热泵技术及其应用的综述

热泵技术及其应用的综述
热泵技术及其应用的综述

热泵技术及其应用的综述

热泵机组由于其具有节能、环保及冷暖联供等优点,目前在国内广泛应用。本次收集了在全国各类报刊杂志、年会资料集及论文集有关热泵技术及应用这方面的论文共207篇。在此作为一个专题研讨,供在座的各位教员和同学们参考。有关问题综述如下:

一、空气源热泵

空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。热泵空调器已占到家用空调器销量的40~50%,年产量为400余万台。热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到

20~30%,而且应用范围继续扩大并有向此移动的趋势。

1、关于空气源热泵能耗评价问题

为了评价和比较热泵机组与其它冷暖设备的能耗,大约有30篇论文涉及此问题。介绍了适用于热泵机组能耗分析的理论与软件,根据空调冷负荷、室外干球温度、热泵出水温度等参数,采用温频数法,求解热泵供冷全年能耗。在求解热泵冬季能耗时,除考虑空调

热负荷、热泵出水温度、室外干球温度外,还把室外相对湿度(即温湿频数)考虑到热泵供热性能中,软件经工程实例计算,与实际耗能量有较好的吻合,为能耗评价提供了一种方法。

2、风冷热泵机组的选用

目前设计选用风冷热泵冷热水机组,常根据计算得到的冷热负荷,考虑同时使用系数及冷(热)量损耗系数后,按机组铭牌标定值选择机组台数。由于空气源热泵机组的产冷(热)量随室外参数的改变而变化,这种选择方法可能造成机组选得过大,造成浪费;或者选得过小,使供冷(热)量不足,达不到使用要求。为此建议采用空调的逐时冷热负荷和热泵机组的供热供冷能力的逐时变化曲线对照选择,会得到比较满意的结果。

3、热泵机组冬季除霜

空气源热泵冬季供热运行时,最大的一个问题就是当室外气温较低时,室外侧换热器翅片表面会结霜,(需要采取除霜措施)。根据有关文献摘录,经二年的现场跟踪测试,其结果是除霜损失约占热泵总能耗损失的10.2%,而由于除霜控制方法问题,大约27%的除霜功能是在翅片表面结霜不严重,不需要除霜的情况下进入除霜循环的。目前常用的一些方法,或多或少都存在一些问题,如发生多

余的除霜动作,或需要除霜时而不发出信号等弊病存在。有关文献提出的最佳除霜时间控制及最大平均供热量控制除霜等方法,从理论上讲很有新意,但实现起来比较困难。本人认为:采用自调整模糊除霜控制的思路及系统的基本结构,确定室内外大气温度、相对湿度之差及翅片温度的变化率等作为输入论域,经对输入量的模糊化和模糊推理方法,在高位机上实现模糊除霜控制的仿真,采用这种方法除霜经与实验数据对比,判别结果与实际情况较吻合。这种方法与常规除霜方法相比,不仅延长了制热工作时间,减少了除霜次数和除霜损失,而且使机组工作性能和可靠性得到了提高。

在室外空气温度低的地方,由于热泵冬季供热量不足,需设辅助加热器。常用方法是在室内机出风口处设加热器,这种方法不仅传热效率低,安全性能差而且化霜时间长,室内温度下降大,采用氟里昂加热器可以明显克服以上缺陷,这种方法就是把室内侧换热器分前后两部分,在中间增加一个氟利昂辅助加热器,即热泵在冬天运行时,压缩机排出的高温氯利昂气体进入室内换热器前部分时已有部分气体被冷凝成液体。此时经氟利昂加热器的加热,使该部分液体再次蒸发成气体,然后再进入室内换热器的后半部分。这样,依靠整个室内换热器,将热泵室外换热器的吸收的热量,连同氟利昂加热器所产生的热量一并传给空调房间内,补足了由于室外环境温度低而引起的供热量不足。相关文献介绍在KFRd-70LW热泵空调器上试验,得到了很好的辅助加热效果,而且化霜时间由3min减

少到1min(室外温度-1℃时);由10min减少到3min(室外温度-7℃时)。

4、热泵机组的噪声治理

单台或多台热泵机组的噪声治理。分析风冷热泵机组的噪声传播特性,结合热泵机组的噪声治理工程实例,介绍了封闭式隔声消声装置的设计方法、设计要点和治理效果。

由于风冷式热泵的操作、管理及维修比较方使,具有制冷制热的双重功能,机组的散热又不需要冷却塔,因此,应用越来越多。但热泵机组的噪声易对周围环境产生一定的影响,近几年上海等地发生热泵噪声扰民的事件增多,已成为近期城市中一类带有普遍性的固定源噪声污染问题。因此了解单台或多台热泵的噪声传播特性,探讨热泵机组群噪声防治的方法,具有一定的普遍现实意义。

从热泵机组的噪声源、噪声特性、热泵机组的噪声治理实例、噪声控制及治理的技术角度看,热泵机组噪声治理工程实例有一定的推广价值和意义,在较好地解决了热泵机组通风散热、进排风问题、确保热泵正常运行的前提下,采用全封闭的隔声消声装置,把热泵的A声级噪声降低20dB左右,为在某些特殊场合把热泵噪声降低至需要的程度的噪声治理工程设计提供了一个可以借鉴的成功实

例,尤其是在热泵的排风余压较低或不了解具体的余压时,在设计隔声消声装置的进风排风系统时可以有一个具体的计算依据。

二、水源热泵

虽然目前空气源热泵机组在我国有着相当广泛的应用,但它存在着热泵供热量随着室外气温的降低而减少和结霜问题,而水源热泵克服了以上不足,而且运行可靠性又高,近年来国内应用有逐渐扩大的趋势。本次共收集到这方面的论文15篇,主要内容综述如下:

1、开发和使用未利用能、发展水源热泵技术

未利用能指的是还没有利用的能,大致包括自然类(如地热、温泉、河水、海水、湖水及地下水等)和城市基础设施类(如工场、发电厂、矿井、工业废弃物及公共浴室等等),如何利用这部分未用能作为生活用采暖、空调的热源、是应引起足够重视的问题,空调所对大连电力大厦采用发电厂循环水作为大厦水源热泵空调系统的热源,在技术上和经济上进行了分析,并进行了水面积的模拟试验,结果表明,采用水源热泵供热,其COP为4,每平方米采暖可以节约运行费5万元,节标煤5公斤。某作者还对利用某矿区现有的地下水(作热源),对单身18层职工公寓和住宅小区实施冷暖联供的四种方案进行了综合比较,结果是采用水源热泵的空调系统,不

管是从投资上,还是从运行费上,都具有明显优势。

2、发展住宅的水源热泵系统

随着我国住宅市场化改革,新建住宅小区迅速发展和居民对居住环境的改善需求,以及环保方面的要求,如何满足居住建筑的冷暖空调要求,是急需解决的问题。清华大学江亿提出采用深井回灌的水源热泵方式可能成为满足这种需求的住宅供热空调方式。

其原理,地下水从深井1中抽出进入板式换热器械2,与楼内循环水系统的水换热后,再通过深井2排到地下,循环水系统经住宅楼内管网送入各户,经各户的水源热泵产生热水(冬季)或冷水(夏季)送入末端装置,满足供热或空调的要求。在对深井、水系统及水源热泵和末端装置进行了详尽讨论,最后进行了经济分析,结果表明,采用这种“一户一机、深进回灌”的水源热泵方式,优于目前的冬季燃煤锅炉采暖+夏季分体空调方式。同时系统管理方便,住户可很方便地单独对温度调节。这一方式全部能源由电提供,无任何污染,空调排热全部进入地下用于冬季供暖,不再对小环境造成热污染,并且遭受不悬挂室外机,美化了建筑外表面。由于地下水是全封闭式系统,因此既不消耗任何地下水源,又不会对其带来污染。目前需要政府部门制定相应政策,以支持这种节能、节水、保护环境的方式。

3、水源热泵应用测试分析

空调所李先瑞等对大连发电总厂新建综合楼三层西侧一个房间()的水源热泵系统进行了一个冬季的实侧,得到如下结论:

(1)水源热泵是一种介于中央空调和分散空调之间的优化空调能源方式,它既具有中央空调能效高,成本低和安全、可靠等优点,又具有分散式调节灵活、方便和便于收费等优点,是一种适合民用建筑的采暖空调方式。

(2)由于余热水源热泵具有热回收率高的特点,因此,经济性、节能性十分明显,在有条件地方应大力推广。

(3)自来水水源热泵系统,冬季采暖需补助加热,其经济性与加热热源方式有关。采用热效率高的燃气加热方式或以价格较低的蒸汽加热水作为加热源等热源时,以它们作为补助加热热源是合理的。

4、水源热泵冷热水机组的经济性

长沙铁道学院丁力行对湖南地区的中央空调系统,分别采用水源热泵冷热水机组、风冷热泵、溴化锂直燃机、水冷冷水机组+燃油锅

炉四种方案进行了经济比较,结论是水源热泵冷热水机组具有初投资较小,且成本比其它三种中央空调小19~65%的优点。

5、中高温水源热泵用混合工质研究

在地热利用中存在的主要问题是利用后排放的水温较高,一般为40~45℃。如利用这部分热水作为热泵热源,这就存在着一个使用甚么样的热泵工质问题,经采用CSD方程的大量计算,筛选出了一种低环害的非共沸混合工质,经实验测试,效果较好。采用此混合工质用以地热水(40~45℃)为低温热源的热泵系统,冷凝温度70℃左右,蒸发温度在20℃左右,冷凝压力在20以下,EER值在3.5~4之间,可以输出60℃左右的热水供用户使用。

三、地源热泵

地源热泵是以大地为热源对建筑进行空调的技术,冬季通过热泵将大地中的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。由于其节能、环保、热稳定等特点,引起了世界各国的重视。欧美等发达国家地源热泵的利用已有几十年的历史,特别是供热方面已积累了大量设计、施工和运行方面的资料和数据。

我国是发展中国家,由于多种原因,地源热泵的开发研究仅仅是近几年的事。有关地源热泵方面的论文共收集了13篇,表明国内对研究开发地源热泵系统已引起了足够重视。论文主要内容有:

1、垂直U形埋管地源热泵实验

青岛建工学院1998年建设了垂直铺设的土壤源冷热两用闭式热泵系统,地面设备采用美国谷轮OM300热泵机组和立式风机盘管;地下垂直埋设一根d45*4mmU形聚乙烯塑料管,深53m,孔网直径1.10m,塑料管总长110m(包括水平埋管4m),为了测试土壤温度变化,距主井每隔0.8m打一深13m的辅井。1998年8月26日开始运行测试,整个试验包含了二个夏季,一个冬季和二个春秋季,共五个季节。通过试验得到了如下结论:

(1)垂直埋管系统既可作为冬季采暖的热源,又可作为夏季空调的冷源,一机两用是可行的,它同水平敷设的系统比较,只占用极小的室外场地。

(2)采用一个单井作热泵冷热源时。夏季储热和冬季的储冷不明显,从设计角度可不予考虑。

(3)经过整个夏天(或冬天)的长期运行,埋管周围温度场发生变

化,其作用半径大约3m左右。

(4)塑料埋管同地下的热交换能力如下:

a.向地下放热(制冷工况):按管长计算:20m/kw;按井深计算10m/kw;按管路外表面积计算;2.5m2/kw;

b.从地下吸热(制热工况):按管长计算:35m/kw;按井深计算:17~18m/kw;按管路外表面积计算:4.5m2/kw。设计管路系统可按冬季工况设计,对夏季工况进行校核。

(5)在选择R22蒸发器和冷凝器时,建议参数如下:冷凝温度≤60℃,蒸发温度-2~7℃,制热时取低值,地下埋管充液按能抵抗-7℃的低温。地下流体流动温升6~8℃,蒸发器传热平均温差6~12℃,制热时取低值。冷凝器传热平均温差8~14℃,室内液体一般可不充防冻液。

(6)引进西方国家钻井下管一条成施工作业;开发特殊塑料管件:U型管件,二管接管技术。引进和开发特殊钻井回填填料,西方国家采用特殊的回填料可提高传热效果。

2、垂直套管式埋管地源热泵试验及传热模型

重庆建筑大学通过竖埋单管试验,地下套管式换热器较U形管换热器传热效率高20~25%,在单管试验的基础上,建设了10kw的地下套管式地源热泵系统,该系统地下部分为5排15根,深10m的竖埋套管,错排布置,间距1.5m,孔网与套管之间的缝隙用钻孔回收的岩浆回填,套管直径DN75~90mm,水管直径dN15~25mm,管材均为PVC塑料管。地上部分为水-空气热泵空调器;水-水热泵,末端采用立式风机盘管和冷暖地板。

热泵自98年10月投入使用,经过了两个冬季,两个夏季四个过渡季的连续运行测试,系统运行正常。冬季保持室温18℃以上,夏季保持室温28℃以下,热泵系统间歇运行,平均运行时间每天8~9个小时。通过2年的使用,积累了大量测试数据,并得到了一些有价值的结论。

(1)冬季运行,地下埋管,进水温度5.5~7.5℃(平均7.15℃),出水温度11.5~13℃(平均12.13℃,温差5℃左右),热泵压缩机吸气压力0.45~0.5Mpa(t0在3~6℃);水-空气热泵排气压力1.4~1.65Mpa(tk在40~45℃);水-水热泵排气压力

1.60~1.80Mpa(tk在45~50℃)。热泵运行7~10天后,进出水温度趋于稳定。

(2)冬季运行室内保持18~22℃(平均19.39℃),热泵间歇运行,月平均运行小时数7.58h,地下埋管单位温度换热量平均为

77.93w/m,平均传热系数9.45w/mk。热泵性能系数

COP=3.06kw/kw。

(3)夏天运行,地下埋管进水温度34~43℃(平均41.48℃),出水温度27~34℃(平均32.3℃),温差9℃左右,排气压力1.6~1.8Mpa(tk在45~50℃),热泵压缩机吸气压力,水-空气热泵P吸=0.45~0.5Mpa(t0在3~6℃),水-水热泵P吸

=0.40~0.45Mpa(t0在1~3℃)。热泵运行20天后,进出水温度趋于稳定。

(4)夏季运行,室内保持21~27℃(平均23.38℃),热泵间歇运行,月平均运行小时数8.88h,地下埋管深度换热量90.6w/m,平均传热系数5.70w/mk,热泵制冷系数5.70w/mk,热泵制冷能效比EER=3.46kw/kw。

(5)地下埋管支路是三根竖管串联,经测试各竖管温差平均为1.9、1.5、1.6℃,表明各竖管传热基本均匀。

(6)地下埋管系统流量大小对埋管换热器的传热有重要影响,经变水量测试,每个支管环路1200kg/h左右为最佳流量,此流量相当

供水支管水流速1m/s,本管内水流速0.1m/s。在最佳水流量下单位埋管深度换热量和EER到达最大值。

(7)经重庆几个工程实例比较,地源热系统造价比家用分体空调器造价要高40~50%,用节约的电费偿还期约为4~5年。

(8)经测试分析地下埋管内热短路现象严重,测试结果为

0.3~0.4℃,占埋管换热量的20%左右,如何减小热短路,提高竖埋管的传热效率是需进一步研究的手段。

(9)建立完善的地下埋管传热模型,以确定不同地区,不同岩土性质下的最佳地下埋管换热器尺寸,继推广和发展地源热泵的关键技术,作为参照V.C.Wei地下埋管传热理论,采用系统能量平衡结合热传导方程建立了二维温度场数学模型,其中包括单管间歇(或连续)运行传热模型,串联套管传热模型,管群换热模型。该模型经验证,比实测值偏低10%左右,若经进一步完善和修正,对地源热泵系统设计及运行具有重要的参考及应用价值。

(10)正确了解热泵冬(夏)季运行终止至夏(冬)季热泵运行开始,这个过渡季期间内,大地温度的变化情况,是建立地下埋管传热模型的重要边界条件,也是保证地源热泵长期有效运行的重要数据。作为采用按径向和管长方向建立二维传热模型计算大地温度恢

复情况,并编制了相应的程序,计算值与实测结果有很好的吻合性。

(11)经模型计算,地源热泵连续运行30天热影响最远的距离(即传热远边界半径)为6m左右,但经计算其不同距离埋管对竖管干扰引起的大地热阻变化已变小,其干扰程度已小于2%,因此认为埋管间距采用3m是可行的,这与实测结果是一致的。

3、土壤及其黄砂混合物导热系数的实验研究

发展和推广地源热泵关键问题是要根据不同气候条件下及土壤的蓄、放热能力,选择热泵系统的合理容量和土壤中放热量的最佳间距和深度从而确定出最佳安装方案以便得到最大的经济和环境效益。本研究采用针对我国华东地区的有代表性土壤及不同比例的沙土混合物进行测试,其结论是:

(1)湿土壤及土沙混合物的导热系数,随密度P和含水率W的增加而增加。

(2)实验的纯土壤、纯黄沙,土沙比分别为1:2的混合物四种不同的测试对象中,以土壤混合物为1:2的导热系数最大,其关联式为K=2.38*10-10W0.79P2.79w/mk。

4、地源热泵采用蓄热水箱的夏季工况分析

一般地源地下埋管均为直流式水系统,当热泵间歇运行时,会造成压缩机起动负荷大,采用蓄热水箱就是在室外侧水系统上并联一个蓄热水箱,当热泵停止运行的间歇期,室外侧循环水泵继续运行使水流过蓄热水箱,以降低水箱及室外侧水系统的温度,经实验检验和数值模拟计算,采用为上方式可以明显降低水温,也即降低压缩机起动阶段的冷凝温度最终达到节能效果。

四、复合热泵

为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。如空气-空气热泵机组、空气-水热泵机组、水-水热泵机组、水-空气热泵机组、太阳-空气源热泵系统、空气回热热泵、太阳-水源热泵系统、热电水三联复合热泵、土壤-水源热泵系统等。有关复合热泵方面的论文共收集了12篇,论文主要内容有:

1、太阳-空气热源热泵系统

太阳-空气热源热泵系统是在传统的空气热源热泵系统的基础上,利用太阳能热源而新开发的系统。它可以制冷、供热、供生活热水,是一种利用自然能源、无污染、适用性广、效率高的新型冷热源系

统。

北京市建筑设计院关磊设计的太阳-空气热源热泵系统。由压缩机组、冰(水)蓄热槽、设在屋顶上的集热/放热板及冷媒管道组成。制冷运行是在夜间进行,一是利用夜间电力,二是利用屋顶上的放热板在夜间向室外散热。供热运行在白天进行,它利用太阳热及空气对流热作为采热源,进行热泵制热工况的。首先冷媒被压缩机压缩成高压高温气体,然后进入蓄热水槽(与冰蓄热槽共用)的盘管冷凝放热,冷凝后的液体再通过膨胀阀变成低压低温的液体进入设在屋顶处的集热板吸收太阳热及空气对流热,又成为气体返回压缩机,如此反复形成热泵制热循环。与此同时,利用蓄热水槽内的热水对建筑供热。

系统的特点有:节约能源、经济、高效率、适应性广。

该系统适用于办公楼、医院、温水游泳池、疗养院、学校、研究所、工厂等建筑。同一般太阳能利用系统相比,集热板面积已经大幅度减少,但由于受屋顶设置面积的限制,一般适用于5层以下的建筑。对于5层以上的建筑采用该系统时,应考虑设其它辅助热源设备。

2、土壤-水热泵系统

土壤-水热泵(下称土壤热泵)可利用低品位的土壤热能提供热水或向建筑物供暖。美国、德国及瑞典等北欧国家,已有上万台此类热泵装置在运行,土壤热泵技术已趋成熟,并迅速地加以推广使用。目前正在制订土壤热泵用于供暖的技术规范。

天津商学院制冷技术研究所高诅锟介绍了无污染、低品位的土壤热源热泵实现冬季供暖的技术,提供了土壤热交换的设计参数和室内供暖的匹配方法,并指出,与空气热源热泵的全年电费相比较,土壤热源热泵节电10%~12%。

房间供暖一般只需要较低的温度,从 的观点来看,用煤的高品位化学能取暖是很大的浪费,而且煤是很多产品的宝贵原料。而利用土壤热泵提供的40~45℃热水供暖(尤其是地板供暖)则把本来难以利用的低品位、无污染的能源利用起来,是节能的途径之一。

冬季土壤热源的温度不仅高于空气,而且较为稳定,如在天津市和河北省地区,在整个供暖期,地下1.6m深处土壤温度在13~10℃之间变化。空气热源的温度则不可能这样稳定,而且空气热泵不适于在7~-4℃范围内工作,它需要复杂的除霜装置,如空气热泵在外界温度-4℃以下工作时,蒸发温度较低,热泵性能系数明显下降。

在供暖季末期,由于供暖负荷的减少和土壤供热量的降低,土壤热

泵的输出与负荷有较合适的匹配。冬季热交换器盘管附近土壤的湿润和结冰能为热泵提供附加热量。夏季可以将土壤热泵转换为空调运行工况,可以达到节水目的,同时为冬季供暖贮热。在其它季节里可以提供生活用热水。

根据本文提供的参数,可以很快地进行设计计算。如已知供暖面积F2,选择热交换器型式所对应的匹配系数n,可以立刻知道土壤热泵系统各设备的负荷及土壤热交换器的占地面积及其结构和尺寸。

在自然界和工业废汽、废热、废水中,低品位热源不少,往往未加利用,从 观点分析,它们是冬季供暖的合适热源。土壤热泵可以把低品位的土壤热能利用起来,其性能系数可达2.5~3.0,是有效的节能技术。

从年度电费上与空气热泵相比,土壤热泵可以节省电费10%~12%(注:年度电费比较是土壤热泵、空气热泵夏天用于空调、冬天用于供暖时全年用电费用比较)。

3、太阳能-水源热泵空调系统

太阳能水源热泵系统由三部分组成,即太阳能集热系统、水源热泵系统和热水供应系统。其系统是将建筑物的消防水池作为蓄水供应

系统。以解决太阳能的间歇性和不稳定性。当环路水温高于35℃时,水源热泵空调系统同消防水池断开,冷却塔投入运行,当环路水温在15~35℃之间时,太阳能作为冷却塔停止运行,生活热水供应的热源收集的太阳能用来加热生活用水;当环路水温低于15℃时,环路与消防水池连通,太阳能水源热泵空调系统吸收太阳能。若仍有多余的太阳能时,可继续加热生活用水。

作者对哈尔滨、上海、乌鲁木齐等六城市应用该系统进行了详尽的模拟计算和预测分析,得出了如下结论:

(1)太阳能水源热泵空调系统是一种节能系统,应用前景广阔。其系统拓宽了水源热泵空调系统的应用范围,使目前内部余热小或无余热的建筑物也可采用水源热泵空调系统节能。

(2)初步得到太阳能水源热泵空调系统在我国各地的应用运行情况,并分别指出,对于不同的热源设备形式及能源形式,该系统在各地区的运行能耗情况和节能特性。

(3)在我国大部分地区运用太阳能水源热泵空调系统,都会收到良好的节能效果,尤其是对于年太阳辐射总量较高,冬季日照率高的地区,该系统是一种理想选择。

水源热泵技术介绍及工作原理

水源热泵技术介绍及工作原理 水源热泵技术是利用地球表面浅层水源中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。 地球表面浅层水源(地下水、河流、湖泊、海洋等)中吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵中央空调系统是由末端系统,水源热泵中央空调主机系统和水源热泵水系统三部分组成。冬季为用户供热时,水源热泵中央空调系统从水源中提取低品位热能,通过电能驱动的水源热泵中央空调主机(热泵)“泵”送到高温热源,以空气或水作为载冷剂提升温度后送到建筑物中满足用户供热需求。夏季为用户供冷时,水源热泵中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,由于水源温度低,所以可以高效地带走热量,以满足用户制冷需求。通常水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。 水源热泵的特点及优势 属于可再生能源利用技术 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说水源热泵是一种清洁的可再生能源的技术。 高效节能 水源热泵机组可利用的水体温度冬季为12-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

热泵在我国应用与发展

热泵在我国应用与发展 1、早期热泵的应用与发展阶段(1949年~1966年) 相对世界热泵的发展,我国热泵的研究工作起步约晚20~30年左右。但从中国情况来看,众所周知,旧中国的工业十分落后,根本谈不上热泵技术的应用与发展。新中国成立后,随着工业建设新高潮的到来,热泵技术也开始引入中国。早在20世纪50年代初,天津大学的一些学者已经开始从事热泵的研究工作,1956年吕灿仁教授的“热泵及其在我国应用的前途”一文是我国热泵研究现存的最早文献,为我国热泵研究开了个好头。20世纪60年代,我国开始在暖通空调中应用热泵。1960年同济大学吴沈钇教授发表了“简介热泵供暖并建议济南市试用热泵供暖”;1963年原华东建筑设计院与上海冷气机厂开始研制热泵式空调器;1965年上海冰箱厂研制成功了我国第一台制热量为3720W的CKT—3A热泵型窗式空调器;1965年天津大学与天津冷气机厂研制成国内第一台水源热泵空调机组;1966年又与铁道部四方车辆研究所共同合作,进行干线客车的空气/空气热泵试验;1965年,由原哈尔滨建筑工程学院徐邦裕教授、吴元炜教授领导的科研小组,根据热泵理论首次提出应用辅助冷凝器作为恒温恒湿空调机组的二次加热器的新流程,这是世界首创的新流程;1966年与哈尔滨空调机厂共同开始研制利用制冷系统的冷凝废热作为空调二次加热的新型立柜式恒温恒湿热泵式空调机。 我国早期热泵经历了17年的发展历程,渡过一段漫长的起步发展阶段。其特点可归纳为:第一,对新中国而言,起步较早,起点高,某些研究具有世界先进水平。第二,由于受当时工业基础薄弱,能源结构与价格的特殊性等因素的影响,热泵空调在我国的应用与发展始终很缓慢。第三,在学习外国基础上走创新之路,为我国今后的热泵研究工作的开展指明了方向。 2、热泵应用与发展的断裂期(1966年~1977年) 1966年,随着史无前例的“文化大革命”的爆发,科技工作同全国各个领域一样遭受了空前的灾难。在此期间热泵的应用与发展基本处于停滞状态。如: 1966年~1977年间没有一篇有关热泵方面的学术论文报导与正式出版过有关热泵的译作、著作等。 1966年~1977年间国内没有举办过一次有关热泵的学术研讨会,也没有参加过任何一次国际热泵学术会议,与世隔绝十余年。 1966年~1977年间,全国高校一律停课闹“革命”,根本谈不上搞热泵科研。但是原哈尔滨建筑工程学院徐邦裕、吴元炜领导科研小组在1966~1969年期间在“抓革命、促生产”的指示下,坚持了LHR20热泵机组的研制收尾工作,于1969年通过技术鉴定,这是在“文化大革命”时期全国唯一的一项热泵科研工作。而后,哈尔滨空调机厂开始小批量生产,首台机组安装在黑龙江省安达市总机修厂精加工车间,现场实测的运行效果完全达到20±1℃,60±10%的恒温恒湿的要求,这是我国第一例以热泵机组实现的恒温恒湿工程。 鉴于上述事实,将热泵在这个时期的应用与发展的整个过程,定为热泵应用与发展的断裂期,是名副其实的,完全符合历史事实。 3、热泵应用与发展的全面复苏期(1978年~1988年) 改革开放政策使中国的国民经济重新走向发展之路,经济的发展为暖通空调提供了广阔的市场,也为热泵在中国的发展提供了很好的契机。因此,热泵的发展在经历了断裂期之后于1978年开始进入一个新的发展阶段。从文献统计看,1988年又出现一个文献数量变化的转折点,故将1978年~1988年间定为我国热泵应用与发展的全面复苏期。 3.1 中国暖通空调制冷界开始了解国外热泵发展动态 与世隔绝十余年后,中国的热泵发展又迎来了新时期,遇到的第一个问题就是要了解世界各国热泵

不为人所熟知的热泵技术之四系统节能量Word

不为人所熟知的热泵技术之四:谁偷走了热水机的节能量 江苏华扬新能源有限公司陈志强 空气源热泵性能系数(COP)的数值是热泵产品宣传推广的节能依据。但在实际应用过程中这些“标称”数据很高的热泵产品的实际表现有时并不尽如人意。许多工程的实际检测结果与标称值相差较大。那么,这是否是热泵厂家对机器性能造假,利用不切实际的性能系数来忽悠了消费者呢? 当然,不排除有少部分滥竽充数的厂家利用市场的不规范来混水摸鱼,以次充好,产品的制热量小、耗电量大,性能系数比较低,没有达到国家标准要求,节能效果自然达不到期望效果。但是,即使是对于性能合格、质量可靠的空气源热泵热水机产品,其工作系统的实际能耗也不是那么简单。机组工作模式、水泵能耗、水箱散热、热水管道散热等因素直接影响到了系统的实际能耗,有必要进一步加以分析。 一、影响热泵制热量的因素 1、实际热水系统的运行模式 如本系列之三“为什么循环热泵系统的水温不稳定”中所言,如果采取定温补水、循环加热的系统模式来制热水,由于系统中热泵机组总是在中高水温状态下工作,热泵实际性能系数将会比由冷水加热至热水的直热系统的理论性能系数下降20%以上。这是个很直接的损失,但直到今天,还是常常由于设计师的无知或者直热控制技术的缺乏,许多热水系统的节能效果因此而被确确实实地打了个折扣。 2、系统中循环水流量和水垢 本文以循环式商用机为分析对象,《商业或工业用及类似用途的热泵热水机》“GB21362-2008”(以下简称商用机国标)中明确:对于不提供水泵的热水机,实验室为其选配水泵,使循环水在机组名义制热量条件下,换热端温升5°。由于实际工程设计中管道阻力损失大小不一,在有的工程系统中循环水流量较小,换热端温升超过5°,换热量下降,从而使得机组的制热能力也会下降。 管道和换热器中水垢的增加会影响水流量,更会直接增加换热器热阻,减少机组制热量。所以在工作一定年限后热泵机组的制热能力会有所下降。水质越差的地方制热量的下降速度往往会越快。 3、不同地区气候的差异 如本系列“概述”中所言,同样一个产品选择提高5℃的环境温度工作,产品制热量可以增加5%-20%以上,尤其是冬季,制热量随气温的变化相当明显。有些设计方案中,

先进的节能技术综述

先进的节能技术综述 摘要:解放一种能源,就必须创新;正如,我们有丰富的海水,如果有一流的淡化技术,就不必再提节约用水一样!下面我们一起把人类发展历程简单分解——把复杂的问题简单化,是意识传播的基本原则! 主题词:节能技术;能源利用;国际先进水平 解放一种能源,就必须创新;正如,我们有丰富的海水,如果有一流的淡化技术,就不必再提节约用水一样!下面我们一起把人类发展历程简单分解——把复杂的问题简单化,是意识传播的基本原则! 在电能被广泛运用之前的时代是化学能时代,植物充当了转化器,把光能转化为我们可用的化学能,同时部分植物把光能储存为化石燃料。 然后,特斯拉把交流电带给我们,这就是我们目前所在的第二阶段。在这个阶段里,我们尝试着把各种形式的能量转化为电能,而绝大多数设备都是基于电能和化学能的。 下一阶段是我们要关注的,直接运用光能的时代,尽管我们的思维始终拉着我们把光能尽可能的转化为电能使用,但是我们如果要想实现突飞猛进,必须摆脱电能形式的束缚,基于光能直接设计新型原件和设备。光能设备将使我们走向统一,而不是二元对立。 下面要发现的是大统一。人类喜欢把自己特殊化,从而可以与外部世界进行比较,发现相同和不同,加以运用。而直接使用光能,可以让我们不再比较,光能无处不在。光能设备可以载入更多发现,把发现传播到光可以到达的任何地方。光能设备可以把人类从劳动中解放出来,实现自生产。光能设备的发现,将把人类带入新纪元。 设备的通用原理是,在能量的作用下,把输入转化为人类可用的输出。光能设备的基本原理是,在光能的作用下,把输入转化为人类可用的输出。 正如发现交流电一样突然,光能原件的发现更可能是突然出现的,而不是由量变到质变这样缓慢演变出来的。所以希望全人类共同擦亮眼睛,一同来发现基于光能的原件和设备。 能源是人类生存和发展须臾不可或缺的资源,是工业化和现代化的粮食和血液。在人类历史的几百万年间,工程科学技术不断发展,推动人类对能源的利用

几种热泵的应用发展及技术特点分析

几种热泵的应用发展及技术特点分析 (家电英才网) 热泵作为提供热量的主要设备之一,以其对环境友善及节约能源等特点,在许多领域得到了广泛的应用。在本文中。作用首先回顾了热泵的发展历史,介绍了热泵的种类、特点、使用场合及条件,对几种主要热泵在应用过程中存在的问题进行了讨论,分析了热泵技术的研究进展、应用现状及相关新技术。 1热泵与制冷机 热泵是一种以冷凝器放出的热量对被调节环境进行供热的一种制冷系统。就热泵系统的热物理过程而言,从工作原理或热力学的角度看,它是制冷机的一种特殊使用型式。它与一般制冷机的主要区别在于: ①使用的目的不同。热泵的目的在于制热,研究的着眼点是工质在系统高压侧通过换热器与外界环境之间的热量交换;制冷机的目的在于制冷或低温,研究的着眼点是工质在系统低压侧通过换热器与外界之间的换热; ②系统工作的温度区域不同。热泵是将环境温度作为低温热源,将被调节对象作为高温热源;制冷机则是将环境温度作为高温热源,将被调节对象作为低温热源。因而,当环境条件相当时,热泵系统的工作温度高于制冷系统的工作温度。 2热泵的由来及主要应用型式 2.1热泵的由来 随着工业革命的发展,19世纪初,人们对能否将热量从温度较低的介质“泵”送到温度较高的介质中这一问题发生了浓厚的兴趣。英国物理学家J.P.Joule提出了“通过改变可压缩流体的压力就能够使其温度发生变化”的原理。1854年,W.Thomson教授(即大家熟知的LordKelvin勋爵)发表论文,提出了热量倍增器(Heat Multiplier)的概念,首次描述了热泵的设想。 当时,热泵供暖的对象主要是民用,供暖需求总量小,特别是对由于采暖方式及其对环境的影响尚没有足够的意识。人们采暖的方式主要是燃煤和木材,因而,热泵的发展长期明显滞后于制冷机的发展。 上世纪30年代,随着氟利昂制冷机的发展,热泵有了较快的发展。特别是二战以后,

热泵技术的发展及存在问题

万方数据

万方数据

万方数据

热泵技术的发展及存在问题 作者:乔凤杰, 徐砚, QIAO Feng-jie, XU Yan 作者单位:哈尔滨电力职业技术学院,哈尔滨,150030 刊名: 信息技术 英文刊名:INFORMATION TECHNOLOGY 年,卷(期):2011(2) 被引用次数:1次 参考文献(8条) 1.徐伟地源热泵技术发展策略和工程应用分析[期刊论文]-工程建设与设计 2008(01) 2.李元哲空气源热泵在建筑节能中的应用[期刊论文]-建设科技 2010(04) 3.李景善空气源热泵蒸发器表面霜层生长特性试验研究[期刊论文]-制冷学报 2010(01) 4.GB 50366-200 5.地源热泵系统工程技术规范 2005 5.温玮地埋管地源热泵系统的设计概述[期刊论文]-福建建筑 2010(02) 6.刘慧海水热泵对海水温度影响分析[期刊论文]-环境科学与管理 2010(01) 7.毛大庆城市循环经济建设中的污水热能资源开发与水资源再生一体化研究[期刊论文]-生态经济 2006(08) 8.郭敬红大庆地区应用污水源热泵的可行性分析[期刊论文]-制冷与空调 2008(06) 本文读者也读过(10条) 1.张原.ZHANG Yuan热泵技术发展趋势探讨[期刊论文]-科技情报开发与经济2009,19(23) 2.胡连营.HU Lian-ying热泵技术与可再生能源的开发利用[期刊论文]-可再生能源2007,25(1) 3.蔡泽宇热泵技术的可持续发展与节能环保道路[期刊论文]-辽宁建材2008(6) 4.刘学飞.LIU Xue-fei热泵技术在火电厂节能中应用的探讨[期刊论文]-冶金动力2010(6) 5.刘恩海.何媛热泵技术及其发展与应用[期刊论文]-内江科技2009,30(2) 6.吕太.刘玲玲.LV Tai.LIU Ling-ling热泵技术回收电厂冷凝热供热方案研究[期刊论文]-东北电力大学学报2011,31(1) 7.杨蕾.汪南.朱冬生热泵技术及其在工农业生产中的应用[会议论文]-2008 8.于海泉热泵技术在萨南油田的应用[期刊论文]-油气田地面工程2006,25(3) 9.范亚云.夏朝凤.李军凯.韦小岿.宋洪川热泵技术在太阳能利用中的实验研究[期刊论文]-太阳能学报 2002,23(5) 10.李彬.张莉.曾立春.LI Bin.ZHANG Li.ZENG Li-chun现代空调中热泵技术的应用与发展[期刊论文]-包钢科技2009,35(2) 引证文献(1条) 1.刘凤丽海水源热泵项目排水对海域生态环境的影响[期刊论文]-现代农业科技 2012(12) 本文链接:https://www.360docs.net/doc/5e14565106.html,/Periodical_xxjs201102035.aspx

空气源热泵技术与应用

空气源热泵技术及其应用 建筑工程学院建筑环境与能源应用工程 B132班游诚 目录 摘要 --------------------------------------------2 关键词 --------------------------------------------2 前言 --------------------------------------------3 1.空气源热泵的简介 ----------------------------------4 1)概念 ----------------------------------------4 2)特点 ----------------------------------------4 3)发展历史 ----------------------------------------5 4)优点 ----------------------------------------6 5)工作原理 ----------------------------------------6 2.空气源热泵的应用 -----------------------------------9 1)空气源热泵在我国的应用 ------------------------9 2)空气源热泵的技术性分析 ------------------------9 3)空气源热泵的经济性分析 ------------------------10 4)空气源热泵的能量利用分析 ------------------------10 5)空气源热泵与能源价格的关系 ----------------------10 参考文献 -------------------------------------------11 word完美格式

(完整版)水源热泵节能技术标准

《水源热泵机组节能产品认证技术要求》 (申请备案稿) 编制说明 中标认证中心 2006年10 月

1.背景 今年上半年全国单位GDP能耗同比上升0.8%,全年实现4%的节能目标形势严峻。为了贯彻党的十六届五中全会精神,落实科学发展观,建设资源节约型社会,通 过政府机构率先节能的表率作用,充分发挥政府采购制度的政策功能,极大的推进了节能产品的广泛使用。据悉国家将出台节能产品政府采购强制措施,使整个社会逐步 形成节能、节水等节约的消费模式。为了规范市场、引导企业技术进步,提高产品的 市场竞争力,鼓励消费者选择高效产品,实施节能产品认证制度,是一条有效的途径。 水源热泵机组是一种采用循环流动于共用管路中的水、从水井、湖泊或河流中抽取的水或在地下盘管中循环流动的水为源,制取冷(热)风或冷(热)水的设备;包 括一个使用侧换热设备、压缩机、热源侧换热设备,具有单制冷或制冷和制热功能。 水源热泵机组按使用侧换热设备的形式分为冷热风型水源热泵机组和冷热水型水源 热泵机组。按冷(热)源类型分为水环式水源热泵机组、地下水式水源热泵机组和地 下环路水源热泵机组。 为了规范水源热泵机组的安全性能和质量性能,国家对水源热泵机组实施了CCC 认证制度和生产许可证制度,但在能效方面尚未出台标准。然而随着近几年水源热泵 行业的高速发展,社会及消费者对水源热泵机组的能效性能的关注度大大提高,而且我们国家的水源热泵机组也存在着巨大的节能潜力,因此制定水源热泵机组的节能认 证技术要求、尽快开展水源热泵机组节能产品认证成为贯彻我国的节能中长期规划和 适应市场需求重要工作,2005年中标认证中心正式将其列入新项目计划。 2.工作过程综述 2.1成立工作组 2006年初项目正式启动,2006年3月正式组成技术要求起草小组,负责技术要 求的具体编写工作。 技术要求起草单位: 组长单位:中标认证中心 组员单位: 1、合肥通用机械产品检测所 2、美意(浙江)空调设备有限公司 2.2技术要求制定原则 为使技术要求能够满足科学、规范地开展认证工作的需要,客观反映我国水源热

地源热泵技术简单介绍.

地源热泵 地源热泵的利用是国土资源部大力推广的一种新型环保、节能技术,具有再生、清洁、安全、高效的特点。 地源热泵系统的利用分地埋管地热源系统、地下水地热源系统和地表水地热源系统。 量转移到建筑物内 , 一个年度形成一个冷热循环 . 是最具有发展前景的一种形式。但对于该项技术的使用,受限制较多(需要当地土地资源部门对当地土地资源的评估、批准 ,而且其初步的投资较高。 2. 地表水地热源系统,即污水源热源系统。城市污水来源广泛,汇流面积大,污水原水流量具有小时变化规律明确、日流量相对稳定、随着城市规模的扩大而呈逐年递增的趋势。利用污水热泵空调系统不仅可以使污水资源化,更是改善我国供暖以煤为主的能源消费结构现状的有效途径。城市污水有三种形式:原生污水、二级再生水和中水。原生污水是指未经过任何物理手段处理的污水。运用原生污水源热泵空调系统相比于二级再生水和中水热泵空调系统的初投资及运行费用低。城市污水温度变化幅度较小,与环境温度相比,表现为冬暖夏凉,污水温度在冬季通常为13℃ ~17℃,在夏季为 22℃ ~25℃与河水及空气相比较,城市污水在温度在冬季最高、夏季最低,全年波动最小。污水的温度在城市可以利用的热能中是最多的。而且在能量消费密度越高的城市中其蕴藏的热量也越大。虽然污水的热赋存量很大,却不适用于产生动力,仅适用于 50℃一下的低温用户。

由于城市污水具有比较稳定的流量和适宜的温度, 污水源热泵系统能够高效稳定、安全可靠的运行, 可使夏季室温保持在 21℃ ~26℃, 冬季可达 18℃ ~24℃ . 城市污水热源泵,容易安装。一套设备可以实现夏季供冷、冬季供热,设备利用率高,总投资额为传统空调的 60%。 该技术已在北京、秦皇岛、哈尔滨等地开始运用。 下面是污水热源泵系统原理图: 但该项技术对于污水的需求量非常大,受水资源的限制。 3. 地下水热源系统(水源热泵常常被人们赞誉为“绿色空调” 。水源热泵就是以地下水作为冷热 " 源体 " ,在冬季利用热泵吸收其热量向建筑物供暖,在夏季热泵将吸收到的热量向其排放、实现对建筑物供冷。传统的暖通空调系统需要很多辅助系统或设备来完成一个完整的暖通空调功能,如冷却塔。而水源热泵系统只是通过与地下水的热交换来完成制冷或制热的效果。只应用一个硬件系统, 通过在不同季节进行冷凝器和蒸发器的转换,就可以完成制冷与制热功能的转换。该向技术已在我市部分楼盘开始使用。

建筑节能检测方法综述

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的27.5%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架空地板)的

热泵技术与应用

热泵技术方案 摘要:介绍了蒸汽压缩式热泵和吸收式热泵的原理、基本构成、工作过程及计算方法,结合工程应用进行了经济效益分析。通过热泵回收低温余热是一项重要的节能措施,技术上可行,经济上合理。 1、背景 在石油、化工、电力、冶金、纺织、制药等行业的工艺生产过程中,往往会产生大量30~60℃的废热水,这些的低品位热源若不加以利用,不仅造成环境污染,而且还会浪费大量能源。如果这些行业有工艺或采暖用热需求,可以配备热泵,回收利用工艺产生的废热,达到节能、减排、降耗的目的。 2、热泵原理 热泵技术是根据逆卡诺循环原理,将低温热源(如城市污水、各种废水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的。目前使用的热泵主要有蒸汽压缩式热泵和吸收式热泵两种。 2.1蒸汽压缩式热泵 (1)基本构成 蒸汽压缩式热泵主机主要有以下四大部分:压缩机、膨胀阀、蒸发器、冷凝器,同时还有过滤器、储水箱等辅助部件。 压缩式热泵采用电能驱动,通过制冷剂经压缩后状态的变化,把自然界的空气热能吸收,对冷水进行加热。 (2)工作过程 蒸汽压缩式热泵机组系统工作过程如下: ●处于低压液态循环工质(如氟利昂R22及R134a)经过蒸发器,在蒸发器中工质从低温热源吸收热量变成低温、低压蒸汽进入压缩机。 ●蒸汽工质经过压缩机压缩、升温后,变成高温、高压的蒸汽排出压缩机。 ●蒸汽进入冷凝器,在冷凝器中将从蒸发器中吸取的热量及压缩机做工所产生的那部分热量传递给冷水,使其温度提高。工质经过冷凝器放热后变成液态。 ●高压液体经过膨胀阀节流降压后,变成低压液体,低压液态工质再次进入蒸发器,由此不断循环工作。 整个过程就象是热量搬运一样将低温热源中的热量连续不断的搬运至高温热源(水)中去。

热泵技术及应用

第8章热泵技术及应用 热泵是以冷凝器放出的热量来供热的制冷系统,是近三十年来迅猛发展的一种高效的节能装置。由于热泵花费少量的驱动能源,就可以从周围环境中提取低品位热量转化为有用的热量,被广泛应用于建筑空气调节、石油化工供能、农副产品加工、化工原料处理、中草药材干燥、轻工产品生产等领域中。热泵还可以采用各种新能源和可再生能源作为驱动能源,合理匹配利用能源,在节约能源的同时实现了社会的可持续发展。正是因为热泵同时兼顾节约能源、环境保护和持续发展而倍受人们关注。 8.1 热泵的基本知识 8.1.1 热泵的发展与现状 热泵的理论最早可追溯到1824年法国物理学家卡诺(S. Carnot)发表的逆卡诺循环。世界上第一个提出热泵装置的人是英国的著名科学家开尔文(L. Kelvin),开尔文早在1852年就描述了他的热量倍增器的设想。如图8—1所示,该装置由两个气缸和一个储气筒组成,气缸活塞由蒸汽机驱动,储气筒起换热器的作用。室外环境的空气被吸入气缸,膨胀降温后排至室外的储气筒,在储气筒中吸收环境热量温度回升,然后进入排出气缸被压缩至大气压力排出。显然排出空气的温度高于环境温度,被送入需要供暖的建筑物。遗憾的是,限于当时的工业技术水平,开尔文没有制造出他的热泵装置。

图8-1 卡尔文的“热泵”设想简图 历史上,同样是制冷系统的制冷机的发展远远领先于热泵,主要的原因是人类获得冷的方式比较少,而获得热的方式有很多。如化石燃料直接取暖、锅炉采暖、电加热取暖等。 世界上第一台热泵装置是1927年在英国安装试验的一台家用热泵,它是用氨作为工质,外界空气作为热源,用来采暖和加热水。当时人们已经认识到在热泵装置中,通过简单的切换循环的方向来实现冬季供热、夏季供冷的可能性,以及合理匹配废热、驱动能源、供热和制冷等综合利用的问题。 随后,美国、瑞士、德国和日本等国家也开始研究和使用热泵装置。1931年,美国洛杉矶一间办公大楼将制冷设备用于供热,供热量达1050 kW,性能系数达2.5,这是世界上最早应用的大容量热泵。1937年,日本在大型办公大楼中安装了两台194 kW的压缩机驱动并带有蓄热箱的热泵系统,以井水作为低温热源,性能系数达4.4。1939年,瑞士苏黎世安装了一台热泵系统,向市政厅冬季供暖夏季制冷,以河水作为热源,R12作为工质,采用离心式压缩机,有蓄热系统和辅助电加热系统,供热量为175 kW,性能系数为2,输出水温为60℃。此后受第二次世界大战的影响,热泵的发展出现第一个停滞期。

精选热泵技术实习报告范文

精选热泵技术实习报告范文 通过实习一是可以检验一下我们在校学习掌握理论知识的程度,一是可以使我们得到锻炼,提升我们的个人能力,同时减少我们适应社会角色的时间。热泵技术实习报告范文奉上,愿实用~ 动力系专业:供热通风与空调工程技术 班级:供热 姓名:xxx 新型热泵技术实习报告每个毕业生都必须有一定的实习阶段,通过实习,可以让我们更加了解自己和掌握自己,给自己今后的就业和工作选择提供最好的教材。我很看重也很珍惜这次来之不易的实习机会,我用心去经营这份人生的第一份特殊任务,好好把握,踏踏实实认认真真的完成了我的实习。 一.公司概况天津市金大地能源工程技术有限公司是一家始终致力于清洁环保能源开发应用的专业性高新技术企业,集科研、生产、经营与一体。形成了集设计、安装、调试和售后服务的一整套体系,向客户提供节能、环保、可再生能源技术应用项目的整体解决方案。目前已完成了地源热泵项目工程40多万平米。主营业务为:世界首创,国际领先的"城市原生污水源热泵空调"成套专利技术,在可再生能源利用上开创了利用城市原生污水源作为热泵冷热源为建筑物供 暖空调的应用先例。专利产品水煤浆生产、水煤浆制浆设备、水煤浆锅炉开发应用;地下水综合开发与合理利用为主业;在节能、水资源循

环利用、环保等方面取得了开创性的成果,得到了环保部门、建设部门的大力支持。 二.实习主体时间飞逝,转眼间我将完成我的大学生活,迎来毕业前的又一次挑战---实习。这次,我实习的内容是有关污水源热泵、水源热泵、地源热泵的方案设计以及设备的选型等。因为这三种热泵系统为本专业新型技术,课堂上老师传授的相关知识较少,相关书籍也比较缺乏,因此对于初学者来说,具有一定难度的。刚进入公司的前一个星期,公司领导安排上午工作,熟悉各个系统,下午让技术部相关人士给我授课。使我在短短的一星期内,就已经将各个系统的关键技术、系统组成、方案报价、机房布置等相关知识了如指掌。下面就先简单介绍一下我的所获所得吧。 一、污水源热泵 (1)污水源热泵系统第一代系统有防阻机(哈工大的专利),因为第一代产品技术还不太成熟,产品有一定的瑕疵,根据用户反映运行效果也不太好,在这里就不再聱述了。第二代系统如图1所示,采用闭式污水源热泵系统,污水先通过流道式污水换热器将热量或冷量传递给清洁水(起中介导热作用,又称中介水),中介水再进入热泵机组进行冷热量转换。全系统分为三个子系统:(1)污水开式子系统(2)中介水闭式子系统(3)末端循环水子系统。现在也已经有了第三代产品,就是污水直接进热泵机组(污水只是经过一下初过滤--全自动液体过滤器),不再经过换热器,当然也没有换热器了。也许会有好多人担心污水会腐蚀、堵塞机组或者在机组中结垢,但请相信科学的发

热泵技术及其应用的综述

热泵技术及其应用的综述 热泵机组由于其具有节能、环保及冷暖联供等优点,目前在国内广泛应用。本次收集了在全国各类报刊杂志、年会资料集及论文集有关热泵技术及应用这方面的论文共207篇。在此作为一个专题研讨,供在座的各位教员和同学们参考。有关问题综述如下: 一、空气源热泵 空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。热泵空调器已占到家用空调器销量的40~50%,年产量为400余万台。热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到 20~30%,而且应用范围继续扩大并有向此移动的趋势。 1、关于空气源热泵能耗评价问题 为了评价和比较热泵机组与其它冷暖设备的能耗,大约有30篇论文涉及此问题。介绍了适用于热泵机组能耗分析的理论与软件,根据空调冷负荷、室外干球温度、热泵出水温度等参数,采用温频数法,求解热泵供冷全年能耗。在求解热泵冬季能耗时,除考虑空调

热负荷、热泵出水温度、室外干球温度外,还把室外相对湿度(即温湿频数)考虑到热泵供热性能中,软件经工程实例计算,与实际耗能量有较好的吻合,为能耗评价提供了一种方法。 2、风冷热泵机组的选用 目前设计选用风冷热泵冷热水机组,常根据计算得到的冷热负荷,考虑同时使用系数及冷(热)量损耗系数后,按机组铭牌标定值选择机组台数。由于空气源热泵机组的产冷(热)量随室外参数的改变而变化,这种选择方法可能造成机组选得过大,造成浪费;或者选得过小,使供冷(热)量不足,达不到使用要求。为此建议采用空调的逐时冷热负荷和热泵机组的供热供冷能力的逐时变化曲线对照选择,会得到比较满意的结果。 3、热泵机组冬季除霜 空气源热泵冬季供热运行时,最大的一个问题就是当室外气温较低时,室外侧换热器翅片表面会结霜,(需要采取除霜措施)。根据有关文献摘录,经二年的现场跟踪测试,其结果是除霜损失约占热泵总能耗损失的10.2%,而由于除霜控制方法问题,大约27%的除霜功能是在翅片表面结霜不严重,不需要除霜的情况下进入除霜循环的。目前常用的一些方法,或多或少都存在一些问题,如发生多

建筑电气节能技术综述

建筑电气节能技术综述 发表时间:2017-11-20T10:51:39.027Z 来源:《建筑学研究前沿》2017年第17期作者:李翔宇[导读] 目前科学技术都在持续的提升,因此,在未来一定会出现更加先进的设备,使电气节能效果变得更加有效,并应用于建筑电气节能当中。 白山电力规划设计院吉林白山 134300 摘要:科技在进步,时代在变化,要想适应时代的发展,那么必须要重视向节约型社会进行逐渐转变,对于社会发展来说,能源起到了非常关键的支撑作用。随着人们生活水平在持续的提升,目前在日常的生活中的方方面面都离不开电气设备,因而他们对电气能源的需求也在持续变高,这就要求不但能够满足人们生活的基本需求,同时还应当尽量的减少资源浪费,从而降低对环境的破坏。所以,如何提高目前国内建筑电气节能技术是当前需要迫切解决的问题。这片文章主要对现在的建筑电气节能技术开展了简单的综述,同时也对当前存在的突出问题进行分析,提出了一些应对的措施和建议。 关键词:建筑电气;节能技术;能源 1建筑电气节能的重要性 就目前来看,能源短缺问题非常严重。我国资源丰富,但是人口基数比较大,能耗非常大,这些情况的存在导致人均资源占有量非常少,和其他能源大国进行对比而言,我国属于能源短缺非常严重的国家之一,人均占有率仅为全球平均水平的一半。针对这种现状,我国,每年都需要从国外进口大量的能源,国内的能源不能够满足自身的需求。近些年以来,我们国家正在快速的发展,建筑数量和规模都在不断地上升,这种情况就导致建筑能耗持续增多。根据有关部门的统计数据可知,目前国内的单位建筑面积所消耗的能源通常都比发达国家高出三倍,并且这一数据还在不断地上升。所以,开展建筑节能技术的研究工作是非常有必要的。在建筑中,通常电气设备的能耗都很大,是所有能耗最为主要的一部分,因此,要想实现节能,必须要从电气节能着手。对于建筑来说,照明系统一般在所有电气能耗中占很大的比重,必须要对这种情况给予高度的重视。就目前来看,所采取的措施通常都是更多的利用自然光,减少电力能源的消耗,并且这种方式也得到了业界的广泛认可。由于自然光源不仅能够降低能耗,同时也不会对周围环境产生影响,应当尽量的将其应用到照明系统当中。对于那些不能有效利用自然光源的部分,则可以通过采光与照明相结合的方式,这样也能够有效降低能耗。利用自然光源在实现照明的同时,还可以提高室温,这对于建筑整体节能来说具有非常重要的实际意义。 2建筑电气节能技术的具体应用 2.1变压器节能技术 要想能够使能耗降到最低的程度,需要合理的挑选配电系统。对于一个建筑的配电系统来说,变压器所需要的能耗非常大。针对这种情况,需要对变压器节能给予一定的重视。一般我们所说的变压器节能其实就是指通过采取一些有效的措施,在保证其正常工作的基础上,使能耗降到最低。 2.1.1科学合理选择变压器台数和容量。一般变压器的数量越多,那么就会需要更多的维护费用和能源消耗,因此,在实际选择的时候,需要在容量和数量方面进行综合考虑,最终做出科学的选择,尽量使能耗降到最低,同时也能够保证变压器能够一直处于稳定运行的状态。对变压器的工作效率产生影响的因素多种多样,其中比较重要的两个部分就是损耗和负荷。一般情况下,变压器自身的负荷率维持在30~75%左右,这属于经济运行区,要想使变压器的运行效率达到最高,则需要使负荷率保持在50~60%。所以,如果负载一定,那么功率因数越大,相应的运行效率也会随之升高。 2.1.2选用节能型变压器 对于新建的建筑应尽可能选择节能效果较好的变压器,笔者建议可采用如下几种型号的变压器:SL7型、S9型以及SGB11-R型。其中SL7型变压器属于无励磁调压型,其能够有效地降低空载及短路损失。2.2根据有关部门的统计数据表明,目前国内的照明用电量占国内总用电量的11%左右,就目前来看,大多数地区都在还使用白炽灯,众所周知,荧光灯的耗电量要比白炽灯节省很多,所以,国内目前的照明节能潜力非常大。要想使建筑照明系统实现有效的节能应当从下面几个方面入手: 2.2.1使用带有声光控及定时调压的照明系统 对于那些长时间需要照明的区域,可以根据人流量大小来对亮度进行调整,这种情况下就可以选择调压照明系统,从而实现一定程度的节能。2.2.2气体放电灯启动设备。对于照明系统来说,一般都是由很对不同的电子器件构成,而大多数人都会忽视这一点,他们仅关注系统整体。对于气体放电灯,合理的运用镇流器能够对照明节能起到非常重要的作用。而在镇流器的种类也很多,其中电子镇流器具有很多优点,并且能耗较低,所以能够实现很好的节能效果,然而价格非常昂过,这使得很难在实际中得到广泛应用。而节能型电感镇流器不仅在性能上满足用户需求,价格相对也比较合理,节能效果也很明显。 2.2.3合理选择照明方式 在对建筑照明系统进行设计的时候,首先要考虑利用自然光,这样才能够有效的降低能源的损耗,首先,对于那些比较靠近室外的门窗,可以选用一些比较透光的材料,这样就可以很好的利用自然光,其次,尽可能少使用一般的照明系统,可以考虑采用照明均匀及混光照明等系统,这样能够使灯光的利用率最大化,进而达到节能的效果。 2.3动力设备节能 在建筑电气中,较为常用的电气动力系统主要有以下几种:风机、电梯、水泵等。这些系统基本上都是由生产厂家直接提供的。为此,对于这些系统的节能只能从运行过程中着手。首先,在系统运行过程中,应尽量减少电机空载和轻载运行;其次,可采用软启动器。该设备从启动到运行,其电流变化不超过3倍,并且能够确保电网电压的波动在指定的范围内。需要注意的是,在使用该设备时,应做好散热及通风措施。 结论:总体来说,在进行建筑节能设计的时候,会涉及到各种不同的工程,非常复杂,这需要对当前的节能技术进行不断地改进,尽可能降低建筑电气的能耗。只有做到这些,才可以真正的降低能耗。目前科学技术都在持续的提升,因此,在未来一定会出现更加先进的设备,使电气节能效果变得更加有效,并应用于建筑电气节能当中。

热泵技术

热泵技术(一) 热泵技术 1、将热量从低温环境传送到高温环境 我们都知道,在自然状态下,我们不能将外部寒冷环境中的热量带到更加温暖的室内环境中。同时我们也知道,科技的发展则是通过理论及相关设备将自然状态下不可能发生的事情实现。而这项将热量从冷环境传送到热环境的技术已存有150多年了。这项技术至今广泛运用于制冷设备的生产:即把热量通过制冷剂散发到外部更高温度的环境中去的设备。同样,这项技术也可运用于制热:即将外部环境中的热量传送到室内进行制热而无需燃烧燃料来产生热量。 2、如何使用热空气进行室内制冷 图例分为以下三个部分 步骤1 —获取热空气我们假设将35℃的热空气封闭到一个带可运动活塞的圆柱体内。 步骤2 —膨胀我们设法将此空气膨胀,比如膨胀为原体积的1.2 倍。这样则会造成空气温度的降低,因为: -空气膨胀后,初始状态时存在的热量散发给更大容积的空气。 -用于膨胀的能量从圆柱体内空气中提取(流体学理论)。 在此假设的膨胀容积下,空气温度从35℃下降到了13.3℃。 步骤3 —制冷 我们把这个空气温度为13.3℃的圆柱体转移到温度为26℃的室内。圆柱体内的空气则可以进行室内制冷。此图例说明了可以将更高温度的空气膨胀并转移,然后进行室内环境的制冷。 热空气制冷原理图 3、如何使用冷空气进行室内制热 图例分为以下三个部分 步骤1 —获取冷空气我们假设将10℃的冷空气封闭到一个带有可运动活塞的圆柱体内。 步骤2 —压缩我们将此空气压缩,使其容积减少20%,这样则会造成其温度升高,因为: —空气压缩后,初始状态时存在的热量加热更小容积的空气。

—用于压缩空气的能量传送到圆柱体内的空气中(流体学理论)。 在此假设的压缩体积下,空气温度由10℃上升到了36.4℃ 步骤3 —制热我们把这个空气温度为36.4℃的圆柱体转移到温度为20℃的室内,圆柱体内的空气则可进行室内的制热。 此图例说明了可以将更低温度的空气进行压缩并转移然后用于室内的环境制热。 冷空气制热原理 4、将热量从低温传送到高温的设备 能够将热量从低温环境传送到高温环境的设备有很多种,每种之间的物理及化学过程不一。然而市场上最为普通的设备则是利用前面所讲述的两种现象。这些设备的核心原理是一个封闭循环的回路,其中的介质被称为冷媒或制冷剂,它在此循环回路中被连续地压缩和膨胀。在每次被压缩和膨胀时(即每一轮工作状态),制冷剂将热量从低温环境中‘抽取’并传送到高温环境中。空气并未作为冷媒使用,尽管它不会造成污染且无成本。因为其每轮工作状态的热效率相当低。实际使用的冷媒是能够在吸收热量时蒸发,散发热量时冷凝的液体。液体形态的改变过程能够在每一轮工作循环中极大地提高热效率。将循环方式调转,这类设备即可用于供热也可用于制冷。 制冷剂:最早的制冷机器采用氨作为制冷剂,由于其毒性和腐蚀性强,已不再作为制冷剂使用。很多年以来,氟里昂一直作为制冷剂使用,但由于它会破坏臭氧层从而危害地球的生态环境已被禁止使用。目前使用最多的制冷剂为HCFC(含氢氯氟烷烃)。对于新型制冷剂的研究一直在进行中。目的是尽量减少对环境的污染同时提高其热效率。 5、热泵的主要构成组件 6、热泵及其系统的性能 (1)热泵的瞬时特性:只与压缩机有关的效率系数,它指热泵输出热量与压缩机所消耗电量之间的关系。 实际上,它指压缩机消耗1kW 电量所能获得的热量。比如说ε=4,那么则指1kW 的耗电量下可获取4kW 的热量。ε值主要取决于冷源与供热温度之间的温差:温差越小,ε值越大,即热泵效率越高。很明显,将热量从10℃的环境中传送到30℃的供热介质中远比传送到50℃的供热介质更加容易。 (2)与压缩机及相关设备关联的效率系统COP 此效率系数(由EN 255标准定义)指热泵的输出热量与热泵的压缩机及其它元件所消耗电量之间的关系。 COP与ε系数注解:ε值与COP值均由热泵厂家提供,某些厂家只提供其中一项,并且对于有效热能和所需能耗的关系较为含糊。下图为一个水/水换热型热泵的COP数据关系,

热泵技术及其在工业节能中的应用概要

1.能量系统的转换 1.1能量的品位 能量是物质的基本特性参数,它表示物质所具有的做功能力。热力学第一定律说明了不同形式的能量可以转换,但在转换过程中数量守恒,热力学第二定律指出,能量除了有量的多少外,还有品位的高低,不同品位的能量转变为功的能力不同。 物质的总能中可用能所占的比例代表了能量的品质。世界各国学者对“可用能”的理论和在各个领域中的应用进行了深入的研究和广泛的实践。1960年至1963年间,南斯拉夫学者郎特把能量分为可转变为技术功部分火用(Exergy)和不可转变为技术功部分火无(Anergic)。 火用表示热力系统中物质在任意状态下相对于环境零态(dead state)所具有的最大做功能力。火无表示物质所具有的总能中,相对于环境零态,不可转变为技术功部分。 根据火用的定义,对于开口系物质所具的比火用为: e = h-h0-T0(s-s0) (1-1) 根据火无的定义,物质流的物理火无为: e = h-e = h0+T0(s-s0) (1-2) 火用的概念是建立在热力学第一定律和第二定律基础上的热力参数,它表示能量在给定的环境条件下(P0、T0及其它参数),所能产生的最大有用功。它既可以表示能量的数量,又可以表示能量的品位及其可利用程度,火用的单位与焓的单位相同。 稳流工质可逆变化到环境状态,可设想由等熵和可逆等温两个过程组成。当忽略流动工质动能和位能的变化,由状态1可逆变化到环境状态零态(P0、T0)。 稳定物流火用的数值可以用工质热力性能参数表计算得出,也可用火用---熵图(e-s)表示。在实际过程中流入火用一定大于流出火用。即e x1>e x2+e w 。它同能量概念不同,进出设备的火用并不守恒,只会减少,其减少的数值就是火用损失,见公式(1-3)。Δe x表示能量的变质。e w 表示火用转变为机械功部分。 Δe x = e x1– e x2 -e w (1-3) 根据孤立体系熵增原理,对于整个体系来说,不可逆过程熵只会增加,即产生有用功的能力减少。在数量上熵的增加等于火用的减少。 流入火用等于流出火用和火用损失之和,称为火用平衡方程式: Δe x = e x2 + e w +Δe x (1-4)

相关文档
最新文档