变频器专用EMI电源滤波器220V/250V单相双节 上海民恩厂家直销

变频器专用EMI电源滤波器220V/250V单相双节 上海民恩厂家直销
变频器专用EMI电源滤波器220V/250V单相双节 上海民恩厂家直销

上海民恩电源滤波器有多种类型:以下为您介绍的是单相交流电源滤波器,适用于适用于开关电源、逆变、伺服、电源转换器、伺服、变频、焊机、加油机等工业设备干扰问题较为严重的场合等单相工业设备等控制系统。单相电源滤波器分为四种:ME210系列单节滤波器、ME410系列双节滤波器、ME610系列双节增强型滤波器、ME710系列三节滤波器。

交流单相电源滤波器双节通用型ME410系列

◆产品及应用

●双节滤波

●共模及差模滤波效果优良

●泄露电流低,应用广泛

●适应各种阻抗匹配,对快速瞬变脉冲群(EFT)等实验

具有良好的辅助效果

●适用于于开关电源、UPS、加油机、雕刻机、控制器

等电子电力设备

ME410系列

◆技术参数

额定电压250VAC额定电流@40℃3A~30A

试验电压线-线1760VDC工作频率50/60Hz 线-地2000VAC气候类别25/085/21

◆产品列表

产品型号额定电流

@40℃

泄露电流

250VAC/50H

z

外型

电路参数端接方式

重量(g)

L

(mH)

Cx

(uF)

Cy

(nF)

R

(MΩ)

ME410-33A≤0.3mA B1 2.80.22 2.2 1.0L M4130 ME410-66A≤0.3mA B1 2.00.22 2.2 1.0L M4130 ME410-1010A≤0.3mA H1 1.00.22 2.2 1.0L M4160 ME410-1616A≤0.5mA H50.80.47 4.7 1.0L M4230

ME410-2020A≤0.5mA H50.750.47 4.7 1.0L M4300 ME410-3030A≤0.5mA H50.40.47 4.7 1.0---M6300

◆插入损耗

(PER CISPR17;A=50/50ΩSym)

LINE TO GROUND(PN---E)共模(dB)LINE TO LINE(P---N)差模(dB)

MHz.1.15.5151030.1.15.5151030 ME410-34055807463605511167078686058 ME410-63854807665634611157078686258 ME410-10355075756258509277272727169 ME410-163240707662585110237374676060 ME410-203240707662555210227075706052 ME410-30273257706055528205575726560◆电路原理图

◆外形尺寸(mm)

交流单相电源滤波器双节增强型ME610系列

◆产品及应用

●双节滤波器,极强的差模滤波效果

●具有差模滤波电感

●低频性能优异

●适用于开关电源、逆变、伺服、电源转换器等单相

工业设备等控制系统

ME610系列

◆技术参数

额定电压250VAC额定电流@40℃1A~25A

试验电压线-线1760VDC工作频率50/60Hz 线-地2000VAC气候类别25/085/21

◆产品列表

产品型号额定电流

@40℃

泄露电流

250VAC/50H

z

外型

电路参数端接方式

重量(g)

L

(mH)

L1

(uH)

Cx

(uF)

Cy

(nF)

R

(MΩ)

ME610-11A≤0.3mA H111.02800.22 2.2 1.0L M4160 ME610-33A≤0.3mA H1 6.51500.22 2.2 1.0L M4160 ME610-66A≤0.5mA H2 2.8900.22 4.7 1.0L M4230 ME610-1010A≤0.5mA H5 2.5700.47 4.70.47L M4300 ME610-1616A≤0.5mA J 1.545 1.0 4.70.22L M4400 ME610-2525A≤0.5mA J 1.220 1.0 4.70.22---M6400

◆电路原理图

◆插入损耗(PER CISPR17;A=50/50ΩSym)

LINE TO GROUND(PN---E)共模(dB)LINE TO LINE(P---N)差模(dB)

MHz.1.15.5151030.1.15.5151030 ME610-14450676959525267808790807260 ME610-33537586783755255687277827049 ME610-62528615653594050657872766253 ME610-102528555060685543507377757872 ME610-161820354250555840507576697565 ME610-251719334248505833407070696560

◆外形尺寸(mm)

交流单相电源滤波器三节高性能型ME710系列

◆产品及应用

●超高性能型电源滤波器

●在10KHz~30MHz宽范围内具有优异的共模和差模

滤波效果

●三节滤波,可解决绝大多数设备的EMC/EMI问题

●适用于逆变、伺服、变频、焊机、加油机等工业设

备干扰问题较为严重的场合

ME710系列

◆技术参数

额定电压250VAC额定电流@40℃1A~100A

试验电压线-线1760VDC工作频率50/60Hz 线-地2000VAC气候类别25/085/21

◆产品列表

产品型号额定电流

@40℃

泄露电流

250VAC/50

Hz

外型

电路参数端接方式

重量(g)

L

(mH)

L1

(uH)

Cx

(uF)

Cy

(nF)

R

(MΩ)

ME710-11A≤0.5mA J8.02000.22 4.7 1.0L M4450 ME710-33A≤0.5mA J 6.01800.22 4.7 1.0L M4450

ME710-66A≤0.5mA J 3.01500.22 4.7 1.0L M4450 ME710-1010A≤0.5mA J 1.5900.22 4.7 1.0L M4450 ME710-2020A≤0.5mA J 1.0650.47 4.7 1.0L M4450 ME710-3030A≤0.5mA G20.540 1.0 4.7 1.0---M61000 ME710-4040A≤1.0mA G20.430 2.2100.47---M61000 ME710-5050A≤1.0mA G20.320 2.2100.47---M61000 ME710-7575A≤2.0mA N100.2515 4.4200.47---M82500 ME710-100100A≤2.0mA N100.215 4.4200.47---M82500

◆插入损耗(PER CISPR17;A=50/50ΩSym)

LINE TO GROUND(PN---E)共模(dB)LINE TO LINE(P---N)差模(dB)

MHz.1.15.5151030.1.15.5151030 ME710-15265898565606675809694837670 ME710-34560898565606575809694817570 ME710-64055828565606075809696837670 ME710-103546758270646065728381757064 ME710-202838778475787240688080746658 ME710-301112758382766938667882726055 ME710-401112758382766936658078706156 ME710-501112758382766936658078706156 ME710-751012728082766838667882726055 ME710-1001012728082766838658078706156◆电路原理图

◆外形尺寸(mm)

>>专业就是希望,品质保证一切

EMC抗干扰专家

电源滤波器使用说明书

上海民恩电气有限公司生产的EMC/EMI电源滤波器是参照GB/T7343-87《10KHz-30MHz无源无线电干扰滤波器和抑制元件抑制特性的测量方法》及UL1283《电磁干扰滤波器》的标准来制定的。

电源滤波器是一种无源低通滤波器,滤波频段在10KHz-30MHz之间,不仅能有效抑制沿电源线传播的传导干扰,同时也能大大降低电子设备产生的辐射干扰。

滤波器命名说明

ME210D–10/??

端接方式代号Connection Type

额定电流数Rated Current

附加位(可同时出现)/Option

“D”直流滤波器/DC filter

“H”高工作电压型/High voltage filter

“M”军用滤波器/Military filter

“B”医用滤波器/Medical filter

“F”400Hz滤波器/400Hz filter

“L”低漏电流型/Low leakage current filter

“S”小体积型/Small size filter

......

产品系列Series

210

410

360

......

民恩公司代号ME

端接方式说明

图形

Figure

名称Forms 插针

Pin

引线

Wire

焊片

Solder lug

插座

IEC socket

铜排

Copper bar

螺栓

Screw

代号

Type

P W L IEC Bar M 滤波器产品分布说明

交流系列

交流单相电源滤波器

单节通用型

ME200,ME210,ME220系

双节通用型

ME410,ME422,ME430系

双节增强型ME610系列

三节高性能型ME710系列

交流三相三线电源滤波器

单节通用型ME360,ME370系列

双节增强型ME460系列

三节高性能型ME760系列

交流三相四线电源滤波器

单节通用型ME280系列

双节增强型ME480系列

三节高性能型ME780系列

交流高电压电源滤波器

单相双节增强型ME420H系列

三相三线双节增强型ME460H系列IEC插座电源滤波器

带插座通用型ME160系列

带保险管及插座型ME180系列

带保险管及开关插座型ME170系列

直流系列直流电源滤波器单节(160VDC)通用型ME210D系列单节(400VDC)通用型ME220D系列双节(250VDC)通用型ME430D系列双节(250VDC)增强型ME610系列

军用系列军用电源滤波器

军用交流单相单节通用型ME210M,ME220M系列军用交流单相双节增强型ME610M系列

军用交流三相三线单节通用

ME370M系列

军用交流三相四线双节增强

ME480M系列军用直流单节通用型ME210DM系列

军用直流双节增强型ME430DM系列

专用系列

变频专用输入滤波器

三相380/440VAC系列ME920系列

三相600/690VAC系列ME920H系列

三相1140VAC系列ME920VH系列变频专用输出滤波器

三相380/440VAC系列ME960系列

三相600/690VAC系列ME960H系列

三相1140VAC系列ME960VH系列变频专用输出正弦波滤波

正弦波滤波器ME966系列风能光伏逆变专用滤波器

高压直流(1100VDC)系列ME210DH系列

交流三相(480VAC)系列ME361系列PCB板专用滤波器

单节通用型ME100系列

双节增强型ME110系列家用电器专用滤波器通用型ME500系列

应用说明

一、产品检测

1.外观检测

目测外观应光亮,无破损和划伤,商标清晰,引出端焊接良好。

2.耐久性测试

民品电源滤波器放入低温箱(-25℃)和高温箱(+85℃)后,加上额定电压和额定负载,持续工作700小时后,进行耐压测试、绝缘电阻测试、漏电流测试、插入损耗测试应满足企标。

3.电性能(L/C/R)测试、插入损耗测试、耐压测试、漏电流测试、绝缘电阻测试,采用相关仪器依据标准操作规程进行。

二、产品标识

电源滤波器的额定电压、额定电流、工作频率、工作温度请以产品商标标识为依据。

三、产品包装

上海上海民恩电气有限公司的产品包装包括以下内容:

1.包装箱

2.防撞泡沫

3.气泡袋

4.珍珠棉

5.商标保护膜

6.供货清单

7.合格证

8.电源滤波器使用说明书

9.技术规格书

10.测试报告

四、产品运输

用户搬运滤波器时请搬运外壳或安装边,勿以滤波器输出端子为支撑点,以免端子出现扭曲、松动、断落而影响滤波器的正常滤波效果以及正常使用。

五、安装连接

1.电源滤波器的铭牌标示LINE箭头向左所指为输入端,LOAD箭头向右所指为输出端。

2.对螺栓式端子滤波器,用户在接线时须用扳手1固定住根部螺母,用扳手2拧紧螺栓端头部螺母,以免因螺栓转动而导

致内部线路的变动,致使滤波器出现打火、短路、击穿及滤波效果的下降。

3.对焊片式端子滤波器,可采用插片插装连接或焊接方法联线。采用焊接时,焊接时时间不宜超过5秒。

六、产品存贮

上海民恩电气有限公司的电源滤波器应在室内存放,温度在-45至+85℃。不能在含有腐蚀性液体、气体的房间内存放。

七、产品安装注意事项

1.滤波器金属壳与机箱必须保证良好面接触,并将接地线接好,接地线应尽量短。

2.滤波器输入线、输出线必须拉开距离,切忌并行,以免滤波器效能降低。

3.滤波器连接线以选用双绞线为佳,它可有效消除部分高频干扰信号。

4.滤波器的安装位置应选在电源入口处,尽量缩短输入线在机箱内的长度,减少辐射干扰。

5.电源滤波器输入端与输出端通常可互相调换。滤波器商标所标注的输入、输出为我司推荐使用的接线方式;客户可根据

具体情况调整输入、输出端,使滤波器两端阻抗都处于失配状态,以达到最佳的滤波效果。(具体技术问题请咨询我司)。

通过图①所示,为减小接地阻抗,滤波器应安装在导电金属表面或通过编织接地带与接地点就近相连,避免细长接地导线造成较大的接地阻抗。

如图②所示,安装位置应选在电源入口处缩短输入线在机箱内的长度,减少辐射干扰。

如图③所示,为避免输入/输出互相耦合,应尽量做到输入/输出隔离,至少严格禁止滤波器输入/输出线的相互交叉、路径平行等。若由于位置及空间的限制,无法满足上述要求,则滤波器的输入/输出线必须采用屏蔽线或高频吸收线。

(完整word版)微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

微带滤波器的设计复习过程

微带滤波器的设计

解析微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 滤波器(filter),是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 微带滤波器是在印刷电路板上,根据电路的要求以及频率的分布参数印刷在电路板上的各种不同的线条形成的LC分布参数的滤波器。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 切比雪夫滤波器,又名"车比雪夫滤波器",是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器来自切比雪夫分布,以"切比雪夫"命名,是用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(ПафнутийЛьвовичЧебышёв)。 3 微带滤波器的设计指标 微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(band width):通带的3dB带宽(flow-fhigh)。

微带低通滤波器的设计

微带低通滤波器的设计 朱晶晶 摘要:本文通过对国内外文献的查看和整理,对课题的研究意义及滤波器目前的发展现状做了阐述,然后介绍了微带线的基本理论,以及滤波器的基本结构,归纳了微带滤波器的作用和特点。之后对一个七阶微带低通滤波器进行了详细的研究,最后利用三维电磁场仿真软件ANSYS HFSS 进行仿真验证,经过反复调试,结果显示满足预期的性能指标。 关键字:微带线;低通滤波器;HFSS Abstract:View and finishing this article through to the domestic and foreign literature, the research significance and the filter to the current development status of, and then introduces the basic theory of microstrip line, and the basic structure of the filter, summarizes the function and characteristics of microstrip filter.After a seven step microstrip low-pass filter has carried on the detailed research, the use of 3 d electromagnetic field simulation software ANSYS HFSS simulation verification, after repeated testing, the results show that meet the expected performance index. Key word: microstrip line; low-pass filter; HFSS 1.引言 随着无线通信技术的快速发展,微波滤波器已经被广泛应用于各种通信系统,如卫星通信、微波中继通信、军事电子对抗、毫米波通信、以及微波导航等多种领域,并对微波滤波器的要求也越来越高。滤波器是一种重要的微波通信器件,它具有划分信道、筛选信号的功能,是一种二端口网络。整个通信系统的性能指标直接受它的性能优劣的影响[1]。主要技术指标要求有高阻带抑制、低通带插损、高功率、宽频带和带内平坦群时延等。同时,体积、成本、设计时间也是用户较为关心的话题。滤波器已经成为许多设计问题的关键,微带滤波器的设计技术是无线通信系统中的关键技术。传统方法设计出来的滤波器结构尺寸都比较大,在性能指标上也存在一定程度上的局限性,往往不能够满足现代无线通信系统的要求。目前,微带低通滤波器具有高性能、尺寸较小、易于集成、易于加工等优点因而得到了广泛的应用。 本论文以切比雪夫低通滤波器的研究作为实例,设计出一款七阶的微带低通滤波器,要求符合现代个人移动通信系统多需求的射频产品,覆盖一定的通信频率范围,使之掌握工程开发的相关步骤以及当前技术发展与需求。 2. 微带线的基本理论与参数 ε和导线厚度t、基板的介质损耗角正切函数,接地板和导线所用的金属 (1) 基板参数[2]:基板高度h、基板相对介电常数 r 通常为铜、银、铝。 (2) 电特性参数:特性阻抗、工作频率和波长、波导波长和电长度。 (3) 微带线参数:宽度W、长度L 和微带线单位长度衰减的量AdB。微带线的基本结构如1所示。 (a)结构示意图(b)横截面示意图 图1 微带线结构图 微带滤波器的参数: (1) 带宽 带宽指信号所占据的频带宽度,在被用来描述信道时,带宽是指能够有最大频带宽度。带宽在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。 (2) 带外衰减 由于要抑制无用信号,因此越大的带外衰减特性就越好,此项指标一般取通带外与截止频率为一定比值的某点频率的衰减值[3]。 (3) 通带插损 由于网络端口和元件自身损耗的不良匹配会造成一些能量损耗,造成在通带内引入的噪声过高以至于有用信号通过系统后产生信号失真,为了解决通信系统的这方面问题,就用插损IL 来表示滤波器的损耗特性。 (4) 带内驻波 滤波器的输入端口和输出端口与外加阻抗匹配的程度由带内驻波表示。驻波越小则说明匹配越好,反过来,则不然。 3. 运用HFSS 软件进行设计模拟仿真 3.1 微带低通滤波器的设计参数 滤波器工作频段:f1 =10MHz—f2=2500MHz =0.1dB 滤波器通带衰减:L Ar 滤波器带外抑制:在3500~5000MHz 的频率之间有35dB 的衰减 滤波器输入、输出端微带线特性阻抗:Z0=50 ε=3.66mm,h=0.508mm,t=0.004 所选介质基板指标为: r 可以计算得到7 阶切比雪夫低通滤波电路各微带传输线的结构参数[4-5]得到各尺寸如表1所示:

滤波器设计流程

滤波器设计流程(TUMIC) 实验要求: 用 =9.6,h=0.5mm的基板设计一个微带耦合线型的带通滤 r 波器,指示如下:中心频率 f=5.5GHz; 实验步骤: 1.计算阶次: 按照教材P109的计算步骤,仍然选用0.1db波纹的切比雪夫低通原型。根据中心频率、相对带宽和要求的阻带衰减条件,我们可得出最后n=4。 2.用TUMIC画出拓扑图: 因为TUMIC里没有对称耦合微带线,所以我们采用不对称耦合微带线 将两个宽度设为相同,即实现对称耦合微带线的作用。如图所示:

在每个耦合微带线的2、4两个端口,我们端接微带开路分支,将微带部分的长度设置为很小,而宽度设置为与端接的耦合微带线相同即可,即此部分微带基本不产生作用。如图: 因为n=4,我们采用5个对称耦合微带线。可知它们是中心对称的,即1和5,2和4为相同的参数。在每两段耦合微带线连接处,因为它们的宽度都不相同,所以我们需要采用一个微带跳线来连接,如图:

注意:有小蓝点的一端为1端口,另一端为2端口。 参数设置如下图: 条件中,要我们设计两端均为50欧姆的微带线。我们用此软件本身带有的公式计算出它的设计值即可。不过要注意一点,我们需在设置好基片参数(见后面)的情况下再进行计算。如图:

最后在两端加上端口,并标注1,2端口。如图: 3.参数设置: ⑴基片设置:即按设计要求里的 和h进行设置。如图: r

⑵变量设置: 上面讲到我们实际上是使用三组耦合微带线,即有三组参数。考虑每个对称耦合微带线都有w(宽度),s(间距),l(长度)三个参数。我们进行设计的目的就是通过计算机优化得到我们需要的这些参数的值,所以在这里,我们要将这些参数设置为变量。如图:

微带带通滤波器

射频技术 -----课程设计报告 题目平行耦合线带通滤波器基于ADS的设计专业学号通信工程 学号 学生姓名 指导教师 2016年4月16日

一、带通滤波器 (1)简介 带通滤波器是指能通过某一频率范围内的频率分量,但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 (2)工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 (3)典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率f0处的电压增益A0=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、f0、A0值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当f0=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。 此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。

实验四微带线带通滤波器设计

实验四微带线带通滤波器 设计 Prepared on 24 November 2020

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理 滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1、滤波器的介绍 滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带 2、平行耦合微带线滤波器的理论 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 二、耦合微带线滤波器的设计的流程

基于ADS的微带滤波器设计

基于ADS的微带滤波器设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。3中心频率:fc或f0。4截止频率。下降沿3dB点频率。5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。4 微带滤波器的设计本小节设计一个微带低通滤波器,滤波器的指标如下:通带截止频率:3GHz。通带增益:大于-5dB,主要由滤波器的S21参数确定。阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。通带反射系数:小于-22dB,由滤波器的S11参数确定。在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。了解了滤波器的设计原理以及设计指标后,下面开始设计微带低通滤波器。4.1建立工程新建工程,选择【File】→【New Project】,系统出现新建工程对话框。在name栏中输入工程名:microstrip_filter,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位为mm,。单击OK,完成新建工程,此时原理图设计窗口会自动打开。4.2原理图和电路参数设计工程文件创立完毕后,下面介绍微带低通滤波

微带滤波器的设计

微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 滤波器(filter),是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 微带滤波器是在印刷电路板上,根据电路的要求以及频率的分布参数印刷在电路板上的各种不同的线条形成的LC分布参数的滤波器。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图给出了这四种滤波器的特性曲线。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 切比雪夫滤波器,又名"车比雪夫滤波器",是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器来自切比雪夫分布,以"切比雪夫"命名,是用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(ПафнутийЛьвовичЧебышёв)。 3 微带滤波器的设计指标 微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(band width):通带的3dB带宽(flow-fhigh)。 带宽(band width)又叫频宽,是指在固定的的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。在数字设备中,频宽通常以bps表示,即每秒可传输之位数。在模拟设备中,频宽通常以每秒传送周期或赫兹(Hz)来表示。

ads设计的滤波器要点

1 课题背景 随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。如图1.1所示。

(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以 上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

微带线低通滤波器设计

近代微波技术课程报告姓名王翩 学号M201071631 院系电子信息工程 专业电磁场与微波技术 类别硕士 指导老师马洪 考试日期2011年7月8日

微带线低通滤波器设计 设计参数要求 设计特征阻抗为50Ω的低通滤波器,其截止频率为f 1=2.5GHz(3dB 衰减),在f 2=5GHz 处要求衰减大于30dB ,要求有详细设计步骤,并且用分布参数元件实现。 滤波器选型 选择巴特沃兹型滤波器,其衰减特性表示为 2 21()10lg[1(/) ]n A f f f ε=+ 其中n 为滤波器阶数,这里取1ε=。 2()30A f ≥代入上式解的n ≥4.98,取n=5,即选取5阶巴特沃兹滤波器。5阶归一化 巴特沃兹低通滤波器(截止频率1/(2)πHz ,特征阻抗1Ω)有如下两种实现方式。第一种是第一个元件是串联电感,第二种是第一个元件是并联电容,以下简称电感型和电容型。 图1 第一个元件是串联电感的5阶归一化巴特沃兹LPF 图2 第一个元件是并联电容的5阶归一化巴特沃兹LPF 使用集总参数实现巴特沃兹型LPF 设待求滤波器截止频率(1f )与基准滤波器截止频率(0f )的比值为M ,则有

10 10 2.5 1.57101/(2)f G H z M f H z π= = =? 设计截止频率为1f 的滤波器,要经过频率变换,将基准滤波器中各元件值除以M 。 滤波器特征阻抗变换是通过先求出带设计滤波器阻抗与基准滤波器特征阻抗的比值K ,再用K 去乘基准滤波器中的所有电感元件值和用这个K 去除基准滤波器中所有电容元件值来实现的。公式如下: 50501K = ==待设计滤波器的特征阻抗基准滤波器的特征阻抗 通过上述两步变换可以得到实际的元件值计算公式: K/M NEW OLD L L =? C /()NEW OLD C KM = 下面以以上公式推导出待求滤波器各元件取值。 表一:电感型滤波器各元件值 表二:电容型滤波器各元件值 图3 电感型5阶巴特沃兹LPF

微带滤波器设计

学院:电子信息学院 科目:射频通信电路设计课题:微带带通滤波器设计老师:杨阳 学生:蒋万欣 学号:2012141451177 日期:第十六教学周四

微带带通通滤波器设计 一、实验目的 解射频滤波电路的原理及设计方法。 学习使用ADS软件进行射频电路的设计,优化,仿真。 掌握射频滤波器的制作及调试方法。 二、实验内容 使用ADS软件设计一个微带低通滤波器,并对其参数进行优化、仿真。 根据软件设计的结果绘制电路版图。 三、滤波器的主要参数 通带边界频率与通带内衰减、起伏 阻带边界频率与阻带衰减 通带的输入电压驻波比 通带内相移与群时延 寄生通带 前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等)。 输入电压驻波比描述了滤波器的反射损耗的大小。 群时延是指网络的相移随频率的变化率,定义为d/df ,群时延为常数时,信号通过网络才不会产生相位失真。 寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。 四、ADS软件的使用 启动ADS进入如下界面

◆点击File->New Project设置工程文件名称(本例中为Filter)及存储路径◆点击Length Unit设置长度单位为毫米 ◆工程文件创建完毕后主窗口变为下图 ◆同时原理图设计窗口打开

以上为ADS建立工程的过程,在接下来的实验过程中间完整的体现这一过程。 五、微带滤波器的设计 1,设计要求 通带频率:4.8-5.2GHz, 通带内波纹:<3dB, 阻带抑制:>30dB(5.3GHz处) 输入输出阻抗:50 介质基板相对介电常数:2.65 在进行设计时,主要是以滤波器的S参数作为优化目标进行优化仿真。S21(S12)是传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出端的电压驻波比。如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。 2,设计过程 1,设计说明 本实验以平行耦合线带通滤波器结构完成设计。下图是一个微带带通滤波器及其等效电路,它由平行的耦合线节相连组成。

微带波滤波器的设计

波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计 并优化微带滤波器。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了 这四种滤波器的特性曲线。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 3 微带滤波器的设计指标 微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。

3中心频率:fc或f0。 4截止频率。下降沿3dB点频率。 5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。 8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。 10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。 工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。 4 微带滤波器的设计 本小节设计一个微带低通滤波器,滤波器的指标如下: 通带截止频率:3GHz。 通带增益:大于-5dB,主要由滤波器的S21参数确定。 阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。 通带反射系数:小于-22dB,由滤波器的S11参数确定。 在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参

实验四微带线带通滤波器设计

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理 滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1、滤波器的介绍 滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带 2、平行耦合微带线滤波器的理论 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 二、耦合微带线滤波器的设计的流程 1、确定滤波器指标 2、计算查表确定滤波器级数N 3、确定标准滤波器参数 4、计算传输线奇偶模特性阻抗 5、计算微带线尺寸 6、仿真 7、优化再仿真得到波形图 设计参数要求: (1)中心频率:2.4GHz; (2)相对带宽:9%;

微带线带通滤波器仿真设计

微带线带通滤波器仿真设计 1 绪论 微波滤波器是现代社会中常用的一种选频装置。它的主要作用是对信号进行处理,根据设置的一定频率选择出有用的信号,滤除不需要的信号。微波滤波器采用最重要的元件之一是一种用微带线作为传输线的微带电路,微带电路具有体积小、频带宽、重量轻和可靠性高等特征。这是由于这些优点,近年来微带电路被广泛用于微波电路中,对微波电路的发展具有较大的意义。当然,滤波器的性能会影响电路的性能指标,因此,我们需要设计出一个高性能的滤波器,这样更有利于对微波电路系统的设计。传统滤波器制作的工作量大,计算方法比较复杂,而且效果较差,但是随着软件技术飞速的发展,如今在设计滤波器的方法上也变得更多、更快、更好。本设计便是采用微带电路的这些特征,设计出微带线带通滤波器,该滤波器采用先进设计系统(ADS )进行仿真设计,不仅提高了工作效率,同时也有利于进一步对微带滤波器的优化。 1.1微带线滤波器的发展历程 1958年,平行耦合传输线滤波器的结构被Seymour B.Cohn提出,该结构是通过 平行的微带线之间形成耦合电路,从而在平面结构下实现了滤波,如图 1.1-1所示为平行耦合传输线滤波器。平行耦合传输线滤波器的优点在于它可以对滤波器阶数和极点的个数进行控制,从而提高了滤波器的带宽,插入损耗以及稳定性。平行耦合传输线滤波器具有微带线耦合性质,在当时具有较大意义。 U) 1~ plad rMOiia cur filtjef*; G B》cn

图1.1-1 平行耦合传输线滤波器 随后出现了介质谐振器,P.D.Richtmeyer 利用介质块的电磁谐振的小尺寸和高 Q 值这两个优点,但是这种滤波器在实际使用中却没有得到推广,原因是这种材料的温度 稳定性很低。20世纪60年代,具有良好的温度稳定性和高 Q 值的陶瓷材料的出现使介 质滤波器在使用中逐渐被认可。这一种滤波的发展随着陶瓷材料的发展得到了快速的进 步,这也使得介质滤波器在已有的微波和射频通信材料中已成为不可缺少的元件之一。 随后,第一对交指型滤波器结构出现,如图 1.1-2所示为交指型滤波器结构。1962 年, George L.Matthaei 对交指型滤波器理论进行了阐述,随后又发现了一种能够用来设计 低损耗和小尺寸的新型微波滤波器的材料。 图1.1-2 交指型滤波器 1971年,Sidney Frankel 和Edward G.Cristal 提出了发夹型滤波器设计的概念并 对其理论进行研究。如图1.1-3和图1.1-4分别为发夹型滤波器和混合型滤波器的结构 图。此结构即在平行耦合传输线滤波器上加入发夹形状结构设计,使其性能和集成性均 有所提高。 耳■?眸 t 71 -rif nJ- lw _

相关文档
最新文档