批量给MODIS拼接和重投影

批量给MODIS拼接和重投影
批量给MODIS拼接和重投影

A.先进行拼接处理

1.先新建一个DATA文件夹,并将HDF数据拷贝到该文件夹下

2.在DATA文件夹下再新建一个Result文件夹(用于存放拼接后的数

据)

3.将以下代码内容粘贴到一个txt文件中,更改txt文件扩展名为bat

即可,假设你命名该bat文件名为MODISmosaic.bat;程序导读:rem 表示开始的为注释;MOSAICINPUT.TXT这是程序运行时自动生成的,不用管;MRTDATADIR为你的MRT安装文件中data的路径,“c:/MRT/bin/mrtmosaic.exe”改成你的mrtmosaic.exe的安装路径。"set /a DAY= %DAY% + 16 "则是因为输入数据是16天间隔的,根据你的数据进行相应修改。

rem Set the MRTDATADIR environmental var to the MRT data directory.

set MRTDATADIR=C:\MRT\data

set /a DAY=2011097 rem **batch data start time**

set /a DEADLINE=2011273 rem **batch data end time**

:start

if %DAY% leq %DEADLINE% (goto ORDER) else exit

:ORDER

rem **save the file name into a notepad**

dir *%DAY%.*.hdf/a/b/s > MOSAICINPUT.TXT

rem **execute mosaic **

rem Set the mrtmosaic.exe directory.

c:/MRT/bin/mrtmosaic.exe -i MOSAICINPUT.TXT -s "1 0 0 0 0 0 0 0 0 0 0 0"

-o MOSAIC_TMP_%DAY%.hdf

rem **copy the result to a file and delete the input data**

copy MOSAIC_TMP_%DAY%.hdf Result & del MOSAIC_TMP_%DAY%.hdf

del *%DAY%.*.hdf

set /a DAY= %DAY% + 16

goto start

4.点击MODISmosiac.bat,即可进行拼接操作

注意:该操作数据及BAT文件须放在一个文件夹(文件夹起名请

用英文,MRT对中文路径数据会打不开)下。代码未考虑中间天数间断的情况,比如对MODIS时间分辨率为16天的数据,在一个应连续的等差数列中间有数据缺失,存在相差32天的情况,可能会报错,请注意。同时,需要备份好你的输入数据,因为程序运行中会自动删除拼接好的数据。

进行到此处则得到了初步的拼接数据,下面进行第二步

B.再进行重投影,改格式,缩小范围

1.新建记事本,在记事本中输入下面代码,改txt后缀为bat,定义

modis.bat文件。

rem Set the MRTDATADIR environmental var to the MRT data directory.

set MRTDATADIR=C:\MRT\data

for %%i in (*.hdf) do C:\MRT\bin\resample -p my.prm -i %%i -o %%iout.tif

其中,MRTDATADIR为你的MRT安装文件中data的路径

2.利用MRT的图形界面工具定义投影文件

选择一期刚刚拼接好的影像,在UL Corner和LR Corner可以输入经纬度来缩小你需要的区域,设置你的保存路径以及命名(最好以日期命名,到时候程序会自动按照你的规则全部按日期命名),选择tif格式,选择你要的投影类型,点击Save Parameter File将

投影文件保存。记住:这两个文件必须和刚刚拼接后的数据放在一个文件夹中

3.双击modis.bat执行批处理即可!

操作如图:

总的来说,就是先进行拼接得到一个hdf的临时文件,然后在进行重投影,转格式,缩范围的操作。整个过程你只需要安装MRT即可进行,不需要再安装Cygwin模拟lunix环境,安装Cygwin很麻烦。

另外网上有小熊工具箱挺好,但是他编写的只能对同一个tile进行长时序列的批量处理,所以遇到需要多景影像的时候可以采用此法。

PS:番茄甜土豆就是我,我为他俩代言!

投影融合系统方案书

投影融合系统方案书 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

两通道投影融合 方 案 建 议 书 鸿博时代(北京)科技有限公司Hongbo Shidai(Beijing)Technology CO.,LTD 设计时间:2013-6-7

目录

第一章系统方案设计概述 1.1 项目概述 本方案是用投影融合系统实现终端显示。边缘融合处理技术,消除了光学缝隙,从而使显示的图像完全一致,保证了显示图像的完整性和美观性。在投影融合拼接系统中,两台工程投影机经过边缘融合处理器进行了校正和统一,使大屏幕上的视频进行图像显示和切换时,无论切换什么格式的图像,整个屏幕的亮度,色彩,鲜艳度,均匀度都比较一致。由于在处理器中对投影显示图像进行了处理,可以对不同投影信号间的色差,亮差,均匀度进行调整,这也使得该系统显示的图像质量更完美。 1.2 项目需求 投影系统的视频是由2台投影机投射出的画面组成的,经过曲边校正和无缝拼接技术,在投影幕上形成一个完整的图像,播放内容根据客户要求订制或由客户自行准备。 本系统采用两套2x1投影融合系统和四套单投影系统 融合投影画面无缝大屏幕弧幕进行完美融合(融合带12%)显示,无拼缝; 支持VGA信号源输入、输出; 可以将外部视频信号以开窗口的形式在大屏幕上显示; 支持232串口、网络操作模式; 支持显示模式预存、调用、修改等功能。 第二章技术设计 2.1 技术设计规范和标准 本设计方案设备选型、系统设计、设备运输及安装、售后服务等严格遵循国际及国家相关标准,遵循下列标准: 《IEEE802.3以太网规范》 《低压电气设计规范》 (GB50054—95)

MODIS数据说明

EOS/MODIS 1B 数据集格式说明 张里阳 一、 HDF文件格式 1.概述 HDF 是美国国家高级计算应用中心(National Center for Supercomputing Application)为了满足各种领域研究需求而研制的一种能高效存储和分发科学数据的新型数据格式。一个HDF文件中可以包含多种类型的数据,如栅格图像数据,科学数据集,信息说明数据。这种数据结构,方便了我们对于信息的提取。例如,当我们打开一个HDF图像文件时,除了可以读取图像信息以外,还可以很容易的查取其地理定位,轨道参数,图像噪声等各种信息参数。HDF 的数据结构是一种分层式数据管理结构。通过下例我们可以有个概念上的了解。 图3 HDF数据结构例图 2.HDF数据结构特点 HDF是一个能够自我描述、多目标、用于科学数据存储和分发的数据格式。它针对存储和分发科学数据的各种要求提供解决方法。HDF设计特点为: · 自我描述:一个HDF文件中可以包含关于该数据的全面信息。 · 多样性:一个HDF文件中可以包含多种类型的数据。例如,可以通过利用适当的HDF 文件结构,在某个HDF文件中存储符号、数值和图形数据。

· 灵活性:可以让用户把相关数据目标集中一个HDF文件的某个分层结构中,并对其加以描述。同时可以给数据目标记上标记,方便查取。用户也可以把科学数据存储到多个HDF文件中。 · 可扩展性:在HDF中可以加入新数据模式,增强了它与其它标准格式的兼容性。 · 独立性:HDF是一种同平台无关的格式。HDF文件在不同平台间传递而不用转换格式。 3.为什么建立HDF 人们通常在不同机器上建立、处理数据。在处理过程中,除了原始数据信息以外,无疑会产生大量的结果、辅助、说明等信息,这些信息由于具有不同的格式,所以往往被存于不同的文件中。这样,在数据共享过程中,我们不得不利用各种软件将其打包,进行传输。即便如此,也难免会出现遗漏或出错现象,造成了许多不必要的麻烦。HDF通过提供“总体目录结构”来处理这类问题: ·为程序提供一种机制,使它能够直接从嵌套的文件中获得信息。 ·可以将不同类型的数据源存于同一个文件中,而这些数据源又可以同时包含其数据信息和和其它相关信息。 ·对常用数据集的格式和描述标准化。 ·鼓励所有机器和程序使用标准数据格式,产生包括具体数据的文件。 4.HDF数据类型 HDF有6种主要数据类型:栅格图象,调色板,科学数据库,注释,Vdata和Vgroup。 图4给出了这6种数据类型的说明。 图4 HDF 数据类型

modis数据的处理方法

MODIS数据的处理方法(ENVI) 美国RSI公司(Research Systems Inc.)的产品ENVI能很好地支持HDF数据格式。ENVI(The Environment for Visualizing Images)遥感影像处理软件,是分析、处理并显示多光谱数据、高光谱数据和雷达数据的高级工具。ENVI能接受大量的传感器数据,是世界目前唯一 美国RSI公司(Research Systems Inc.)的产品ENVI能很好地支持HDF 数据格式。ENVI(The Environment for Visualizing Images)遥感影像处理软件,是分析、处理并显示多光谱数据、高光谱数据和雷达数据的高级工具。ENVI 能接受大量的传感器数据,是世界目前唯一能较好全面支持HDF科学数据格式的遥感影像软件。ENVI可以直接读取HDF格式(如图2所示),并能识别HDF格式中所包含的所有文件信息(如图3所示)。ENVI 打开HDF格式文件后,会自动将该数据文件所包含的所有图像信息、属性信息、文本信息作为波段列于一个波段列表中,用户可以清晰地浏览每一波段的详细信息,包括波段名称、图像波段波长、波段大小、数据类型及文件内插方式等多种信息。方便用户显示图像,并对各种属性及文本文件作各种分析。 本文选取2001年5月20日中国北部及蒙古地区(经纬度范围:92.49°- 116.97°,33.88°- 41.23°)的一景MODIS数据进行分析,主要从读取数据、分析经纬度波段信息、第一、四、三波段融合显示、影像地理校正几方面对该景数据进行了分析,具体步骤如下: (1)数据读取:打开ENVI,在主菜单中选择File\Open External File\Generic Formats\HDF,选择文件“MODO2QKM_03.hdf”,表示是该景MODIS 数据的250米数据文件,从下图中可以看到,该文件中除两个影像波段外,还包含经度波段、纬度波段、热红外探测器的噪声信息、反射率变化参数等信息。 (2)1、4、3波段影像融合:MODIS数据的第一、四、三波段的波段宽度分别为0.62μm ~ 0.67μm 、0.545μm ~ 0.565μm、0.459μm ~ 0.479μm,近似于可见光的红、绿、蓝波段,所以第一、四、三波段组合比较接近真彩色,故常选用这三个波段来表示MODIS影像。此处用同样方式打开500米数据文件,该文件共包含五个影像波段,将影像融合所需要的第3和第4波段进行重采样,即将其空间分辨率由500米重采样为250米,并与步骤(1)中第1波段组合,进行彩色方式显示。为提高成果影像的空间分辨率,笔者又将143波段组合影像进行对比度调整输出后,与真实空间分辨率为250米的第一波段进行影像融合(用HIS融合法),得到了几何清晰度更高的143波段融合影像(如图4所示)。图4中左侧为1、4、3波段彩色组合显示及局部放大,右侧为143波段组合输出后又与1波段进行融合的结果,可以很明显地看到,右侧的影像细节非常突出。体现了具有较高分辨率的第一波段的优势。 (3)影像地理校正,由于MODIS数据本身带有详细的经纬度波段信息,这种地理信息以波段的形式存放,如图5中的灰度波段所示,该灰度影像每一象素的灰度值记录的是空间分辨率为1公里的MODIS数据中对应象素点的经纬度信息,这种详细的地理信息可以使影像不需要选择大量地面控制点就可以作精纠正,而且精度会比选控制点的方法更高。ENVI软件提供了“Georeference from Input

ENVI中打开MODIS数据及简单处理

一般说来,用ENVI打开MODIS HDF数据有以下几种方式: 第一种是直接用File->Open Image File打开,主要是针对Level1B数据和Level2数据的部分波段。以MOD021KM数据为例,采用这种方式打开得到的图像是定标后的反射率、辐射亮度以及发射率数据,即图像灰度具有明确的物理含义,不需要再进行波段运算进行定标。这种方法打开数据速度快,但是适用的数据有限,打开后得到的图像波段也有限。比如MOD02数据中也有经纬度、太阳/传感器天顶角、方位角波段,用这种方式就无法打开。 第二种是是用File->Open External File->Generic Formats->HDF打开,可打开各种产品。该方法实际上是打开HDF文件,特别是像MODIS的很多陆地产品,如地表反射率、LAI、LST、BRDF/Albedo等(就是文件名中带有h??v??的),都需要用这种方式打开。打开之后用户还需要选择HDF文件中的数据集(dataset),如果是多波段还需要指定数据格式(BSQ\BIP\BIL)。采用这种方式打开HDF文件可以获取文件中所有数据集的信息,打开得到的波段也是未做过定标的,需要从HDF文件中查找定标系数通过波段运算手工定标。查看HDF数据集属性可以通过Basic Tools->Preprocessing->Data-Specific Utilities->View HDF Dataset Attributes实现。 另外通过File->Open External File->EOS->MODIS也可以打开部分MODIS数据,它与第一种打开方式一样,这里不再重复。 关于MODIS数据的几何校正,对于Level1B和Level2级产品,由于其HDF文件中一般都含有经纬度波段,可采用GLT的方法对其进行校正。相应的菜单是Map->Georeference from Input Geometry->Build GLT和Map->Georeference from Input Geometry->Georeference from GLT。用GLT方法校正需要注意输入的经纬度图波段要与待校正的数据波段行列大小一致。 在Map菜单下还有一个Georeference MODIS功能,可以对采用Open Image File方式打开得到的MODIS数据波段进行校正。通常对Level1B数据采用这种方法进行,因为速度快,而且不需要生成GLT临时文件。但这种方法存在一个问题,就是对很多无法通过Open Image File方式打开的数据波段失效。

融合投影设计方案

多通道边缘融合投影系统设计方案 1、系统概述 本系统设计在酒店一层大堂吧,为不规则弧形建筑投影,使用多通道边缘融合技术实现显示终端。 边缘融合技术就是将一组投影机投射出的画面进行边缘重叠,并通过融合技术显示出一个没有缝隙更加明亮,超大,高分辨率的整幅画面,画面的效果就像是一台投影机投射的画面。当二台或多台投影机组合投射一幅画面时,会有一部分影像灯泡重叠,边缘融合的最主要功能就是把二台投影机重叠部分的灯光亮度逐渐调低,使整幅画面的亮度一致。边缘融合大屏幕显示系统可以精确细致地显示每个精细而且微小的画面,整套系统展现出来是整幅无缝的画面,不论是光学拼缝还是物理拼缝,都不会存在,带给观众震撼的视觉冲击和享受! 2、系统设计理念 为最终使用户满意,融合投影系统应遵循如下设计原则: ?实用性 追求高效、低成本是各行业所必须采取的措施。因此,选用设备不能盲目追求高档、奢华,选用的设备在兼顾合理的、良好的性能基础上,也要考虑经济性,除考虑系统总体造价外还应考虑长期运行所造成的成本。 ?可靠性 要保证系统能提供长时间的连续运行,且稳定可靠。建议采用纯硬件融合控制器,硬件控制器没有操作系统,上电即可工作,确保了系统能够稳定的运行。 ?易用性 系统的调整、使用需简单易行,用户操作界面友好,操作过程简捷,经短时培训即可操作使用。 3、系统构成 本系统由视频系统、音频系统及中控系统构成。 ?视频系统主要设备包含:6通道边缘融合处理器、6台高清投影机、投影幕墙及视频传输设备等; ?音频系统主要包含:1台8*8数字音频处理器、5台双通道功率放大器、10只扬声器等; ?中控系统主要设备包含:1台中央控制主机、1个控制面板、2台8路强电继电器。 设备说明 4、系统布置 1)视频系统 系统视频源设计在酒店二层音控室,距离投影区域大于100米,通过单模光纤将视频信号传输至投影设备。投影设备选用6台高亮度高清投影机,显示区域为不规则的装饰结构,投影机镜头距离投影显示墙4.3米~5.4米。视频系统布置图如下: 2)音频系统

modis数据预处理

MODIS数据预处理 1.波段设置 Modis影像有三种打开方式,一般我们用打开外部文件的方式打开科学数据集,因为需要数

据集中的一些辅助信息(主要是太阳几何,卫星几何).但是这样打开之后显示的波段从1开始的,而数据集中对应的modis 通道并不是这个顺序.通过菜单栏中的 basic_tools->preprocessing->data_specific utilities->view HDF dataset attributes 可以打开数据集里每个要素的属性表,在里面选中需要的HDF 文件中的数据集,就会打开其属性表,波段内容如下 对应打开的HDF 文件里1KM 辐亮度文件的波段数,一共16个波段.其中13/14波段比较特殊,都有hi 和lo 两组数据,它们是传感器高敏感度和低敏感度两种状态下获取到的DN 值,分别对应于较暗地物和较亮地物,使用哪个文件根据需要而定.但是在太湖湖区,13/14波段大部分区域效果都不太好.值会很大,出现溢出.可能是由于太湖的高浑浊度. 2. 几何校正 几何校正有三种方法: 1) 用envi 自带模块进行几何校正,通过菜单栏中的 Map->Georeferences MODIS 选中envi 中已经打开的需要校正的数据集,输入研究区的地理位置,如下图左,投影用UTM ,基准面用WGS-84,区域根据经纬度确定。输入完成,envi 会自动校正,并执行去蝴蝶结效应算法,有点是能对我们需要的那些波段进行校正。缺点也很明显。如下图右,校正结束的图像会失去原始图像四个角的信息,这样就无法和GLT 校正的图像很好的匹配起来,不利于一些后续的处理。 2) 用GLT ,即是查找表法对图像进行几何校正 Map->Georeference from input Geometry->buid GLT 用来建立查找表。在弹出的对话框中选择查找表的XY 信息,其中X 对应图像经度信息,Y 对应纬度信息。然后只需要规定投影、基准面和区位信息,就可以生成一个查找表文件。这个查找表文件的实质也是两幅图像,分别在每个像元上保存着经纬度值,并且像元位置是拉伸到我们规定的输出投影上面去了,而且是逐像元的拉伸。那么剩下的矫正工作就只是把想要矫正的信息和查找表一一匹配起来,因此速度也很快。 Map->Georeference from input Geometry->Georeference from GLT Attribute 3-5: "band_names" "8,9,10,11,12,13lo,13hi,14lo,14hi,15,16,17,18,19,26"

投影融合方案

xxx 大屏幕背投显示系统 方 案 设 计 北京智合润联科技发展有限公司 2011年11月5日 目录

第一部分系统概述 1. 系统组成 根据项目建设的要求,xxx背投影大屏幕显示系统由以下部分构成:视频信号(来自监控头、计算机或DVD等)经过矩阵被输入到边缘融合控制器中,边缘融合控制器将图像进行带有融合区的分割,为每一路信号定义为一个窗口,并指定其相关属性(位置、大小、边框等等),并依用户定义确定窗口重叠次序,然后将这些信息以DVI视频信号的形式输出到投影机进行投影显示。系统逻辑图如下:

图4-1 背投影拼接系统连接逻辑图 设备有显示部分含二台NEC DLP 投影机、一整张帝晶背投屏幕;图像控制部分包括一台智合边缘融合控制器;信号切换部分有一台DVI 8x4计算机矩阵、计算机信号分配器、一台视频16x8视频矩阵; 第二部分 方案优势 a) NEC 投影机-NP4100 稳定性(双灯系统、水冷系统、直接断电关机) 使用双灯系统增加了亮度,如果一个灯泡发生故障,可以不中断演示过程。 NEC 特有的水冷系统直接冷却DLP 芯片,它能使设备在45度高温环境下工作,甚至在恶劣条件下也能维持稳定性。 内置的电容器为内部部件的冷却提供功率,因此,当演示结束时就可将室内电源关闭,减少了等待时间,同时也避免了意外断电对投影机产生的危害。 实用性(高亮度、AC 灯泡) NECNP4100投影机提供了6200流明的亮度,2100:1的对比度,使得即使在明亮环境下也能投射出出色的图像。 新开发的AC 灯泡寿命可长达3000小时,为系统长期运行提供了可靠保障。AC 灯泡还大大减少了色彩失真。 高画质(两种可替换色轮、极致色彩TM 技术) 除了在产品内标配了一个4段色轮(红,绿,兰,白), NP4100+还在包装箱内视频信号 计算机信号 DVI 信号 控制信号

大屏幕无缝融合拼接系统方案

大屏幕无缝融合拼接系统 技术解决方案 (售楼部)

目录

第一章项目介绍 项目概述 本次工程是针对售楼部展示区域多媒体系统的设计。售楼部展示区域,作为一个对外形象宣传的窗口,主要是为了充分展示企业文化、人文品质、产业结构,因此我们采用了现代化、多媒体大屏拼接融合技术,结合影音系统,使得展示的效果更形象、更直观、更有动感,参与性更强。并融合先进的多媒体展示手段,突出人文,环保,节能,创新及科技为生活服务的理念。 以下,我们就通过对系统描述,就售楼部展示区域的多媒体音视频解决方案做全面的说明。 项目目标 综合考虑具备先进性、可靠性、性价比、可扩展性等因素,保证系统设计清晰简洁,性能稳定,满足对外宣传、展示企业文化和产品应用窗口等各项用户需求。 鉴于本展厅的智能化系统主要是为了体现智能控制中的灯光控制,空调控制,音视频控制等完美组合,在各主要功能区块使用Crestron的不同主机,将空调控制系统、灯光控制系统、家庭影院、控制主机集成在一体。 项目涉及核心技术 1)宽屏投影采用边缘融合(色彩平衡、几何校正)技术,实现多窗口显示,对所有 信号进行缩放、无缝拼接和显示; 2)采用专业扩音系统满足展示区域对音频响应的要求和声像的准确定位; 第二章系统概要

设计思想 本多媒体系统方案的设计,坚持高起点、高标准、严要求,结合多年来积累的大、中型系统特别是多媒体影音的工程实施经验,依据设备功能特点及兼容稳定性,遵循科学的设计原则、设计标准和设计规范,突出先进性、适用性和经济性,且具有一定的超前性,确保系统建成后达到一流水平。 设计原则 1)实用性 本系统一定要贴近用户需求,认真研究,精心设计,充分展现出最好的效果。 2)可靠性 系统能提供长时间的连续运行,各设备性能可靠且兼容稳定。 3)先进性 系统的功能和性能达到同档次显示系统的先进水平,从实际需求出发,尽可能采用较先进的技术,以延长系统的生命力。 4)简易性 系统的调整、使用简易方便,用户操作界面友好、过程简捷,便于培训及使用。 5)可扩展性 系统具有灵活的再配置能力,可根据应用需求的变化随时对系统进行调整扩充,,具有前瞻性与科学性,尽量避免浪费。

投影融合方案

三通道标清投影融合系统 技术方案 中国●北京威视讯达科技有限公司 错误!未指定书签。

目录 第一章、系统方案设计概述 (4) 1.1项目概述 (4) 1.2项目需求 (4) 1.3项目方案 (4) 1.4方案技术规范和标准 (6) 1.5系统方案设计特点 (8) 1.5.1、系统的先进性 (8) 1.5.2、系统的安全性 (8) 1.5.3、系统的开放性 (8) 1.5.4、系统的实用性 (8) 1.5.5、系统的可扩展性 (8) 1.5.6、系统的兼容性 (8) 第二章、投影融合系统介绍 (9) 2.1投影融合系统结构组成 (9) 2.2投影融合系统连接图 (9) 第三章、各子系统介绍 (10) 3.1显示子系统 (10) 3.1.1、投影光路平面图 (10) 3.1.2、投影光路立面图 (11)

3.1.3、显示子系统设备介绍 (11) 3.2融合子系统 (13) 3.2.1、融合子系统技术介绍 (15) 3.2.2、融合子系统应用方式介绍 (16) 3.2.3、融合子系统实际应用图片 (17) 3.2.4、融合子系统设备介绍 (18) 第四章、系统整体设计 (24) 4.1系统功能特点 (25) 第五章、产品应用案例 (26)

第一章、系统方案设计概述 1.1项目概述 根据客户需求,我们设计选用一块高1800mm、宽6480mm整张低增益(1.0左右)投影融合幕,支持1024*768显示分辨率投影机进行投影融合显示; 1.2项目需求 ●高1.8米、宽6.48米无缝大屏弧幕进行完美融合显示,无拼缝; ●支持VIDEO、RGB信号源输入、输出; ●可以将外部视频信号以开窗口的形式在大屏幕上显示; ●所有操作均兼容集中控制主机、操作电脑等控制设备; ●完美实现多窗口显示,并且可以进行窗口放大、缩小、漫游、叠加、拉伸 等功能; ●支持232串口、网络、WIFI无线操作模式; ●支持显示模式预存、调用、修改等功能; 1.3项目方案 根据客户需求,投影幕高1.8M,并且要求投影显示为4:3比例,因此单台投影设备投影画面为:高1.8M、宽2.4M,根据单通道投影画面大小计算,此项目应采用3通道投影融合显示方案; 总投影画面:高1.8M、宽6.48M

MODIS数据介绍、下载及处理

MODIS产品介绍及下载流程 1.数据获取 1)MODIS 发射背景及综述 为了加强对地球大气、海洋和陆地的综合观测研究,美国国家宇航局(NASA)于1991年发起了一个综合性项目,称为地球科学事业(ESE),其主要目的是通过卫星及其它工具对地球进行更深入的研究。ESE包括三个主要部分:一是地球观测卫星系列(EOS);二是先进的数据系统(EOSDIS);三是进行资料分析研究的科学队伍。重点观测研究领域包括水与能量循环、海洋、大气化学、陆地表层系统、水和生态系统过程、冰川和极地冰盖以及固体地球。EOS将在近地轨道提供至少18年系统连续的卫星观测数据用于定量研究地球系统的变化。 Terra作为EOS观测计划中的第一颗卫星,在美国(国家宇航局)、日本(国际贸易与工业厅)、加拿大(空间局、多伦多大学)的共同合作下于1999年12月18日成功发射,Terra的字源是拉丁语“地球、土地”,由于Terra卫星每天上午从北向南通过赤道,因此又被称为地球观测第一颗上午星(EOS-AM1)。NASA的EOS第二颗星命名为Aqua,是美国、巴西和日本共同合作研制的,其拉丁语意为“水”,于2002年5月4日发射成功,为了与Terra卫星在数据采集时间上相互配合,Aqua卫星每天下午从南向北通过赤道,因此被称为地球观测第一颗下午星(EOS-PM1)。 两颗星均为太阳同步极轨卫星。此外,美国对地观测系统计划还将陆续发射用于不同观测内容的卫星系列,如以观测大气化学成分为主的AULA卫星(EOS-CHEM)、以观测冰雪、云层和地面高程为主的ICESAT卫星、以观测太阳辐射及其对气候影响为主的SORCE卫星和以观测陆地为主的LANDSAT-7卫星(1999年已发射成功)等。 中分辨率成像光谱仪(MODerate-resolution Imaging Spectroradiometer) -MODIS是Terra和Aqua卫星上搭载的主要传感器之一,两颗星相互配合每1-2天可重复观测整个地球表面,得到

沉浸式投影融合系统设计方案

四通道沉浸式投影融合互动系统 技 术 方 案

1.前言 沉浸式虚拟现实提供参与者完全沉浸的体验,使用户有一种置身于虚拟世界之中的感觉。其明显的特点是:利用显示设备把用户的视觉、听觉封闭起来,产生虚拟视觉,同时,它利用数据手套把用户的手感通道封闭起来,产生虚拟触动感。系统采用识别器让参与者对系统主机下达操作命令,与此同时跟踪器的追踪,使系统达到尽可能的实时性。临境系统是真实环境替代的理想模型,它具有最新交互手段的虚拟环境。常见的沉浸式系统有:基于头盔式显示器的系统、投影式虚拟现实系统。 沉浸式虚拟现实显示系统基于多通道视景同步技术、三维空间整形校正算法、立体显示技术的房间式可视协同环境,该系统可提供一个同房间大小的四面(或六面)立方体投影显示空间,供多人参与,所有参与者均完全沉浸在一个被三维投影画面包围的高级虚拟仿真环境中,借助相应虚拟现实交互设备,从而获得一种身临其境的高分辨率三维立体视听影像和6自由度交互感受。由于投影面几能够覆盖用户的所有视野,所以沉浸式虚拟现实显示系统能提供给使用者一种前所未有的带有震撼性的身临其境的沉浸感。这种完全沉浸式的立体显示环境,为科学家带来了空前创新的思考模式。 多通道投影融合沉浸式虚拟现实系统采用边缘融合拼接系统是指整幅投影画面由不同的投影机投射画面拼接组成,每个单独的投影画面拼接中有着投影光线和画面容的重叠部分,通过软硬件的结合处理,

消除光线重合部分的多余亮度,从而确保整幅画面上面没有任何接缝,亮度均匀一致,给观众完美的视觉冲击。(见下图) 本方案中采用边缘融合大屏幕拼接。 1.1与单屏大屏幕相比,四通道投影融合沉浸式虚拟现实系统的优势 1.增加图像尺寸;画面的完整性:多台投影机拼接投射出来的画面一定比单台投影机投射出来的 画面尺寸更大;鲜艳靓丽的画面,能带给人们不同凡响的视觉冲击,采用无缝边缘融合技术拼接而成的画面,要很大程度上保证了画面的完美性和色彩的一致性。 2.增加分辨率:每台投影机投射整幅图像的一部分,这样展现出的图像分辨率被提高了。例如, 一台投影机的物理分辨率是1280×800,融合带为320个像素点后,四台融合后图像的分辨率就变成了3840*800。 3.增加画面层次感:由于采用了边缘融合技术,画面的分辨率、亮度得到增强,同时配合高质量

大屏幕投影融合系统解决方案

10Mx3M大屏幕投影融合系统解决 方案 上海交大慧谷信息产业股份有限公司

目录 一、系统概述 (4) 二、边缘融合显示系统介绍 (4) 1、边缘融合技术简介 (5) 2、采用边缘融合技术的大屏幕显示系统的优点 (6) 三、融合系统设计 (9) 1.设计原则 (9) 2.设计尺寸 (10) 3.场地要求 (10) 四、设备选型 (10) 1、投影机选型 (11) 本项目用户已选定了科视DS+655 6000流明单片DLP投影机。分辨率为1400X1050了保证本项目的融合效果,我们希望本项目中使用的3台同一型号的投影机在亮度、色彩等显示效果上一致性要好,必须没有明显的差异。 (11) 2、图像融合处理器选型 (11) 由于本项目需采集2路VGA信号和4路VIDEO信号显示在大屏幕上,结合我司以往的工程案例,在此我们推荐MediaMaster E-Blengding和E-contronlling大屏幕图像融合处理器。 (11) 6)应用软件: (18) a、窗口风格设置:可选择设置不同的窗口风格:细边框、粗边框、有标题栏。 (18) b、开窗参数设置:用户操作员在控制计算机的显示器的模拟显示墙上拖动鼠标即可开 出一个信号窗口,用户可设置以“任意位置开窗”或“以单元为单位”开窗。“以单元为单位”开窗方式还可设定开窗的“起始单元”、“窗口大小”。 (18) c、窗口比例设置:用户操作员可以选择设定在开窗或调整窗口时,按16:9或4:3的比 例,这样在用鼠标拖动窗口时,无论放大窗口或缩小窗口,窗口始终将按设定的比例进行调整,从而充分保证图像比例不发生变形。同时,用户操作员可以选择是否使用“栅格”辅助定位工具,使用“栅格”辅助定位工具后,在模拟屏上将显示“栅格”(但这些“栅格”并不会在投影墙上真正显示出来),操作员可以方便、直观、准确的利用这些“栅格”来定位图橡窗口的位置。同时,“栅格”的行、列数可以由操作员根据需要自行确定。 (18) d、信号参数调整:操作员能够利用信号参数调整窗体对RGB和视频信号进行亮度、对 比度等参数的调节。 (18) f:预案设置与调用: (18) 生成预案:操作员将需要显示的图像在模拟屏示、并调整好相应位置后,可以将此种显示方案作为预案保存,下一次使用时只需调用该预案即可。点击菜单栏中的“保存”即可保存预案。 (18) 执行预案:操作员在“预案列表”中用鼠标双击某一预案名即可执行该预案。或选择一个预案名后击鼠标右键,打开快捷菜单选择“执行此预案”。 (19) 设置预案执行时间:操作员在预案列表中选择一个预案后击鼠标右键打开快捷菜单后选择“预案执行时间”即可设定该预案的执行时间。也可以通过菜单中的“设置”项中的“预案运行时间设定”项设定预案执行时间。 (19) g、MediaMaster大屏幕控制软件的部分界面 (19)

多投影拼接融合系统

多投影拼接融合系统 多通道边缘融合技术 将一组投影仪投射的画面进行边缘重叠,TE:1302:0000:152通过融合技术显示出一个没有缝隙,更加明亮,宽大,高分辨率的整幅画面,画面的效果就像是一台投影仪投射的画面.大屏幕融合拼接,大屏拼接融合,环幕融合拼接,投影拼接融合,软件融合,视频融合,桌面融合,多通道融合。

多通道环幕投影系统解决方案 三通道案例 【项目设计】 本方案为三通道、180度环面投影幕,立体投影系统,拟采用1台高性能的图形主机,三台高亮度专业工程投影仪,将3个画面分解精确投影到环面金属投影幕上,超宽屏幕,超大视角,结合重低音立体环绕音响,让用户体验宏大的震撼效果。 多通道环幕(立体)投影系统是指采用多台投影机组合而成的多通道大屏幕展示系统,它比

普通的标准投影系统具备更大的显示尺寸、更宽的视野、更多的显示内容、更高的显示分辨率,以及更具冲击力和沉浸感的视觉效果。 应用领域:虚拟战场仿真、数字城市规划、三维地理信息系统等大型场景仿真环境,展览展示、工业设计、教育培训、会议中心等。 然而,其环幕显示特征导致了它的技术复杂性,通常一个完整的环幕投影系统需要有以下几项强有力的核心技术做支撑:数字几何矫正(即非线性失真矫正)技术、多通道视景同步控制技术、数字图像边缘融合技术,才能成功地将三维图形计算机生成的实时三维数字影像、实时同步地输出并显示在一个具有一定半径和弧度的巨幅环形投影屏幕上,从而形成一个具有极高分辨率的、无任何变形失真的数字三维立体影像。 环面投影系统核心技术介绍 数字几何校正技术: 当采用环幕或者球幕时,当投影仪把图像投射到这些弧形的屏幕上,图像就会变形失真,这种现象被称之为非线性失真。为了在环形屏幕上得到正确的图像显示效果,必对图像进行处理,这种处理被称之为非线性失真矫正。而面对与平面幕则不存在这样的问题。在没有曲面矫正的情况下,画面将被几何拉伸无法保证两个投影画面的完全重合。硬件融合机的曲面矫正模块,可以使得投影仪投影在任何曲面上,都可以经过矫正以获得一个正规的图像。 无几何校正的显示效果,重叠部分形状不重合

投影机融合方案

多功能智能化数字式综合会议系统 技术方案 北京志腾飞达科技有限公司 2009-07-26

目录 一、方案设计说明 二、需求分析与系统组成 三、各系统描述与说明 1、大屏幕投影三通道融合显示系统 2、桌面终端液晶显示屏升降隐藏系统 3、会议讨论与音响扩声系统 4、中央集中控制系统 四、系统连接图与会议桌平面示意图 五、售后保修服务条款 六、设备报价清单

一、方案设计说明 设计方案包括大屏幕投影三通道融合显示系统、液晶隐藏升降系统、无纸化办公会议系统、智能会议讨论与扩声系统、信息处理及中央控制系统等。其中,设计的指导思想是系统可靠、技术先进、功能完备,可扩建性强。同时在满足使用要求的基础上尽量保证经济性。具体说要满足以下要求:1.可靠性: 保证系统具有高可靠性,具备一定的抗干扰及容错能力,误操作的纠正能力。软硬件功能模块标准化,便于数据可靠传递。 2.先进性: 保证系统及单元选用最新的成熟技术,力争新增设备十年内不落后。保证系统总体水平达到国内领先水平。 3.易维护性: 保证系统具有自检和错误报警提示功能;系统各单元故障排除快速简捷;保证主机和备件的通用性、互换性。 4.易操作性: 系统便于掌握,简便直观。保证系统易于扩展、升级。 5.经济性: 在保证先进性、可靠性和易用性的前提下,系统还要有较好的经济性,使整个系统有较高的性能价格比。

6.可扩展性: 在今后的设备与功能不断发展的前提下, 系统在不改变基础建设的前提下,费用支出少甚至不用支出而能实现所需功能.为以后的发展打下坚实的基础. 我们设计的目标是,具有前瞻性,体现当代高科技成果的结晶。在升级的过程中不用追加更多的投资,以保护用户的利益。系统具有强大的控制与管理功能,可以与其它音视频和计算机系统相连,进行多种形式信息的沟通。 二、甲方的需求分析与系统实现组成说明 通过对此次会议室的使用要求进行了解,本次会议室面积尺寸为:长2000CM、宽700CM,面积约140平米左右,有32人参加会议。根据会议室的面积特点与系统要求、在会议室中间放一张长方形会议桌,前方设三通道投影拼接一块,从满足整个系统的要求下划分,本次多功能智能化会议室系统由如下子系统组成: 1、大屏幕投影三通道融合显示系统 对三个独立的VGA信号或视频信号进行整合,满足甲方大屏的显示需求。 2、液晶隐藏升降显示系统 正常工作时显示重要信息及图象,工作完毕后所有设备自动隐藏。有效节省空间同时会议模式能实现几种方式转换,增加会议室多功能性。 3、讨论发言与扩音系统

Envi处理MODIS流程学习资料

E n v i处理M O D I S流 程

Envi处理MODIS流程(2009-04-28 09:28:55) 标签:杂谈分类:MODIS 美国RSI公司(Research Systems Inc.)的产品ENVI能很好地支持HDF数据格式。ENVI(The Environment for Visualizing Images)遥感影像处理软件,是分析、处理并显示多光谱数据、高光谱数据和雷达数据的高级工具。ENVI能接受大量的传感器数据,是世界目前唯一能较好全面支持HDF科学数据格式的遥感影像软件。ENVI可以直接读取HDF格式(如图2所示),并能识别HDF格式中所包含的所有文件信息(如图3所示)。ENVI 打开HDF格式文件后,会自动将该数据文件所包含的所有图像信息、属性信息、文本信息作为波段列于一个波段列表中,用户可以清晰地浏览每一波段的详细信息,包括波段名称、图像波段波长、波段大小、数据类型及文件内插方式等多种信息。方便用户显示图像,并对各种属性及文本文件作各种分析。 本文选取2001年5月20日中国北部及蒙古地区(经纬度范围:92.49°- 116.97°,33.88°- 41.23°)的一景MODIS数据进行分析,主要从读取数据、分析经纬度波段信息、第一、四、三波段融合显示、影像地理校正几方面对该景数据进行了分析,具体步骤如下: (1)、数据读取:打开ENVI,在主菜单中选择File\Open External File\Generic Formats\HDF,选择文件“MODO2QKM_03.hdf”,表示是该景MODIS 数据的250米数据文件,从下图中可以看到,该文件中除两个影像波段外,还包含经度波段、纬度波段、热红外探测器的噪声信息、反射率变化参数等信息。

ENVI预处理modis

ENVI处理modis (2008-09-22 19:31:04) 转载 标签: 杂谈 1999年12月18日,美国成功地发射了地球观测系统(EOS)的第一颗先进的极地轨道环境遥感卫星Terra(EOS - AM1,表示EOS计划的第一颗上午星,拉丁文中“TERRA”为陆地的意思)。这颗卫星是美国国家宇航局(NASA)地球行星使命计划中总数15颗卫星的第一颗,也是第一个提供对地球过程进行整体观测的系统。它的主要目标是实现从单系列极轨空间平台上对太阳辐射、大气、海洋和陆地进行综合观测,获取有关海洋、陆地、冰雪圈和太阳动力系统等信息,进行土地利用和土地覆盖研究、气候季节和年纪变化研究、自然灾害监测和分析研究、长期气候变率和变化研究以及大气臭氧变化研究等,进而实现对大气和地球环境变化的长期观测和研究的总体(战略)目标。 Terra卫星上载有五种对地观测仪器:先进的空间热辐射反射辐射计(ASTER)、云和地球辐射能量系统(CERES)、多角度成像光谱辐射计(MISR)、中分辨率成像光谱仪(MODIS)、对流层污染探测装置(MOPITT)。为了充分了解地球系统的变化,EOS观测系统将提供系统的、连续的地球观测信息。 中分辨率成像光谱仪(MODIS)是该计划中最有特色的仪器之一。它是EOS-AM1系列卫星的主要探测仪器,也是EOS Terra平台上唯一进行直接广播的对地观测仪器。MODIS是当前世界上新一代“图谱合一”的光学遥感仪器,具有36个光学通道,分布在0.4 ~ 14μm 的电磁波谱范围内。MODIS仪器的地面分辨率分别为250m、500m和1000m,扫描宽度为2330km,在对地观测过程中,每秒可同时获得6.1兆比特的来自大气、云边界、云特性、海洋水色、浮游植物、生物地理、化学、大气中水汽、地表温度、云顶温度、大气温度、臭氧核云顶高度等特征的信息,用于对陆表、生物圈、固态地球、大气和海洋进行长期全球观测。每一个MODIS仪器的设计寿命为5年,将计划发射4颗卫星。由此估计,利用MODIS仪器至少将获得15年、36个光谱波段的地球综合信息,这些数据对于开展自然灾害与生态环境监测、全球环境和气候变化研究以及进行全球变化的综合性研究等将是非常有意义的。 MODIS数据接收处理系统具有精度高,跟踪速度快,造价低等特点;可实现高速率、大容量数据进机和快速存储并可实时快视;解码技术先进;预处理系统定位准确度高、定标精度

Envi处理MODIS流程

Envi处理MODIS流程(2009-04-28 09:28:55) 标签:杂谈分类:MODIS 美国RSI公司(Research Systems Inc.)的产品ENVI能很好地支持HDF数据格式。ENVI (The Environment for Visualizing Images)遥感影像处理软件,是分析、处理并显示多光谱数据、高光谱数据和雷达数据的高级工具。ENVI能接受大量的传感器数据,是世界目前唯一能较好全面支持HDF科学数据格式的遥感影像软件。ENVI可以直接读取HDF格式(如图2所示),并能识别HDF格式中所包含的所有文件信息(如图3所示)。ENVI 打开HDF 格式文件后,会自动将该数据文件所包含的所有图像信息、属性信息、文本信息作为波段列于一个波段列表中,用户可以清晰地浏览每一波段的详细信息,包括波段名称、图像波段波长、波段大小、数据类型及文件内插方式等多种信息。方便用户显示图像,并对各种属性及文本文件作各种分析。 本文选取2001年5月20日中国北部及蒙古地区(经纬度范围:°- °,°- °)的一景MODIS 数据进行分析,主要从读取数据、分析经纬度波段信息、第一、四、三波段融合显示、影像地理校正几方面对该景数据进行了分析,具体步骤如下: (1)、数据读取:打开ENVI,在主菜单中选择File\Open External File\Generic Formats\HDF,选择文件“”,表示是该景MODIS数据的250米数据文件,从下图中可以看到,该文件中除两个影像波段外,还包含经度波段、纬度波段、热红外探测器的噪声信息、反射率变化参数等信息。 (2)、1、4、3波段影像融合:MODIS数据的第一、四、三波段的波段宽度分别为μm ~ μm 、μm ~ μm、μm ~ μm,近似于可见光的红、绿、蓝波段,所以第一、四、三波段组合比较接近真彩色,故常选用这三个波段来表示MODIS影像。此处用同样方式打开500米数据文件,该文件共包含五个影像波段,将影像融合所需要的第3和第4波段进行重采样,即将其空间分辨率由500米重采样为250米,并与步骤(1)中第1波段组合,进行彩色方式显示。为提高成果影像的空间分辨率,笔者又将143波段组合影像进行对比度调整输出后,与真实空间分辨率为250米的第一波段进行影像融合(用HIS融合法),得到了几何清晰度更高的143波段融合影像(如图4所示)。图4中左侧为1、4、3波段彩色组合显示及局部放大,右侧为143波段组合输出后又与1波段进行融合的结果,可以很明显地看到,右侧的影像细节非常突出。体现了具有较高分辨率的第一波段的优势。 (3)、影像地理校正,由于MODIS数据本身带有详细的经纬度波段信息,这种地理信息以波段的形式存放,如图5中的灰度波段所示,该灰度影像每一象素的灰度值记录的是空间分辨率为1公里的MODIS数据中对应象素点的经纬度信息,这种详细的地理信息可以使影像不需要选择大量地面控制点就可以作精纠正,而且精度会比选控制点的方法更高。ENVI软件提供了“Georeference from Input Geometry(用既定地理信息校正影像)”功能,即用现成

投影融合-技术方案-模版三

投影融合设计方案 设计方案

1总体设计概述1 1.1设计范围 1 1.2设计理念 1 1.3设计原则 1 1.3.1可靠性原则 1 1.3.2先进性原则 1 1.3.3实用性原则 1 1.3.4高性能原则 1 1.4设计依据 2 1.4.1视频类设计依据 2 1.4.2音频类设计依据 2 1.4.3综合类设计依据 3 1.4.4设计指导思想 3 2投影融合显示系统设计4 2.1融合系统拓扑图 4 2.2投影距离分析 4 2.3系统亮度分析 4 2.4显示分辨率分析 5 3投影融合显示系统功能介绍6 3.1超高分点对点融合支持 6 3.2多格式信号源的接入显示 6 3.3多窗口叠加漫游功能

7 3.4色差调整,暗场补偿,多阶融合处理显示暗场补偿功能 8

1总体设计概述 1.1设计范围 根据需求,总体设计范围: 1.2设计理念 1.3设计原则 1.3.1可靠性原则 本项目所选产品均为国内、国际知名品牌。产品应用广泛、在重大项目中使用频繁、产品经过长时间运行、并且运行稳定、故障率、售后服务体系健全的产品厂家。质量好的产品是系统可靠性的重要保障。 1.3.2先进性原则 由于处于信息化时代,智能控制及其相关应用技术发展迅速,新的设备不断涌现并趋于成熟,所以系统设计在满足实用性的基础上,具有一定的超前意识,选用先进的技术及设施,将整个系统的技术水平定位在一个高的层次上,以适应高的应用要求。 1.3.3实用性原则 能够充分考虑实用性和易操作性,便于管理和维护,易于用户掌握和学习使用,并采用当前流行且成熟并有较多成功案例的技术装备。 1.3.4高性能原则 智能控制系统适用于环境及多媒体设备的应用要求,采用合理的拓扑结构,

MODIS数据分级及数据格式

MODIS数据分级分类标准规范 MODIS数据产品分级、分类、流程参考规范(草) (中科院地理科学与资源研究所全球变化信息研究中心) (讨论和试用稿第一稿2004年9月15日) 前言说明:美国NASA对MODIS数据分级、分类和数据处理流程给予了比较明确的标准规范。我国对地观测系统MODIS共享平台建设主要参照了美国的标准,个别地方做了修改。这是讨论和试用稿(第一稿)。 1主题内容与适用范围 1.1主题内容 本标准规定了国家对地观测系统MODIS共享平台数据产品分类、分级和编码标准,用以规范我国MODIS数据产品在产生、归档、保藏、交换和应用中的一致性。 1.2参考标准 本标准制定主要参用了美国国家航空航天局(NASA)关于对地观测系统MODIS数据分级、分类和数据处理流程规范。 1.3适用范围 本规范适用于国家科技基础条件平台对地观测系统MODIS共享平台全部标准数据产品和过渡性数据产品。 2术语 2.1国家对地观测系统MODIS共享平台数据产品:国家对地观测系统MODIS共享平台数据产品包括标准数据产品和特殊数据产品。 2.2 标准数据产品:利用对地观测系统数据,依据规范和数据分级标准对一定空间分辨率和时间频率进行连续开发的数据产品,定义为标准数据产品。 2.3 特殊数据产品:利用对地观测系统数据,依据非规定的标准、或非规定的空间分辨率、或特定地区、或特定时间频率开发、或预处理过程的数据产品,称为特殊数据产品。 2.4 数据产品分级:根据数据间相互依存关系划分的等级称为数据产品分级。 2.5 数据产品分类:依据数据内容异同划分的数据类型称为数据产品分类。 2.6数据产品编码:用标识符或标识数字形式对数据产品进行一一确认的过程称为数据产品编码。 3 MODIS数据产品分级 3.1MODIS数据产品分级系统:MODIS标准数据产品分级系统由5级数据构成,它们分别是:0级、1级、2级、3级和4级。 3.20级数据:卫星地面站直接接收到的、未经处理的、包括全部数据信息在内的原始数据为0级数据。 3.31级数据:对没有经过处理的、完全分辨率的仪器数据进行重建,数据时间配准,使用辅助数据注解,计算和增补到0级数据之后为1级数据。 3.42级数据:在1级数据基础上开发出的、具有相同空间分辨率和覆盖相同地理区域的数据为2级数据。 3.53级数据:3级数据时以统一的时间-空间栅格表达的变量,通常具有一定的完整性和一致性。在3级水平上,将可以集中进行科学研究,如:定点时间序列,来自单一技术的观测方程和通用模型等。

相关文档
最新文档