电机,JZT4型调速器适用于控制37~100KW电磁调速电机。

⑤电源电压变化+5% ~–10%时,转速偏差<2.5%。

⑥最高环境温度不超过40℃。

⑦海拔不超过1000米。

⑧适用于少灰尘、无腐蚀性、无爆炸性气体、以及相对湿度在85%以下的环境中。

3 工作原理

调速器工作方块示意如图1,电气原理图如图2。

图1 调速器工作方块图

图2 调速器电气原理图

从图中可知,调速器由给定电路,触发电路,可控硅主回路,测速负反馈等环节组成。

给定电路:220V电压输入至调速器,经变压器变压至27V经过D5×4桥式

整流,R7,C3,C4,л型滤波器滤波后,经WZ

2稳压管加到给定电位器W

3

两端。

可控硅主回路:采用可控硅半波整流电路。由于激磁线圈是一个电感负载,为了让电流连续,因此在激磁线圈前并联一个续流二极管(D1)。

主回路的保护装置:用熔断器(RD)进行短路保护,用浪涌吸收器(RV)进

行交流侧浪涌电压保护,用阻容吸收回路(C

1R

1

)进行元件侧过电压保护。

测速负反馈电路:测速发电机三相电压经D6×6桥式整流后由C

5

滤波后加

到反馈电位器W

2

两端,此直流电压随调速电机的转速变化而成线性变化,作为速度反馈信号与给定信号相比较,由于它的极性是与给定电压相反的,它的增加即起着减小综合信号(给定信号减反馈信号)即负反馈的作用。

脉冲触发电路:本电路由电源变压器副边40V交流电压经D4整流,电阻R

3

和稳压管WZ

1削波后,供给晶体管G

2

和单结晶体管G

1

。采用单结晶体管触发电路,

这种电路比较简单,可靠性高,调整容易,温度补偿性较好,受温度影响小,移相范围能达到160°左右。

在脉冲触发电路中,当C

2充电电压U

C

达到单结晶体管G

1

的峰点电压U

P

时,e

—b

1间的电阻突然变小,C

2

就通过e—b1放电,形成脉冲电流。C

2

放电后,当U

C

<U

P 时,e—b1间又成为高阻态,直到C

2

再充电至U

P

时,e—b1又呈现低阻态,

脉冲变压器MB原边就有脉冲电流流过,这样MB会边得到一系列脉冲电压。

调速器在工作时,由给定电压和测速负反馈电压进行比较后,作为控制信号

加至晶体管(G

2)的基极和发射极(晶体管G

2

相当于可变电阻)以改变G

2

的内阻,

内阻的改变导致电流的大小的改变,也就改变了电容(C

2

)的充放电时间,使单结晶体管产生的触发脉冲能进行自动移相,从而改变可控硅的导通角而实现控制电机转速的目的。

4调整及试运行

调速器在正式投运前应先进行调整及试运,应注意以下几方面的问题:

①接线前应检查各元件是否有松脱现象、检查熔丝规格、转速表指针是否对零、是否按电路规定接线。

②接通电动机电源,检查旋转方向是否与拖动机械方向一致。

③第一次试车,先启动异步电动机,再打开调速器电源开关,指示灯明亮,即可旋动调速旋钮,此时转速表上读数逐渐上升,根据需要可将转速调至某一数值稳定下来。

④转速表指示值校正:顺时针方向缓慢转动给定电位器W

3

于任一位置,用机械转速表或其它仪表检查调速电机的实际转速与此转速表指示值是否一致,不

一致时调整电位器W

1

,使其一致。

⑤调速范围整定:顺时针方向转动给定电位器W

3

至最大,调节反馈电位器

W

2

使转速在1230转/分左右。

5 常见故障分析及排除方法

5.1 接通电源后指示灯不亮

原因分析:a组合插关或印刷电路板插座接触不良,电源未接通;

b指示灯坏或未拧紧;

c 熔断器熔丝烧断;

d 电源开关接触不良。

排除方法:a 检查插头或插座焊接情况,并用洒精清洗;

b 检查灯炮情况,必要时用电压表测量,应为6V左右;

c 检查(6、7)接线是否正确,有无短路;浪涌吸收器是否击穿,D

1和3CT有无击穿;

d 检查电源开关工作情况。

5.2 主电机运转后电磁离合器不工作

原因分析:a W

3

电位器断路;

b 稳压管WZ

2或滤波电容C

4

击穿短路;

c 脉冲变压器MB断线;

d D

7、D

8

二极管损坏;单结晶体管G

1

和三极管G

2

损坏;续流二极管

D 1损坏、二极管D

2

不通。

排除方法:a 检查变压器各次级线圈电压是否正常;

b 测量WZ

2上的给定电压是否在10V~12V之间,WZ

1

两端电压是否在

8V~10V之间;

c 如上述检查情况均正常,则用示波器观察脉冲变压器MB的波形(应为能移动的脉冲波);

d 根据检查结果更换相应原件及清洗电路板插脚。

5.3 电磁离合器工作时转速上升不能调节

原因分析:a W

2

电位器损坏;

b 插脚接触不良。

排除方法:a更换W

2

电位器;

b 用洒精清洗插脚。

5.4 转速表指示不正常

原因分析:二极管D

6

在运行时烧坏,不通。

排除方法:更换新的二极管。

5.5 故障现象:表头指示转速与实际转速值无法调节

原因分析:a由于永磁式测速发电机退磁引起;

b 测速发电机有一相短路或断线;

c 转速表里整流管损坏。

排除方法:a 如调节W

1

电位器仍不能解决问题时,需将测速发电机转子重新充磁;

b 测量测速发电机三相电压是否对称;

c 检查转速表:接上15V交流电时应能指满刻度。

6 维护经验点滴

本人通过近十年的设备维护工作,在叶轮给煤机调速器维护方面积累了一定的经验,主要有以下几点:

调速器在使用时,周围环境必须保持清洁,防止油污及潮气进入调速器内部,此时,可以在叶轮给煤机电气控制箱上镶嵌4~6mm厚的羊毛毡,密封效果理想,可有效防止进灰进尘、油污及潮气的进入。如出现印刷电路板插脚脏污,则应及时用无水洒精擦洗,以免接触不良,影响工作。

在停机检修或是停放时间较长时,应测量调速器的绝缘电阻,阻值不得小于1兆欧,否则应拆下进行干燥,待阻值恢复后方可投入使用。

调速器上的转速表读数,应根据要求定期进行校对,保持适当的正确度(调),使电机转速在0~1500转/分范围内可实现无级调速,以适应配煤的要求,W

1

提高混煤精度。

调速器用工作零线不要使用行走轨道或电气控制箱体,而要放一根专用6mm2多股铜芯线作为零线,以稳定调速器工作电压,保证人生和设备的安全。

调速器的功能及工作原理

一、调速器功用及分类 调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。 在柴油机上装设调速器是由柴油机的工作特性决定的。汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。这时,惟有借助调速器,及时调节喷油泵的供油量,才能 汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。 按调速器起作用的转速范围不同,又可分为两极式调速器和全程式调速器。中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速范围内的任何转速起 二、两极式调速器 两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。 (一)RQ 通常调速器由感应元件、传动元件和附加装置三部分构成。感应元件用来感知柴油机转速的变化,并发出相应的信号。传动元件则根据此信号进行供油量的调节。

(二)RQ型调速器基本工作原理 1)起动 将调速手柄从停车挡块移至最高速挡块上。在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。 2)怠速 柴油机起动之后,将调速手柄置于怠速位置。这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于内弹簧座与安装飞锤的轴套

电动机常见故障分析与维修

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这

调速器的工作原理

调速器的工作原理 液压调速器在感应元件和油量调节机构之间加入一个液压放大元件(液压伺服器),使感应元件的输出信号通过放大元件再传到油量调节机构上去,因此也叫间接作用式调速器。液压放大元件有放大兼执行作用,主要由控制和执行两个部分组成。一、无反馈的液压调速器其工作原理如下:当负荷减小时,由曲轴带动的驱动轴转速升高,飞球的离心力增加,推动速度杆右移。于是,摇杆以A点为中心逆时针转动,滑阀右移,压力油进入伺服器油缸的右部空间。与此同时,油缸的左部空间通过油孔与低压油路相通,其中的油被泄放。在压差的作用下,伺服活塞带动喷油泵齿条左移,以减少供油量。当转速恢复到原来数值时,滑阀也回到中央位置,调节过程结束。当负荷增加,转速降低时,调速过程按相反方向进行。从上述分析可知,调速器飞球所产生的离心力仅用来推动滑阀,因而飞球的重量尺寸就可以做得较小。而作为放大器的液压伺服器的作用力,则可根据需要,选择不同尺寸的伺服活塞和不同滑油压力予以放大。但是,在这种调速器中,因为感应元件直接驱动滑阀,无论它朝哪个方向往动,均难准确地回到原来位置而关闭油孔。这样就使柴油机转速不稳定,而产生严重的波动。为了使调速器能稳定调节,在调速器中还要加入一个装置,其作用是在伺服活塞移动的同时对滑阀产生一个反作用,使其向平衡的位置方向移动,减少柴油机转速波动的可能性。这种装置称为反馈机构。二、具有刚性反馈机构的液压调速器它的构造与上述无反馈液压调速器基本相同,只有杠杆义AC的上端A不是装在固定的铰链上,而是与伺服活塞的活塞杆相连。这一改变使感应元件、液压放大元件和油量调节机构之间的关系发生如下的变化。当负荷减小时,发动机转速升高,飞球向外张开带动速度杆向右移动。此时伺服活塞尚未动作,因此反馈杠杆AC的上端点A暂时作为固定点,杠杆AC绕A反时针转动,带动滑阀向右移动,把控制孔打开,高压油便进入动力缸的右腔,左腔与低压油路相通。这样高压油便推动伺服活塞带动喷油调节杆向左移动,并按照新的负荷而减少燃油供给量。在伺服活塞左移的同时,杠杆AC绕C点向左摆动与B点相连接的滑阀也向左移动,从而使滑阀向相反的方向运动。这样在伺服活塞移动时能对滑阀运动产生了相反作用的杠杆装置称为刚性反馈系统。当调节过程终了时,滑阀回到了起始位置,把控制油孔关闭,切断通往伺服油缸的油路。这时伺服活塞就停止运动,喷油泵调节杆随之移动到一个新的平衡位置,发动机就在相应的新负荷下工作。因此,相应于发动机不同的负荷,调速器就具有不同的稳定转速。因为发动机负荷变化时需要改变供油量,所以A点位置随负荷而变。与滑阀相连接的B点在任何稳定工况下均应处于原来的位置,与负荷无关。这样C点的位置必须配合A点作相应的变动,因而导致了转速的变化。假如当负荷减小时,调速过程结束后,滑阀回到中间原来位置时,伺服活塞处于减少了供油量位置,使A点偏左,C点偏右,因C 点偏右,弹簧进一步受压,只有在稍高的转速下运转才能使飞球的离心力与弹簧压力平衡。这说明负荷减小时稳定运转后,柴油机的转速比原来稍有升高。同理,当负荷增加时,稳定运转后,柴油机的转速比原来稍有降低。具有刚性反馈的液压调速器,可以保证调速过程具有稳定的工作特性,但负荷改变后,柴油机转速发生变化,稳定调速率d不能为零。如果要求负荷变化时即要调速过程稳定,又能保持发动机转速恒定不变(即入就必须采用另一种带有弹性反馈系统的液压调运器。三、具有弹性反馈的液压调速器它实际上是在"刚性反馈"装置中加入一个弹性环节--缓冲器和弹簧。弹簧的一端同固定的支点相连,而另一端则与缓冲器的活塞相连。缓冲器的油缸同伺服器的活塞成刚体联接。当发动机负荷减小时,转速增大,飞球的离心力增加。同样,滑阀右移,而伺服活塞则左移,减少喷油泵的供油量。当活塞的运动速度很高时,缓冲器和缓冲活塞就象一个刚体一样地运动。随着伺服活塞5的左移,缓冲器和AC杠杆上的A点也向左移动。这一过程和上述刚性反馈系统的调速器完全相同。但当调速过程接近终了时,滑阀已回到原来的位置,遮住了通往伺服油缸的

柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型 1、喷油泵的速度特性 喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速增大,柱塞有效行程略有增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。 2、柴油机上为什么要安装调速器 喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器。 3、调速器的功用、形式 调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。 型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。 4、机械离心式调速器的工作原理 机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。 反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。

09325324电子无级调速器设计

《家电原理与检测》课程设计报告 电子无级调速器设计 姓名: 涂国龙 专业: 电子信息工程 班级: 093253 学号: 24 指导老师: 王晓荣 2011年12月20日

摘要 近几年随着科学技术的发展,尤其是生产电机的成本的下降,小功率的减速电机,调速电机,微型减速电机,齿轮减速电机等大量普及,随之出现的交流电子无极调速器品种也大量出现在市场。尽管各种个样的交流电子无极调速器品种繁多,但其功能和工作原理基本相同。主要区分在外型的不同。如上海任重仪表电器有限公司,上海百乐神自动化科技有限公司,中外合作湖州雪峰微电机有限公司等厂家的产品:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104,SCA-B,LSC-C ,LSC-H,LSC-G等,在功能上大致相同,主要的是安装结构存在差异。一般在使用上只要对启动的电容做出选择,改变,不管功率大小基本都能使用。主要分2大类:6-180W功率和180-370W功率。前者选:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104等型号产品。前者选SCA-B,LSC-C ,LSC-H,LSC-G等型号产品。交流电子无极调速器在产品的命

名上也很多:交流电子无极调速器,电子无极调速器,电子无极调速器,交流调速器,数显速控制器等。 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

《电机变压器原理与维修》课程教学大纲

《电机变压器原理与维修》课程教学大纲(适用于电气自动化控制设备安装与维修专业,初中起点3年制中级工) 一、课程性质与任务 1.课程性质 本课程是电气自动化设备安装与维修专业的专业课。主要内容包括:变压器、交流异步电动机、直流电机、同步电机与特种电机的结构、原理、主要特性及使用维护知识。 2.课程任务 本课程的任务是对电工类学生进行电机、变压器基础知识教学,初步掌握其结构、原理、特性和一般使用维护方法。 二、参考学时 每周4个学时,12个自然周,共48个学时。 三、课程目标 1.知识目标 (1)掌握变压器的结构工作原理。(2)变压器的连接与运行。(3)掌握常用变压器、交流异步电动机、直流电动机的结构、工作原理、主要特性和使用维护的知识。(4)了解同步电机与特种电机的结构、原理、主要性能和用途。(5)培养学生对电机、变压器进行一般检测和一般故障分析的能力。 2.技能目标 (1)掌握常用变压器、交流异步电动机、直流电动机的结构、工作原理、主要特性和使用维护的知识。 (2)了解同步电机与特种电机的结构、原理、主要性能和用途。 (3)培养学生对电机、变压器进行一般检测和一般故障分析的能力。 (4)了解与本课程有关的新工艺、新技术,初步具有查阅电机、变压器有关资料和手册的能力。 3.职业素养目标 使学生获得电动机及其应用的基本知识,掌握以电动机与变压器基本原理、分析方法。使学生具有举一反三的能力,提高其实践操作能力。让学生能将所学的专业理论运用到生产实际中去,熟悉常用电动机绕制、拆卸、仪器仪表的使用,电机与变压器一般常见故障的检查和排除方法,培养安全生产、文明生产的意识和良好的职业道德。 四、课程内容和要求 表1 课程内容和要求

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献就是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但就是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98、5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司与美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理

永磁磁力耦合调速驱动(PMD)就是通过铜导体与永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)与被驱动(负载)侧没有机械链接。其工作原理就是一端稀有金属氧化物硼铁钕永磁体与另一端感应磁场相互作用产生转矩,通过调节永磁体与导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子与控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子与永磁转子之间有间隙(称为气隙)。这样电动机与负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体与导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理就是通过磁体与导体之间的相对运动产生。也就就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况

风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。 交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。 可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。 元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

直流调速器工作原理

直流调速器工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接, 下端和直流 电动机连接, 直流调速器 将交流电转 化成两路输 出直流电源, 一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁

调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 1.海拔高度不超过1000米。(超过1000米,额定输出电流值有所降低) 2.周围环境温度不高于40℃不低于-10℃。 3.周围环境相对湿度不大于85[%],无水凝滴。 4.没有显着震动和颠簸的场合。

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理 永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理是通过磁体和导体之间的相对运动产生。也就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况下,在电动机满转时,PMD的

调速器原理

调速器原理: 调速的方法不外乎通过3种途径:改变电压;电流;频率. 调速控制的方式也就是通过负反馈来调整.大的来说分为开环,半闭环控制和闭环控制.开环就是设定参数后不会有任何修正的. 半闭环: 比如你用调电压的方式来调速,那么通过传感器检测电压是否调整到位,并给以负反馈. 闭环则是无论你用什么方式改变转速,都通过传感器检测转速提供负反馈,作用于调速的要素.闭环控制最为精确. 目前有三种调速器,较老式的叫电抗器,实际上是带抽头的自耦变压器(一般自耦变压器不带抽头),可以改变不同的电压,风扇就有了不同的转速,另一种是电子调速器,是使用可控硅加电位器改变电压,属于无级调速,再有一种就是变频器,它不调整电压,而是改变交流电的频率,也达到了调速的目的,因为电风扇基本上采用交流异步电动机,因此改变频率即可调速。 一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:l 具有较硬的机械特性,稳定性良好;l 无转差损耗,效率高;l 接线简单、控制方便、价格低;l 有级调速,级差较大,不能获得平滑调速;l 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。l 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:l 效率高,调速过程中没有附加损耗;l 应用范围广,可用于笼型异步电动机;l 调速范围大,特性硬,精度高;l 技术复杂,造价高,维护检修困难。l 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:l 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;l 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;l 调速装置故障时可以切换至全速运行,避免停产;l 晶闸管串级调速功率因数偏低,谐波影响较大。l 方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

2、调速器基本原理和设备特性

第二章 调速器基本原理和设备特性本章介绍调速器基本原理和MGC4000系列调速器的设备结构特性

2.调速器基本原理和设备特性 (3) 2.1调速系统原理介绍 (3) 2.2 MGC4000系列调速器概述 (4) 2.3 MGC系列调速器的选型说明 (4) 2.4 MGC系列调速器的性能参数 (5) 2.4.1 MGC系列调速器的主要技术参数 (5) 2.4.2 MGC系列调速器的基本功能 (6) 2.5调速器电气原理概述 (6) 2.6 MGC4000系列调速器电源系统 (8) 2.6.1 MGC4000系列调速器电源系统特点 (8) 2.6.2 MGC4000系列调速器的急停回路电源 (8) 2.7 MGC4000系列调速器双微机控制器冗余 (9) 2.7.1 MGC4000系列双微机控制器冗余特点 (9) 2.7.2 MGC4000系列双微机控制器切换特点 (9) 2.8 MGC4000系列调速器的通讯接口 (9) 2.8.1 RS232/485 接口 (9) 2.8.2 以太网接口 (9)

2.调速器基本原理和设备特性 2.1调速系统原理介绍 水轮机调速系统由水轮机控制系统和被控制系统组成,方框内即为调速系统。 水轮机控制系统用来检测被控参量(转速、流量、水位、功率等)与给定参量的偏差,并将它们按照一定特性转换成主接力器行程偏差的一些设备所组成的系统。 被控制系统由控制系统控制的设备或物理量,包括水轮机、引水和泄水系统,发电机以及所并入的电网。 调速器通过外围的水位、频率、有功功率、导叶开度等传感器将机组的信息送至控制器,控制器将这些信息与监控系统或者调速器面板上的控制指令进行综合,判断机组当前的工作状态以及控制目标,并且将控制信号送至执行机构,将控制指令经过电液转换之后最终作用在导叶(桨叶)接力器上,从而改变机组的运行状态,达到预期的控制目标。 ◆机组在并网运行前,调速器将机组调整到额定转速运行,此时调速器的作用为频率调节器,其调整目标是把机组频率调整到额定值。 ◆机组在并网运行后,机组向电网输出有功功率,调整水轮机的导叶开度/桨叶开度能够改变机组输出的有功功率大小,此时调速器作为有功功率调节器工作,其调整目标是把机组发出的有功功率调整到电网需求的数值。同时,调速器需要控制导叶开度,使得机组发出的有功功率不超过机组的额定功率,所以调速器也作为机组有功功率限制器使用。当电网频率波动超过设定值后,调速器自动变为频率调节器,将机组频率稳定在机组额定值。

电子调速器

? 1.根据控制机构的不同分: (1)电子式 (2)液压式 (3)气动式: (4)机械式: 2.据用途的不同分为: (1)单制式:单置式调速器又称恒调速器,只能控制柴油机的最高速度。这种调速器中调速弹簧的预紧力是固定不变的,只有当柴油机转速超过最高标定转速时,调速器才能起作用,故称恒速调速器。 (2)双置式:双置式调速器又称两极式调速器,用来控制柴油机的最高转速和最低稳定速度。 (3)全置式:全置式调速器可以控制柴油机在规定的转速范围内任意转速下运动。其工作原理与恒调速器的区别在于弹簧承盘做成活动的,因此弹簧的弹力不是固定值,而是由操纵杠杆控制,随操纵杠杆位置的变化,调速器弹簧的弹力也随之变化,故可以控制柴油机在任意转速下稳定工作。 电子调速器的组成 ?电子调速器由转速调整电位器、转速传感器、控制器、执行器和保险电路等组成。 1.转速传感器 它应采集尽可能高的信号频率。设计采用最高的信号频率为12000Hz发动机转速与频率关系的计算公式如下:f=nz/60。式中f--频率Hz n--发动机的转速r/min;Z--传感齿轮齿致(或飞轮外圈齿数)。传感器最好是从飞轮处测量转速,安装时传感器与飞轮齿圈齿顶的间隙为0.4-0.8mm。 2.控制器 它的作用是根据传感器测出的转速实际值与其中设定值,进行比较、并驱动执行器执行。 3.转速调整电位器 它用来根据发动机使用的最高允许转速来调定频率。在订购时若写明发动机的运行频率,工厂根据要求调定好频率。若订单上未注明机组运行频率,则出厂时频率调定为2000Hz。 如果此调定的频率在发动机的空转和最高转之间,则可起动发动机并调节"speedmax" (最高转速)电位器使发动机获得最高运转频率。 4.执行器 执行器主要由直流电机,传动齿轮,输出轴及反馈部件组成。执行器由直流电机驱动,其扭矩通过一个中间齿轮传至输出轴。反馈部件将执行器的工作状态传入控制器以形成闭环控制系统。执行器的输出轴摇臂通过调节连杆与喷油泵齿杆相连。 5.保险电路 在电子调速系统中设有保险电路,当传感信号中断,如因电缆断裂发动机停止远行时,它可以使执行器停止工作,并使输出轴摇臂恢复至"0"位置。 电子调速器的原理

调速器工作原理

数字调速器在乙烯装置中的应用(下 数字调速器在乙烯装置中的应用 下)
2008-7-30 16:42:00 来源:中国自动化网
3.1.2 控制模块的作用 在裂解气透平转速控制图中,调速器中各控制模块的作用如下: (1) 转速控制器模块: 转速控制器将由 MPU 来的转速测量信号与转速参考模块来的 转速参考信号相比较,经过 PID 运算产生一个输出信号给比例/限制器,经过比例/限 制器模块作用在 HP 阀和 LP 阀上。如果测量转速比转速参考值低,则转速控制器的 输出增加,通过比例/限制器模块开大 HP 阀和 LP 阀,增加透平进汽量,提高透平的 转速,反之亦然。 (2)抽汽控制器模块:在抽汽控制过程中,DCS 系统“AUTOMAN”点 PC1312 将透 平的 SS 进汽压力信号通过 AO 卡 4~20MA 送入调速器内, 在调速器中对此信号取反 后送入抽汽控制器模块。 抽汽控制器模块将经过取反的进汽压力信号与抽汽压力参考 信号相比较,经过 PID 运算产生一个输出信号给比例/限制器,经过比例/限制器的控 制后作用在 HP 阀和 LP 阀上。如果进汽压力降低,则经过取反的抽汽压力信号增大, 当这个经过取反的抽汽压力信号大于抽汽压力参考值时,这时抽汽控制器输出降低, 经过比例/限制器控制后将关小 HP 阀,开大 LP 阀,使进汽压力回升的同时也保持了 透平转速的稳定,反之亦然。 (3)比例/限制器:在 505E 调速器内比例/限制器的作用是阀门解耦,即按照一定的 比例关系合理地协调 HP 和 LP 阀的开度,以同时保证抽汽量和转速的稳定调节,保 持透平在规定的透平蒸汽图内运行。比例/限制器接收从转速控制器和抽汽控制器来 的输出信号,比例电路按希望的比例产生两个输出信号,一个控制 HP 阀,另一个控 制 LP 阀;限制电路将使这两个输出信号保持在透平蒸汽图的界线内。图 3 为透平蒸 汽图的一般示意: S=1 的竖线是最大功率限制器, HP=1 的横线是最大 HP 流量限制 器;标注 P=0 至 P=1 的一组平行线确定了抽汽流量范围;LP=0 和 LP=1 的(平行) 线确定了 LP 阀的范围(由关闭到打开)。这便是一台透平正常工作时的图形界限。 比例器电路通过解耦 HP 阀和 LP 阀的相互作用, 使透平的转速/负荷和抽汽压力/流量 维持在正常值。对于一个在正常操作范围内运行的透平,当需要增加转速/负荷时, 必须开大 HP 阀,允许更多的蒸汽进入透平,同时,LP 阀也必须开大,维持恒定的 抽汽量。在需要增加抽汽量时,可以关小 LP 阀,提供更多的抽汽流量,同时,要开 大 HP 阀以维持转速/负荷不变。 限制器电路限制透平的转速/负荷和抽汽压力/流量,以使透平保持在它的正常范围内 运行。如果转速/负荷和抽汽压力/流量的需求使透平达到运行极限,则限制器电路根 据预先选择的优先性(转速优先或抽汽优先),限制 HP 阀和 LP 阀的输出信号,以维 持透平转速/负荷或抽汽压力/流量不变。 (4)转速参考模块:转速参考模块提供调速器所要控制的透平转速设定值以及调速 器的升/降速的速率。在机组经过透平和压缩机的临界转速区时,转速参考模块将提 供一个较快的升速速率(速度快变率)使机组可以快速通过透平和压缩机的临界转速 区,以防止透平和压缩机因振动过大而损坏。同时,转速参考模块还可以接收由远程

机械式离心调速器工作原理

离心调速器工作原理 喷油泵的速度特性 喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速的增大,柱塞有效行程略有所增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。 调速器的功用、形式 功用:喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器 调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。 调速器的型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。 机械离心式调速器的工作原理 机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。 反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。 两速调速器 作用:两速调速器适用于一般条件下使用的汽车柴油机,它只能自动稳定和限制柴油机最低与最高转速,而在所有中间转速范围内则由驾驶员控制。 结构(如图5-19所示):

关于无刷电机和电调的基本原理

???????? ??? ? ??? ???????????????????? ????????????????????ˊ?????????????? ????? ??????????????????????ˊ????????????????????ˊ?????????????????????ˊ???????????Ё??????????????∈??└??Ё???????????????????? ????? ?????????????? ?????? ???ˊ????????????????????ˊ????? ????? ? ????????????????????? ??? !"? # $# ??????????????????????????????????????# %# %# ??????ā??ā?#&%#'%# ??ā??ā? ?Ё( %( %( ?# %# %# ???????????????????????? ?ˊ????? ?????????????⑤?? h ) ????????? !"?????????)* ???┑? !"??????????????????? ?+ , ,? ?? ??*????#-%# %#.???????????????????? ? /0?12 ?????????????? /0???????????

??????? ?? !"???? ??? ?? ???????????⑤?????ф???? !"???????┑??????▂?? ?? Ё??? ???#-%# %#.?????????? ???????????? /0???3% ??? ??? ????????? ?????????????????┨?┰???╔?? / ???????⑤???????Ё?????????????????????⑤?????┨?????????????? )?????? !"?)* ?└?????? !"? ?????? ? ???????????Ё?ˊ?????????????????????????????? ????????ˊ??????????????????????????????????????????Ё 4? ???????????????????????????????????????????⑤????????????????????????????????????????????????????????г?????????????????????????????????????????????Ё????????????????????????? ????? ???????????????????? ????????????????? ??????????????????? ??????

电子调速器的基本原理

第七节电子调速器的基本原理 由于电子技术的发展,电子控制系统已愈加广泛地应用在发动机上,其中电子调速器在柴油机上的应用已达到非常令人满意的效果。 电子调速器是根据接受的电信号,通过控制器和执行器来改变喷油泵供油量的大小。现以我国成都仪表厂生产的E6-E30型电子调速器为例,说明一下它的结构和工作原理。 一、电子调速器的组成 E6-E30型电子调速器可分别应用在150一5000kW的内燃机调速系统。 本调速器属全电式调速器,不需要机械液压传动。它由转速调整电位器、转速传感器、控制器、执行器和保险电路等组成。 其结构如下图所示: 1.转速传感器

它应采集尽可能高的信号频率。设计采用最高的信号频率为12000Hz发动机转速与频率关系的计算公式如下:f=nz/60 式中f--频率Hz n--发动机的转速r/min; Z--传感齿轮齿致(或飞轮外圈齿数)。 传感器最好是从飞轮处测量转速,安装时传感器与飞轮齿圈齿顶的间隙为0.4-0.8mm。 2.控制器 它的作用是根据传感器测出的转速实际值与其中设定值,进行比较、并驱动执行器执行。 3.转速调整电位器 它用来根据发动机使用的最高允许转速来调定频率。在订购时若写明发动机的运行频率,工厂根据要求调定好频率。若订单上未注明机组运行频率,则出厂时频率调定为2000Hz。如果此调定的频率在发动机的空转和最高转之间,则可起动发动机并调节"speedmax" (最高转速)电位器使发动机获得最高运转频率。 4.执行器 执行器主要由直流电机,传动齿轮,输出轴及反馈部件组成。 执行器由直流电机驱动,其扭矩通过一个中间齿轮传至输出轴。 反馈部件将执行器的工作状态传入控制器以形成闭环控制系统。 执行器的输出轴摇臂通过调节连杆与喷油泵齿杆相连。 5.保险电路 在电子调速系统中设有保险电路,当传感信号中断,如因电缆断裂发动机停止远行时,它可以使执行器停止工作,并使输出轴摇臂恢复至"0"位置。 二、电子调速器的工作原理

发电机电子调速器的基本原理

发电机发电机电子调速器的基本原理 电子调速器的基本原理由于电子技术的发展,电子控制系统己愈加广泛地应用在发动机上,其中电子调速器在柴油机上的应用己达到非常令人满意的效果。 电子调速器是根据接受的电信号,通过控制器和执行器来改变喷油泵供油量的人小。现以东莞团诚自动化设备有限公司生产的EG2000型电子调速器为例,说明一下它的结构和工作原理。 力可赛EG2000电子调速器图如下: 一、一、发电机发电机发电机电子调速器的组成 电子调速器的组成EG2000型发电机电子调速器可分别应用在150-5000kW 的内燃机调速系统。本调速器属全电式调速器,不需要机械液压传动。它由转速调整电位器、转速传感器、

控制器、执行器和保险电路等组成。 其结构如下图所示: 1.发电机转速传感器 它应采集尽可能高的信号频率。设计采用最高的信号频率为12000Hz发动机转速与频率关系的计算公式如下:f=nz/60 式中f--频率Hz n一发动机的转速r/min;Z一传感齿轮齿致(或飞轮外圈齿数)。 传感器最好是从飞轮处测最转速,安装时传感器与飞轮齿圈齿顶的间隙为0.4-0.8mm。 2.发电机控制器 它的作用是根据传感器测出的转速实际值与其中设定值,进行比较、并驱动执行器执行。 3.发电机转速调招电位器

它用来根据发动机使用的最高允许转速来调定频率。在订购时若写明发动机的运行频率,工厂根据要求调定好频率。若订一单上未注明机组运行频率,则出厂时频率调定为2000Hz,如果此调定的频率在发动机的空转和最高转之间,则可起动发动机并调节"speedmax"(最高转速)电位器使发动机获得最高运转频率。 4.发电机执行器 执行器主要由直流电机,传动齿轮,输出轴及反馈部件组成。 执行器由直流电机驱动,其扭矩通过一个中间齿轮传至输出轴。 反馈部件将执行器的工作状态传入控制器以形成闭环控制系统。 执行器的输出轴摇臂通过调节连杆与喷油泵齿杆相连。 5.发电机保险电路 在电子调速系统中设有保险电路,当传感信号中断,如因电缆断裂发动机停止远行时,它可以使执行器停止工作,并使输出轴摇臂恢复至“0”位置。 二、二、发电机发电机发电机电子调速器的工作原理 电子调速器的工作原理用转速调整电位器设定需要的转速,传感器通过飞轮上的齿圈测量出发动机转速实际值,并送至控制器,在控制器中实际值与设定值相比较,其比较的差值经控制线路的整理、放人,驱动执行器输出轴,通过调节连杆拉动喷油泵齿杆,进行供油量的调节,从而达到保持此设定转速的日的。 这种电子调速器还可根据发动机使用场合的需要选择不均匀度的大小。当进行无差调速时,电子控制系统会将负荷变化而引起的设定转速与实际转速之间的差值消除,使发动机保持原设定的转速。根据机组需要,也可调节不均匀度电位器,以使调速系统获得满意的静态调速率。

相关文档
最新文档