微波天线课程设计5.6GHz微带天线设计(不同切角)

微波天线课程设计5.6GHz微带天线设计(不同切角)
微波天线课程设计5.6GHz微带天线设计(不同切角)

课程设计

课程名称:微波技术与天线

课设题目:微带天线设计(不同切角)

实验地点:博学馆机房

专业班级:电信1201班

学号:2012001422

学生姓名:

指导教师:李鸿鹰

2015 年7 月 4 日

课程设计任务书

注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进

行装订上交(大张图纸不必装订)

指导教师签名: 日期:2015-6-10

专业班级

电信1201 学生姓名

课程名称 微波技术与天线

课程设计 设计名称 微带天线设计

设计周数 1.5周

指导教师

李鸿鹰

设计 任务 主要 设计 参数

1 熟悉HFSS 仿真平台的使用

2 熟悉微带天线的工作原理与设计方法

3 在HFSS 平台上完成如下微带天线的仿真设计 设计要求如下: 频率:5.6GHz 介质:FR4

4 结合同组其他同学的设计结果完成对于该天线结构参数与性能之间关系的探讨

5 在1.5周内完成设计任务

设计内容 设计要求

6.11:分组、任务分配、任务理解

6.12:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案设计。 6.15~6.18:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以及验收。

6.19:同组同学结果汇总及讨论 6. 22:设计说明书的撰写

在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。

主要参考 资 料

刘学观,微波技术与天线,西安电子科技大学电出版社,2012 顾继慧,微波技术,科学出版社,2007

李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件

1.设计报告

2.工程文件

一、设计题目:

微带天线仿真设计(不同切角贴片设计)

二、设计目的:

通过仿真了解微带天线设计,基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上设计一个矩形贴片天线,分析其远区辐射场特性以及S曲线。

三、设计原理:

矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为5.6GHz,分析其远区辐射场特性以及S曲线。

矩形贴片天线示意图

四、贴片天线仿真步骤

1、建立新的工程

运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。

2、设置求解类型

(1)在菜单栏中点击HFSS>Solution Type。

(2)在弹出的Solution Type窗口中

(a)选择Driven Modal。

(b)点击OK按钮。

3. 设置模型单位

将创建模型中的单位设置为毫米。

(1)在菜单栏中点击3D Modeler>Units。

(2)设置模型单位:

(a)在设置单位窗口中选择:mm。

(b)点击OK按钮。

4、创建微带天线模型

(1)创建地板GroundPlane。在菜单栏中点击Draw>Rectangle,创建矩形模型。在坐标输入栏中输入起始点的坐标:X:-45,Y:-45,Z:0按回车键。在坐标输入栏中输入长、宽:dX:90,dY:90,dZ:

0按回车键。在特性(Property)窗口中选择Attribute标签,将该名字修改为GroundPlane。

(2)为GroundPlane设置理想金属边界。在菜单栏中点击Edit>Select>By Name。在对话框中选择GroundPlane,点击OK确认。在菜单栏中点击HFSS>Boundaries>Assign>Perfect E。在理想边界设置窗口中,将理想边界命名为PerfE_Ground,点击OK确认。在3D模型窗口中将3D模型以合适的大小显示(可以用Ctrl+D来操作)。

(3)建立介质基片。在菜单栏中点击Draw>Box或者在工具栏中点击按钮,创建长方体模型。在右下角的坐标输入栏中输入长方体的起始点位置坐标:X: -22.5,Y:-22.5,Z:0。按回车键结束输入。输入各坐标时,可用Tab键来切换。输入长方体X、Y、Z三个方向的尺寸:dX:45,dY:45,dZ:5按回车键结束输入。在特性(Property)窗口中选择Attribute标签,将该名字修改为Substrate。点击Material选项后面的按钮,将材料设置为Rogers R04003。点击Color后面的Edit按钮,将颜色设置为绿色,点击OK确认。

(4)建立贴片Patch。在介质基片上创建贴片天线。在菜单栏中点击Draw>Rectangle,创建矩形模型。在坐标输入栏中输入起始点的坐标:X:-7,Y:-7,Z:5按回车键。在坐标输入栏中输入长、宽:dX:14,dY:14,dZ:0按回车键。在特性(Property)窗口中选择Attribute标签,将该名字修改为Patch。点击Corlor后面的Edit按钮,将颜色设置为黄色,点击OK确认。

(5)为Patch设置理想金属边界。在菜单栏中点击Edit>Select>By Name。在对话框中选择Patch,点击OK确认。在菜单栏中点击HFSS>Boundaries>Assign>Perfect E。在理想边界设置窗口中,将理想边界命名为PerfE_Patch,点击OK确认。

(6)创建切角。创建供贴片天线相减的切角时,首先在坐标原点处创建三角形,然后将其移动到方形贴片的顶点处。在菜单栏中点击Draw>Line。在坐标输入栏中输入点的坐标:X:0,Y:0,Z:5按回车键。在坐标输入栏输入点的坐标:X:3,Y:0,Z:5按回车键。在坐标输入栏中输入点的坐标:X:0,Y:3,Z:5按回车键。在坐标输入栏中输入点的坐标:X:3,Y:0,Z:5按回车键。在特性(Porperty)窗口中选择Attribute标签,将名字修改为Cut。在菜单栏点击Edit>Select>By Name。在对话窗口中选择Cut ,点击OK按钮。在菜单栏中点击Edit>Arrange>Move。在坐标输入栏中输入点的坐标:X:0,Y:0,Z:0。按回车键。在坐标输入栏输入坐标:dX:-14,dY:-14,dZ:0。按回车键。可以通过旋转复制创建另一个切角。在菜单栏中点击Edit>Duplicate>Around Axis。将轴设置为Y轴,旋转角度为180 deg,点击确认键。将切角的名字改为Cut_1。在菜单栏点击Edit>Select>By Name。在对话窗口中选择Cut_1 ,点击OK按钮。在菜单栏中点击Edit>Arrange>Move。在坐标输入栏中输入点的坐标:X:0,Y:0,Z:0; dX=0, dY=0, dZ=5; 按回车键。

(7)用Patch将切角减去。在菜单栏中点击Edit>Select>By Name,在弹出的窗口中利用Ctrl键选择Patch、Cut和Cut_1。在菜单栏中点击3D Modelean >Boolean>Subtract,在Subtract窗口中做一下设置:Blank Parts:Patch;Tool Parts:Cut,Cut_1;Clone tool object before subtract 复选框不选。点击OK按钮结束设置。这样三角形贴片就建成了。

(8)创建探针Pin。在菜单栏中点击Draw>Cylinder。在坐标输入栏中输入圆柱中心点的坐标:X:0,Y:8,Z:0按回车键。在坐标输入栏中输入圆柱半径:dX:0, dY:0.5,dZ:0按回车键。在坐标栏中输入圆柱的高度:dX:0,dY:0,dZ:5;按回车键结束输入。在特性(Porperty)窗口中选择Attributr 标签,将该圆柱的名字修改为Pin。点击Material后面的按钮,将材料设置为pec。利用快捷键Ctrl+D 将模型调整至合适大小。

(9)创建端口面Port。在菜单键中点击Draw>Circle。在坐标输入栏中输入圆心点的坐标:X:0,Y:8,Z:0按回车键。在坐标输入栏输入半径:dX:0,dY:1.5,dZ:0按回车键。在特性(Property)窗口中选择Attribute标签,将名字修改为Port。

(10)用GroundPlane 将Port减去。在菜单栏中点击Eidt>Select>By Name,在弹出的窗口中利用Ctrl键选择GroundPlane和Port。在菜单栏中点击3D Modeler>Boolean >Subtract ,在Subtract窗口中做以下设置:Blank Parts:GroundPlane;Tool Parts:Port;选中Clone tool objects before subtract 复选框。点击OK按钮结束设置。

5、创建辐射边界

创建Air,在菜单栏中点击Draw>Box,创建长方体模型。在右下角的坐标输入栏中输入长方体的起始点位置坐标:X:-80,Y:-80,Z:-35;按回车键结束输入。输入长方体的尺寸:dX:160,dY:160,dZ:70按回车键。在特性(Property)窗口中选择Attribute标签,将长方体的名字修改为Air。在菜单栏中点击Edit>Select>By Name 。在对话框中选择Air,点击OK确认。在菜单栏中点击HFSS>Boundaries>Radiation。在辐射边界窗口中,将辐射边界命名为Rad1,点击OK按钮。

6、设置端口激励

在菜单栏中点击Edit>Select>By Name,选中Port,在菜单栏中点击HFSS>Excitation>Assign>Lumped Port。在LumpedPort窗口的General标签中,将该端口命名为p1,点击Next。在Modes 标签中的Integration line zhong点击None,选择New Line,在坐标栏中输入:X:0,Y:9.5,Z:0;dX:0,dY:-1,dZ:0。按回车键,点击Next按钮直至结束。

7、求解设置

为该问题设置求解频率及扫频范围

(a)设置求解频率。在菜单栏中点击HFSS>Analysis Setup>Add Solution Setup。在求解设置窗口中做以下设置:Solution Frequency :5.6GHz;Maximun Number of Passes:15;Maximun Delta S per Pass :0.02。点击OK结束。

(b)设置扫频。在菜单栏中点击HFSS>Analysis Setup>Add Sweep 。选择Setup1,点击OK确认。在扫频窗口中做以下设置:Sweep Type:Fast;Frequency Setup Type:Linear Count;Start :5.0GHz;Stop:6.0GHz;Count:400;将Save Field复选框选中,点击OK确认。

8、设置无限大球面

在菜单栏中点击HFSS>Radiation>Insert Far Field Setup>Infinite Sphere。在Infinite Sphere标签中做以下设置:Phi:Start:0 deg,Stop:180deg,Step:90 deg;Theta:Start:0 deg,Stop:360 deg,Step:10 deg。点击OK确认。

9、确认设计

方法一:由主菜单选HFSS/Validation Check对设计进行确认,如图2.4。

方法二:在菜单栏直接点即可。

图5 确认设计

如图5所示均打勾即可,点Close 结束。 10.、保存工程

在菜单栏中点击File>Save As,在弹出的窗口中将工程命名为hfss_Patch,并选择保存路径。 11、求解该工程

在菜单栏点击HFSS>Analyze 。 12、后处理操作

(1)S 参数(反射系数)。

绘制该问题的反射系数曲线,该问题为单端口问题,因此反射系数是11s

。 点击菜单栏HFSS>Result>Create Report 。在创建报告窗口中做以下选择:Report Type :Modal S Parameters ;Display Type :Rectangle 点击OK 按钮。在Trace 窗口中做以下设置:Solution :Setup1:Sweep1; Domain :Sweep 点击Y 标签,选择:Category :S parameter ;Quantity :S (p1,p1);Function :dB ,然后点击Add Trace 按钮。点击Done 按钮完成操作,绘制出反射系数曲线。 (2)2D 辐射远场方向图。

在菜单栏点击HFSS>Result >Create Report 。在创建报告对话框中做以下选择:Report Type :Far Fields ;Display Type :Radiation Pattern 。点击OK 按钮。在Trace 窗口中做以下设置:Solution :Setup1:LastAdptive ;Geometry :ff_2d 。在Sweep 标签中,在Name 这一列中点击第一个变量Phi ,在下拉菜单中选择The 。点击Mag 标签,选择:Category :Gain ;Quantity :GainTotal ;Function :dB,点击Add Trace 按钮。最后点击Done 按钮完成操作,绘制出方向图。 13、保存并退出HFSS

五、设计仿真结果

方形贴片的不同三角形切角位置,及其仿真结果

在5.6GHz 的情况下(自行修改数据,多次修改仿真,只有切相邻时,如情况四所示,S 参数有下降,同时自己也做了一下2.45GHz 的,比较了一下)

1、切对角

模型图

S参数(反射系数)

3D辐射远场方向图

轴比值图

2D辐射远场方向图

2、切一角

模型图

S参数(反射系数)

3D辐射远场方向图

轴比值图

模型图

S参数(反射系数)

轴比值图

2D辐射远场方向图

4、切邻角

模型图

S参数(反射系数)

3D辐射远场方向图

轴比值图

2D辐射远场方向图

2.45GHz情况下模型图

S11参数

S11参数的Smith 圆图

3D辐射远场方向图

电压驻波比

2D辐射远场方向图

轴比值图

六、总结

通过本次课程设计,我不但掌握了微带天线的基本原理及基本结构,而且基本掌握了HFSS软件的操作与使用,使我受益匪浅。

一方面,经过本次课程设计,我更进一步了解了微带天线的结构,对于微带天线的工作原理,我也有了更进一步的掌握,另一方面,经过多次使用HFSS软件绘制八木天线模型及用其对八木天线进行仿真,并用其产生S参数图与2D辐射源昌方向图,我基本掌握了使用HFSS这款软件绘制天线模型及对天线模型进行仿真的基本流程与操作,也总结出了一

些使用该软件的经验及对这款软件的一些主观评价。首先,我必须说这款软件是一款功能十分强大的软件,它不仅可以十分方便地绘制各种天线的基本模型,而且可以进行相应的仿真,通过观察相应的参数图了解自己设计的天线的工作性能,十分的经济与方便。其次,通过对本软件的使用,我发现本软件有一个很大的缺点就是仿真花费时间过长。对于一些简单的贴片天线,虽然其整个仿真过程只需要十分钟左右如果需要通过仿真结果多次修改天线的某项参数。那么每修改一次参数,你就必须等几个小时才知道自己修改后天线性能有了多少提升。统计下来,如果你想设计一个辐射性能比较好的微带天线,那么,仅仿真这一个换环节,你就需要花费一天左右的时间。

总之,通过本次课设,我学到了很多东西,进一步提升了我发现问题、分析问题、解决问题的能力。最后,整个软件使用过程中所得到的最重要的经验就是:在绘制天线模型整个过程中要十分的细心,哪怕只是一个坐标输错,都有可能导致整个天线设计功亏一篑。

参考资料

刘学观,微波技术与天线,西安电子科技大学电出版社,2012

顾继慧,微波技术,科学出版社,2007

李明洋,HFSS应用设计详解,人民邮电出版社,2010

喇叭天线地设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 :吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (10) 6.方向图 (10)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

实验七 微带贴片天线的设计与仿真

实验七微带贴片天线的设计与仿真 一、实验目的 1.设计一个微带贴片天线 2..查看并分析该微带贴片天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 传输线模分析法求微带贴片天线的辐射原理如下图所示: 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 四、实验内容 利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。最后得到反射系数和三维方向图的仿真结果。 五、实验步骤 1.建立新工程 了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。 2.将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type。

HFSS的天线课程设计报告书

. . . . . 图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、 介质层的长度LG 和宽度WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

PBG结构的微带贴片天线设计

PBG结构的微带贴片天线设计 由于微带贴片天线具有体积小、重量轻、低剖面、易加工、共形等优点,所以在军事和民用方面都有着广泛的应用前景。众所周知,集成电路的基底是一些高介电常数材料,而微带贴片天线在低介电常数基底上才能获得最佳性能。位于高介电常数基底的贴片天线由于表面波的损耗辐射效率很低,并且频率带宽极窄,当应用的频率变高时这种情况更加突出,导致贴片天线的增益和效率下降,并且在阵列情况下还会有高的交叉极化电平和互耦电平。 为了实现微带贴片天线的集成化,同时避免昂贵的基底混合技术,就必须在高介电常数基底上实现高效率的贴片天线。近年来出现的新型光子晶体贴片天线能够较好地改善以高介电常数介质为基底的贴片天线的性能。光子晶体贴片天线是指基于光子晶体的贴片天线。所谓光子晶体,或称PBG材料,是指将高介电常数的介质周期性的放置所产生的一种人工电磁晶体,该电磁晶体的表面波波矢图在某一频率范围内出现一个频率禁带,简称禁带。通过在贴片天线中人为的引入光子晶体结构,并利用光子晶体的禁带效应,抑制沿基底传播的表面波,增加天线辐射到空间的电磁波,从而改善天线的性能。 本文所采用的高阻抗表面型PBG结构具有结构紧凑、带隙性能好、可以集成等优点,在天线的设计中得到了广泛的应用。 1 PBG天线设计 本文设计的矩形贴片天线,是中心频率为10 GHz的矩形微带天线(辐射元为矩形),馈电方式选为中心侧馈。采用ROGER3010材料做为基板,厚度h=1.28 mm,相对介电常数=10.2。矩形贴片的尺寸为L×W。贴片单元的尺寸由经验公式计算可以得出: 利用ADS自带的计算传输线的软件LineCalc来计算传输线的宽度ω=0.162 mm。PBG材料的设计首先利用等效媒质模型得到初始的参数,更准确的参数则通过全波数值仿真获得。由于高阻抗表面PBG结构的周期大小远小于工作波长,适合用集总电路元件(电容、电感)组成的等效LC并联谐振电路来描述其电磁特性。像电路滤波器一样阻止沿表面传输的电流。如前所述,蘑菇型高阻抗表面相邻贴片间的电容效应(介质基片既起着支撑作用,又达到增强电容的效果),与金属过孔的等效电感组成集中参数的并联谐振电路。这里有高阻面的设计公式: 式中:εr是介质的介电常数;t是高阻面的高度;g是周期间距;ω是单元边长;a为周期。最后得到的设计结果是,ω=1.73 mm,g=0.22 mm()。 2 建模与仿真 根据设计的PBG天线的结构,在HFSS中建模并仿真。模型图 仿真得到的反射系数图。 可以看到回波损耗小于-10 dB的带宽约为600 MHz,参考天线谐振频率为9.96 GHz,PBG 微带天线谐振频率为10.05 GHz。PBG天线的谐振频率比参考天线略高,这是因为二者之间的耦合造成的。二者在9.99 GHz具有相同的反射系数-21.28 dB,在这个频率上仿真得到其方向图。可以看到PBG结构使方向性有所增强,天线的增益大约提高0.53 dB。PBG贴片

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真 一、实验步骤、仿真结果分析及优化 1、原理分析: 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-?? ? ??+= r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 22z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。 2、计算 基于ADS 系统的一个比较大的弱点:计算仿真速度慢。特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet 中的仿真电路图如下: S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

微波天线课程设计56GHz微带天线设计不同切角

课程设计 课程名称:微波技术与天线微带天线设计(不同切角)课设题目: 博学馆机房实验地点: 电信1201班专业班级: 2012001422 学号: 学生姓名: 指导教师:李鸿鹰

日月年2015 7 4 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸

指导教师签名日期:2015-6-10 : 一、设计题目: 微带天线仿真设计(不同切角贴片设计) 二、设计目的: 通过仿真了解微带天线设计,基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上设计一个矩形贴片天线,分析其远区辐射场特性以及S曲线。 三、设计原理: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为5.6GHz,分析其远区辐射场特性以及S曲线。

矩形贴片天线示意图 四、贴片天线仿真步骤 1、建立新的工程 运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type。 (2)在弹出的Solution Type窗口中 (a)选择Driven Modal。 (b)点击OK按钮。 3. 设置模型单位 将创建模型中的单位设置为毫米。 (1)在菜单栏中点击3D Modeler>Units。 (2)设置模型单位: (a)在设置单位窗口中选择:mm。 (b)点击OK按钮。 4、创建微带天线模型 (1)创建地板GroundPlane。在菜单栏中点击Draw>Rectangle,创建矩形模型。在坐标输入栏中输:dZ,90:dY,90:dX按回车键。在坐标输入栏中输入长、宽:0:Z,-45:Y,-45:X入起始点的坐标: 0按回车键。在特性(Property)窗口中选择Attribute标签,将该名字修改为GroundPlane。(2)为GroundPlane设置理想金属边界。在菜单栏中点击Edit>Select>By Name。在对话框中

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

微带天线课程设计报告

课程设计报告 课设名称:微波技术与天线课设题目:微带天线仿真设计课设地点:跨越机房 专业班级:学号: 学生姓名: 指导教师: 2012年 6 月 23 日

一、设计要求: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。 矩形贴片天线示意图 二、设计目的: 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响 三、实验原理: 用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

通信系统天线综合课程设计报告书

J I A N G S U U N I V E R S I T Y 通信系统天线综合课程设计 学院名称: 专业班级: 学生: 学生学号:

一、课程设计目的 通过综合课程设计,在学习EDA仿真软 件HFSS使用方法的基础上,掌握常见通信系 统天线的仿真设计方法。 二、课程设计容: 以“通信系统天线”课程课件“Ch4.1 偶 极和单极天线”、“Ch4.2 常用振子天线和馈 电技术”、“Ch5 宽带天线_c”、“Ch6 移动系 统常用天线_c”为参考资料,分别仿真偶极 子天线、UHF probe 振子天线、共面波导馈 电领结天线和同轴馈电贴片天线,并对天线 进行分析。 三、设计步骤及仿真结果 天线设计实例1:偶极子天线 1)设计步骤 打开HFSS并保存一个新项目 打开File选项(alt+F),单击Save as。输入 项目名hfss_dipole。 一.Step1 创建模型 1、创建振子1 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区(在工作区的右下角),设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=73.75mm 。 (3)设置振子1的名称和材料 在对象列表中双击cylinder1, 弹出如下属性窗口。 设置名称:将Name改为“pole1”。 设置材料:单击Material的Value,在如下对话框中输入“pec”并确定。

2、创建振子2 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区,设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=-1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=-73.75mm 。注意此时坐标的选取。 (3)设置名称和材料 设置名称为“pole2”,材料同为“pec”。设置完毕,如下图所示。

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

GHz矩形微带贴片天线设计

燕山大学 课程设计说明书 题目: 基于ADS的矩形微带贴片天线的设计 学院(系):理学院 年级专业:电子信息科学与技术13 学号: 学生姓名:张凤麒任春宇 指导教师:徐天赋 教师职称:副教授 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术13

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。年月日燕山大学课程设计评审意见表

基于ADS的矩形微带贴片天线设计 The Design of Rectangular microstrip patch antenna with ADS 摘要:本文研究了通信系统中的矩形微带贴片天线。首先介绍了矩形微带贴片的背景及微带馈电的设计考虑。使用了安捷伦辅助仿真工具ADS对2GHz矩形微带贴片天线结构及相应的参数进行了设置仿真及优化,尽可能达到其相应的技术指标。 Abstract:This paper studies the rectangular microstrip patch antenna in communication system. Firstly, the background of rectangular microstrip patch and the design considerations of microstrip feed are introduced. The microstrip patch antenna structure and corresponding parameters of 2GHz rectangular microstrip patch antenna are simulated and optimized by ADS, and the corresponding technical index is reached as far as possible. 关键词:矩形微带贴片天线 ADS 设计 Keyword:Rectangular microstrip patch antenna ADS design 一.矩形微带贴片天线的背景 微带贴片天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。微带贴片天线由接地板、介质基片和介质基片上的辐射贴片构成的,其中辐射贴片可以是任意的几何形状,但是只有有限的几何形状能计算出辐射特性,比如矩形,圆形,椭圆形,三角形、半圆形、正方形等比较规则的几何形状,其中矩形和圆形贴片的研究最多,可以作为单独的天线使用也可以作为阵元使用。当然在实际应用中,也有矩形和圆形贴片达不到要求的情况,这就促使了人们对各种几何形状微带贴片天线的研究。本文选用矩形贴片来研究微带天线。

微波天线课程设计56GHz微带天线设计(不同切角)教材

课程设计 课程名称:微波技术与天线 课设题目:微带天线设计(不同切角) 实验地点:博学馆机房 专业班级:电信1201班 学号:2012001422 学生姓名: 指导教师:李鸿鹰 2015 年7 月 4 日

课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期:2015-6-10 专业班级 电信1201 学生姓名 课程名称 微波技术与天线 课程设计 设计名称 微带天线设计 设计周数 1.5周 指导教师 李鸿鹰 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下微带天线的仿真设计 设计要求如下: 频率:5.6GHz 介质:FR4 4 结合同组其他同学的设计结果完成对于该天线结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 6.11:分组、任务分配、任务理解 6.12:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案设计。 6.15~6.18:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以及验收。 6.19:同组同学结果汇总及讨论 6. 22:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2012 顾继慧,微波技术,科学出版社,2007 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1.设计报告 2.工程文件

一种高性能的微带全向天线设计与分析

在移动通信领域中,全向高增益天线有着广泛的应用。微带交叉阵子天线作为一种全向高增益天线,以其结构简单,匹配容易,便于批量生产以及造价低廉等优点受到重视。一般的微带交叉阵子天线如图1所示,这种结构在仿真和实测中,方向图畸变比较严重,天线的电压驻波比也比较差。文献给出了一种改进的方案,将微带天线的地面做成梯形结构,如图2所示。这在一定程度上改善了天线性能。文中给出了该结构天线的仿真和实物测试结果,以便与本文提出的微带全向天线作比较。文中所提出的微带全向天线如图3所示。该天线除了采用微带渐变结构和电感匹配器外,还在天线的顶端加载了λg/4短路匹配枝节。仿真和测试表明,该天线同文献中提出的天线相比较,具有更好的电压驻波比和更高的增益,是一种高性能的微带全向天线。 图1 微带交叉阵子天线示意图 1 微带交叉阵子天线的基本原理 微带交叉阵子天线的基本结构如图1所示。将每段微带传输线的地面看成同轴线的外导体,导带看作同轴线的内导体,其与传统的COCO天线具有相似的结构。同样,微带交叉阵子天线也是由多个λg/2的微带单元级联而成,天线的地面和导带在介质基片的两侧交替放置,从而利用交叉连接来实现倒相。由于交叉连接点的不连续性形成辐射,使得这种结构存在两种模式,即传输模和辐射模。对于传输模,由于波沿导带和接地板的内表面传输,而且微带传输线是均匀的,

所以在分析时不考虑空间的辐射。而辐射模,则是由于各接地板的交替处电压源激励起的辐射电流存在于接地板的内外表面,从而形成辐射。同COCO天线一样,微带交叉阵子天线也是一个阵列天线。由阵列天线的基本理论可知,对于远场区,天线的归一化方向性函数为 天线的增益为 其中,η为天线的辐射效率;D为天线的方向性系数。 2 微带交叉阵子天线的设计与分析 基本的微带交叉阵子天线如图1所示,实验证明,该结构天线的方向图畸变比较严重,而且带内电压驻波比也不理想。为了改善天线的性能,将天线地板设计成梯形结构,并在每个微带单元导带的中间加载一个矩形贴片,用于对天线进行调谐,此时的天线结构如图2所示,这在一定程度上改善了天线的阻抗特性。加载的矩形贴片相当于1个电感器。假设该电感器的长为l,宽为w,那么其等效电路的电感L如式(3)所示。 其中,h为介质板厚度;t是导体的厚度;Kg为校正因子,其经验公式为

用ADS设计微带天线

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

微带天线设计

微带天线设计 天线大体可分为线天线和口径天线两类。 移动通信用的VHF 、UHF 天线,大多是以对称振 子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径 天线)。 天线的特征与天线的形状、大小及构成材料有关。天线的大小一般以天线发射或接收电磁波的波长l 来计量。因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。 与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。 最大辐射波束通常称为方向图的主瓣。主瓣旁边的几个小的波束叫旁瓣。 为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有: 1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。 2.天线效率 3.极化特性 4.频带宽度 5.输入阻抗

天线增益是在波阵面某一给定方向天线辐射强度的量度。它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。 天线方向性GD与天线增益G类似但与天线增益定义略有不同。 因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。 理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。这种情况下天线增益与天线方向性相等。 理想的天线辐射波束立体角ΩB及波束宽度θB 实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。在波束中心辐射强度最大,偏离波束中心,辐射强度减小。辐射强度减小到3db时的立体角即定义为ΩB。波束宽度θB与立体角ΩB关系为 旁瓣电平

相关文档
最新文档