Broadside Coupled-Line Balun

Broadside Coupled-Line Balun
Broadside Coupled-Line Balun

Broadside Coupled-Line Balun

Guan-Yu Chen, Jwo-Shiun Sun and Sen-Yi Huang

Department of Electronic Engineering, National Taipei University of Technology, Taiwan E-mail: s1669012@https://www.360docs.net/doc/5315186849.html,.tw and jss@https://www.360docs.net/doc/5315186849.html,.tw

YD Chen, Director, HTC

Antenna and Wireless System Integration Dept., High Tech Computer, Corp (HTC), Taiwan

Abstract-This paper presents a practical and simple broadside coupled-line balun with multi-layers profile microstrip line and broadside coupling structure to enhance the coupled coefficient and balanced output bandwidth. Designed broadside coupled-line balun design with a symmetric quarter wavelength coupled-line is developed to increase wider bandwidth efficiency and the return loss is better than the traditional planar marchancd coupled-lines balun. The structure of the designed balun is fairly simple, practical and easily fabricated. The measured results show good agreements with those analyses data.

I. INTRODUCTION Balun is a word derived from terms of balanced to unbalanced transmission lines that join a balanced structures and unbalanced structures transition [1]. Balanced line has two conductors with equal potential and 180 degrees phase difference, such as a twisted pair cable, coplanar strip line and slot line. Unbalanced line has just one conductor and a ground which unbalanced current flows through a ground plane, such as a coaxial cable and microstrip line. Baluns are used to connect balanced antennas like dipole antenna to unbalanced transmission lines like microstrip line or coaxial cable. And the balun will be the converter that allows the network analyzer to interface with the dipole antenna. The phase difference between the signals is 180 degrees. The balun must shift the phase of one of the signals so that the two signals are in phase and then combine the two signals to produce an unbalanced signal that the network analyzer can receive and interpret.

Balun can also be used in power or signal isolators along the transmission line to reject the flow of induced RF current. A Marchand balun having a pair of coupled lines of quarter wavelength for dividing and combining signals with the same amplitude and opposite phase. Form a mixer, and a par of mixers are combined with 90 degree and 180 degree splitters to provide circuits with superior rejection of specific spurious signals as well as RF and LO leakage over. Balun provides impedance transformation and matching network for structures transition [2]. For converting balanced input to unbalanced output or vice versa that is to enable transmission lines and equipment of different impedances to be matched and connected for maximum power transfer with minimum effects to the transmitting signal such as insertion loss, waveform distortion and minimum reflection of the signal applied in microwave applications as balanced mixers, push-pull amplifiers, antennas fed networks or doublers [3], etc.

In this paper, the design is a balun transformer that converts a single-ended (or unbalanced) signal to a differential (or balanced) signal. The balun is a printed metal pattern on a multi-layer circuit board in conjunction with several low cost chip capacitors and a low cost chip inductor for circuits integration and co-design. To make the balun compact, it is electrically lengthened through the use of LC loading, which reduces the required physical size. The balun transformer is a Marchand balun modeling that is implemented using printed broadside coupling transmission lines. The balun has a plurality of coupled transmission lines to improve tolerances to variations in PCB fabrication. The purpose of this thesis is to design and implement the match circuit of broadside coupled-line balun, which is widely applied on MIC (Microwave Integrated Circuit) of wireless communication systems. Balun are also a kind of coupler with power divider and matching impedance function circuit, the circuit is designed in this paper for ISM band working frequencies at 2.45GHz center frequency. AWR high frequency circuit simulate

program is applied to analysis its characteristics of 3dB coupler at 2.45GHz center frequency bands. Implementation of the practical passive circuits and the measured data on FR4 boars are shown in this paper. The simulated data and the measured results show good agreements.

II. DESIGN

Operation principle Based on Marchand model, two coaxial lines [4] consist of the characteristic impedances a and b . The outer conductors of these two lines are coupled to each other from the balanced lines of characteristic impedance ab and shielding connect to short with coaxial lines of a and b , respectively. The characteristic impedance of outer conductors a and b , open coaxial line of b with electrical length Z Z Z Z Z Z Z Z l β of a θ and b θ degree are designed at center frequency. The coupled coaxial transmission lines impedance consist of an open circuit stub and a short circuit stub in parallel with balanced load impedance .

Z L Z ()a L L Z Z j Z Z ?+=θθθsin cot sin 22 1

while and .

a b Z Z =L ab Z Z =

Enhanced technology The conventional microstrip coupled-lines balun [5] is ordinary in strong coupling coefficient by high even mode impedance, as shown in Fig. 1. Therefore, the gap in between the coupled lines of the balun by narrow space for coupling is not easy to be realized in microstrip configuration. The improved design [6] of the symmetric parallel connection has been proposed. In this paper, the coupled coefficient of the design is higher than the traditional ones and easy to implement for system integration. The symmetric multi-layers coupled-line balun is designed as shown in Fig. 2. The broadside coupling method to connect a symmetric broadside coupled-line with quarter wavelength to split the strong coupling of balanced output is applied. The bandwidth can be wider than that conventional method. The bandwidth and high even mode impedance is strictly solved in broadside coupling structure with multi-layers method in this design.

Figure 1. The planar Marchand microstrip balun with edge

coupling structure

Figure 2. The broadside Marchand coupled-line balun with

multi-layer structure

III. RESULT

Analysis: The method of momentum (MoM) to model the balun [7], through electromagnetic numerical fit is applied. Design procedure for balun [8] using an equivalent circuit model for the two coupled line sections. Marchand balun [9] is implemented in RF mixer experimental design and full wave spectral domain Galerkin method [10] to analyze the electromagnetic performances of the designed broadside quarter wavelength coupled lines balun are applied in this paper.

Measurement : The layout (Fig. 1) of unbalanced input with metal (w1=3mm), gap spacing (g=0.4mm), coupling spacing (s=0.15mm), balanced output with metal wide (w2=3mm), quarter wavelength (L2=16.8mm) and FR4 substrate high (h1=1.6mm) at center frequency 2.45GHz of microstrip edge coupled-lines balun are design, as shown in Fig. 3. And the proposed balun layout (Fig. 2) of unbalanced input with metal (w1=1mm, L1=34.4mm), gap spacing (g=0.4mm), broadside coupling spacing (h1=0.4mm), balanced output with metal wide (w2=1.8mm), quarter wavelength (L2=16.8mm) and FR4 substrate high (h2=1.6mm) at center frequency 2.45GHz of multi-layer broadside coupled-lines balun are design as shown in Fig. 4. Fig. 3 and Fig. 4 show balun of microstrip coupled lines balun and broadside coupled line balun and balun structures with full wave electromagnetic simulation and the measured data of return loss and balanced output are shown in Fig.5, Fig.6, Fig. 7 and Fig. 8, respectively. PNA E8362B network analyzer with full two ports TRL

calibration is applied for planar microstrip and broadside coupled-balun measurement. Fig. 5 and Fig. 6 shows the return loss bandwidth of planar balun is about 730MHz

referenced –10dB . Insertion loss of balanced output is about 0.75dB different offset. The return loss bandwidth is about 2004MHz

referenced –10dB and balanced output bandwidth of the broadside coupled line balun increased the effectively and insertion loss of balanced output is about 0.55dB different offset, as shown in Fig. 7 and Fig. 8.

IV. CONCLUSION

This paper presents an improved bandwidth of

a broadside structure balun. The design methodology shows an effective and simple way

to improve the narrow spacing and bandwidth of the conventional planar coupled-line balun. Full wave analysis with spectral domain Galerkin method was applied for the design and the results show expected agreements for realization.

ACKNOWLEDGEMENT

The authors acknowledge the Antenna and Wireless System Integration Department of High Tech Computer, Corp (HTC), Taiwan for sport the wireless technique and measurement environment.

REFERENCES

[1]. N. Marchand, “Transmission-Line Conversion

Transformers,” Electronics, V ol.17, pp.142-146, Dec.

1944.

[2]. G. Effective Microstrip Tapered Balun,” Microwave &

Optical Technology Letters,“ pp.344-346, Feb. 2004 [3]. S.A. Mass, Microwave Mixer s, 2nd ed., Artech House,

Inc., Boston, 1993

[4]. G. Oltman, “The compensated balun,” IEEE

Transactions on Microwave Theory and Techniques,

pp.112~119, March, 1966

[5]. S. Basu and S.A. Maas,” Design and performance of a

planar star mixer, “ IEEE Transactions on Microwave

Theory and Techniques, V o 41, Issue: 11, Nov. 1993,

pp2028-2030

[6]. J.S. Sun, G.Y. Chen, “A New Planar Coupled-Line

Balun for Microwave Applications,” Microwave

Journal, pp.306~308, May. 2002

[7]. K. Demarest, R. Plumb, and Z. Huang,” Modeling

baluns with the method of moments”, IEEE

Transactions on Microwave Theory and Techniques,

vol.40, pp.2190~2199, Dec. 1994

[8]. C.M. Tsai and K.C. Gupta, ”A generalized model for

coupled lines and its application to two layer planar

circuits, ” IEEE Transactions on Microwave Theory

and Techniques, vol.40, pp.2190~2199, Dec. 1992 [9]. S.A. Mass, Microwave Mixers, 2nd ed., Artech House,

Inc., Boston, 1993

[10]. Microwave Office User’s Guide of Applied Wave

Research, Inc, 2004

Figure 3. The planar Marchand microstrip coupled-line balun w1=3mm, w2=3mm, s=0.15mm, L1=34.4mm, L2=16.8mm, L3=10.8mm, h1=1.6mm and r

ε=4.4

Figure 4. The proposed broadside coupled-line balun

w1=1mm, w2=1.8mm, L1=34.4mm ,L2=16.8mm,

L3=10.8mm ,g=0.4mm, h1=0.4mm, h2=1.6mm and

r

ε=4.4

Figure 5. The measured return loss of planar microstrip balun

Figure 6. The measured balance outputs of planar microstrip

balun

balun

Figure 8. The measured balance outputs of broadside

coupled-line balun

硬件电路设计具体详解

2系统方案设计 2.1 数字示波器的工作原理 图2.1 数字示波器显示原理 数字示波器的工作原理可以用图2.1 来描述,当输入被测信号从无源探头进入到数字示波器,首先通过的是示波器的信号调理模块,由于后续的A/D模数转换器对其测量电压有一个规定的量程范围,所以,示波器的信号调理模块就是负责对输入信号的预先处理,通过放大器放大或者通过衰减网络衰减到一定合适的幅度,然后才进入A/D转换器。在这一阶段,微控制器可设置放大和衰减的倍数来让用户选择调整信号的幅度和位置范围。 在A/D采样模块阶段,信号实时在离散点采样,采样位置的信号电压转换为数字值,而这些数字值成为采样点。该处理过程称为信号数字化。A/D采样的采样时钟决定了ADC采样的频度。该速率被称为采样速率,表示为样值每秒(S/s)。A/D模数转换器最终将输入信号转换为二进制数据,传送给捕获存储区。 因为处理器的速度跟不上高速A/D模数转换器的转换速度,所以在两者之间需要添加一个高速缓存,明显,这里捕获存储区就是充当高速缓存的角色。来自ADC的采样点存储在捕获存储区,叫做波形点。几个采样点可以组成一个波形点,波形点共同组成一条波形记录,创建一条波形记录的波形点的数量称为记录长度。捕获存储区内部还应包括一个触发系统,触发系统决定记录的起始和终止点。 被测的模拟信号在显示之前要通过微处理器的处理,微处理器处理信号,包括获取信号的电压峰峰值、有效值、周期、频率、上升时间、相位、延迟、占空比、均方值等信息,然后调整显示运行。最后,信号通过显示器的显存显示在屏幕上。 2.2 数字示波器的重要技术指标 (1)频带宽度 当示波器输入不同频率的等幅正弦信号时,屏幕上显示的信号幅度下降3dB 所对应的输入信号上、下限频率之差,称为示波器的频带宽度,单位为MHz或GHz。

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图, 了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件 作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块, 能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。要掌握分析常用电路的几种方法, 熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路, 再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡, 还是限幅削波、整形、鉴相等。 2?直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3?频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4?时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图1 所示,其中(a )表示一般的阻值固定的电阻器,(b )表示半可调或微调电阻器;(c )表示电位器;(d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在R 的后面再加一个说明它有调节功能的字符“ P ”。

调频广播发射天线应用与发展

调频广播发射天线应用与发展 一调频广播发射天线 但Hr的高度也受到一定条件的限制,一是高塔的造价较高,二是不允许引起对其它FM台的同频邻的干扰。应该说,一个调频台们有效辐射功率(ERP)及发射天线的高度(HR)和使用的频率一样、都要得到频率主管部门的批准,或者说,在作调频广播规划时、ERP和Hr两者一起考虑。 调频广播在我国可按电台的要求选用水平极化波、垂直极化波或者园相化波。因为一套调频广播节目所占用的频带相对较窄,调频天线的频带可以做的较宽。所以当一个电台需要播出几套调频节目时、往往通过一个多工器用一副天线完成多套节目的发射、这也是人们常说的一塔多频、或双频供塔。在实现一塔多频的基础上应当对该天馈线系统的带宽及功 率容量提出相应的要求。 二、常用的几种调频天线 调频广播电台可以根据自己的的节目套数带宽、友射机的功率、天线极化方式、塔高及其结构尺寸等条件、以及覆盖范围的要求、选用不同形式的发射天线。目前对小功率的调频台电气性能比较好的、比较常用的天线有以下几种。

1蝙蝠翼天线 蝙蝠翼天线无论在调频台还是电视台都普遍采用这种发射天线、其外形及馈电方式如图1--1所示。它是一种水平极化天线,频带转宽,87---08MHZ风荷载较小、结构比较简单。它是每一层都有4个振子翼相互垂直的安装在桅杆的四周形成两对正交 的对称振子。因此在水平面内它基本做无方向性辐射。由于塔的桅杆直径不大一般在0、1--0,2所以该天线的水平面方向的园度相当好约1-2DB为获得垂直面内较强的方向性、往往系采用多层的蝙蝠翼天线。其层数根据增益需要及桅杆的机械强度等因素确定。中小功率调频台一般用2--4层、多层蝙蝠翼天线的相对增益可按下式估箅: 蝙蝠翼振子的馈电方式有几种图b示是其中的一种、每个振子翼都以一根特性阻杭为75欧的分支电缆馈电、分支电缆的芯线通过一片T型的跳接铜片与振子翼的中心馈电点相接连、电缆馈电头的导体接于桅杆之上。所有的分支电缆的另一端接功率分配器也是通常大家叫的变阻器的输出端口,最后与与主馈线相连。同一层的4个振子翼的恍馈电功率电流幅值、是相等的、但相邻的振子翼的馈电流有90度的相位差即采用90度旋转相位差馈电、这是靠所用的4根分支电缆长度不同彼此相差四分之一拉木那来实现的。采用这种馈电方

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

功放后级处理电路OTL.OCL.BTL

OTL、OCL、BTL电路及其判断方法 OTL(Output Transformer Less)电路,称为无输出变压器功放电路。是一种输出级与扬声器之间采用电容耦合而无输出变压器的功放电路,它是高保真功率放大器的基本电路之一,但输出端的耦合电容对频响也有一定影响。 OTL电路的主要特点有: 1采用单电源供电方式,输出端直流电位为电源电压的一半; 2输出端与负载之间采用大容量电容耦合,扬声器一端接地; 3具有恒压输出特性, 4允许扬声器阻抗在4Ω、8Ω、16Ω之中选择, 5最大输出电压的振幅为电源电压的一半,即1/2Vcc,额定输出功率约为/(8RL)。 OCL(Output Condensert Less)电路,称为无输出电容功放电路,是在OTL电路的基础上发展起来的,与OTL相比无输出电容,低频特性好。 OCL电路的主要特点有: 6采用双电源供电方式,输出端直流电位为零; 7由于没有输出电容,低频特性很好; 8扬声器一端接地,一端直接与放大器输出端连接,因此须设置保护电路; 9具有恒压输出特性; 10允许选择4Ω、8Ω或16Ω负载; 11最大输出电压振幅为正负电源值,额定输出功率约为/(2RL)。 12需指出,若正负电源值取OTL电路单电源值的一半,则两种电路的额定输出功率都是/(8RL)。 BTL(Balanced Transformer Less)电路,称为平衡桥式功放电路。它由两组对称的OTL 或OCL电路组成,扬声器接在两组OTL或OCL电路输出端之间,即扬声器两端都不接地。

BTL电路的主要特点有: 13可采用单电源供电,两个输出端直流电位相等,无直流电流通过扬声器 14与OTL、OCL电路相比,在相同电源电压、相同负载情况下,BTL电路输出电压可增大一倍,输出功率可增大四倍,这意味着在较低的电源电压时也可获得较大的输出功率 15但是,扬声器没有接地端,给检修工作带来不便。 功率放大器电路形式的判断: 可根据功放对管的输出端与扬声器的接法来判断其电路结构形式。 ·OTL功放电路的输出端的直流电位为电源电压的一半,扬声器一端接地,另一端通过大容量耦合电容与功放输出端相接; ·OCL功放电路采用双电源供电,使其输出端的直流电位为零,扬声器一端接地,另一端直接与功放输出端相接; ·BTL功放电路采用两个功放对,扬声器直接连接在两个功放对的输出端,不需要耦合电容。 功放后级电路的分类(OTL,OCL,BTL)特点介绍 功放前级关心的是增益,后级关心的则是带负载能力。通常的扬声器阻抗都是8欧,若要产生10W的输出,后级的电流输出能力就必须大于1A。就这一点,集成运算放大器就不能胜任。所以必须加接电流放大级。这些电流放大级的电压增益甚至不到1,一般都是使用射级跟随器。功放后级的输出方式后变压器输出、

用Multisim设计调频发射机(发射系统)

用Multisim设计调频发射机 目录 摘要 一.设计要求 (2) 二.设计的作用、目的 (3) 三.设计的具体实现 (3) 1.系统概述 (3) 2.单元电路设计、仿真与分析 (4) 2.1振荡级 (4) 2.1.1调频波的产生...... 错误!未定义书签。 2.1.2振荡电路的选择 2.1.3 参数的计算 2.2缓冲级 (6) 2.2.1 元器件的选择及参数的确定错误!未定义书签。 2.3 功率输出级 (10) 2.3.1 元器件的选择和参数的确定错误!未定义书签。 2.4调频发射机总原理电路图 (10) 三 四.Multisim的相关介绍 五.心得体会及建议 (12) 六.附录 (13) 七.参考文献 (15)

调频发射机的设计报告 摘要 随着科技的发展和人民生活水平的提高,调频发射机也在快速发展,并且在生活中得到广泛应用,它可以用于演讲、教学、玩具、防盗监控等诸多领域。在生活中,人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。 本设计为一简单功能的调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。学会基本的实验技能,提高运用理论知识解决实际问题的能力。 一.设计要求 设计一个调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射机发送出的无线电信号。 (1).确定电路形式,选择各级电路的静态工作点; (2).输入信号能够通过电路进行稳定,调频等; (3).输出为足够大的高频功率,使其能够发射; (4).根据上述要求选定设计方案,画出该系统的系统框图,写出详细的设计过程并利用Multisim软件画出一套完整的设计电路图; (5).列出所有的元件清单并写出参考书目。

各种进口功放电路图

ONKYO 安桥A-VR400功放后级电路图 ONKYO 安桥A-VR410功放后级电路图 此电路X 2 Q6∞ 2SA1015 K511 330 II C513 IOMP R501 2K2 Ilf ------------ ?H C654 IUIE R?0 H M T C501 IOUF R503 411 470 GIn) ------ R661 IOCe 丄 0501 29^878 _ ? Q507~X? γ+L 29J2259 J TC5O3 I I 丄330? U Q509 k T 297184! ?Γ I \ 2931815 C513 X515 270 OUT

此电路× 5 RS19 R621 82 C5001 刚1 4TuF C 70 +44. 2 V 2.2 R6 C519 104 R63, 龙 9 Q525 2SAt^l Q521 C1845 Q523 2335198 0517 C34I? LAJJ L501 S 5 丄C53 丁 223 R541 2.2 K569 22 -CZ}-? R567 22 R623 82 过浹保护 ± l ^C51FL VT 0607 AM9 1501 Q5O3 ± R513 T ? 「r J .C 1845 X 2 刁 [C=I 丄 C5O3 〕 跑5 I IOi RS07 JR509 T IK 上 C5O5 丄<∏ 47 [220UF RSli RSoI C50I 470 4?UF L IN *→=>i ∣ R501 270 Q5O5 Cl$45 0529 C1740 IoOK X673 C52J 2K IOl R539 2.2 R652 33K ?来自萨道 ^f ?r' RM7 ×2 中点检测 L Our R¢63 D511 R62? 82 R631 I8K Q515 C2229 R625 68 t ,C526 L -IlftIF R592 Lc? -44.2 V ONKYO 安桥TX-DS575功放后级电路图 SSXe 270 Q5003 2X1Π5 Tr ≡ 47 45002 2SC!775 516 U S5311 C501 1 :CC 2 2X174O×2 C5012 ICtf KOS 10 470 Q5013 ΠD2061 K∞4 22K C5018 41tf R5013 刚6 KU1024 2X5203 IBeeM R5016 2TK —?>- 站019 ι∞ I 此电路X5绍 Q5001 2SC1775 R501 5 Wo5 M ITAI Tt C5003 IOI ?5OI2 IOK R5020 !8K RMo7 47 ≡DB ∏ QSOO8 ITC32D^/ DMM R (7 K¢30 ∞19 C5023, ICtf ? I B5026 470 ÷71V Q601? 2sc2ωi ≡35 331 ≡≡ 胃f 中龍护 ■ T zzh TT T onT KMO 8.2 T czh TV UJJ L5001 86038 10×2 C5OI4 473 -TlV ONKYO 安桥TX-DS777功放后级 电路

电路分析基础知识归纳

《电路分析基础》知识归纳 一、基本概念 1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。 2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。 3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路 正常工作频率所对应的电磁波的波长λ,即l。 4.电流的方向:正电荷运动的方向。 5.关联参考方向:电流的参考方向与电压降的参考方向一致。 6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。 7.节点:电路中三条或三条以上支路连接点。 8.回路:电路中由若干支路构成的任一闭合路径。 9.网孔:对于平面电路而言,其内部不包含支路的回路。 10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约 束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系 与电路元件的特性无关,只取决于元件的互联方式。 11.理想电压源:是一个二端元件,其端电压为一恒定值U S(直流电压源)或是一定的时间 函数u(t),与流过它的电流(端电流)无关。 S 12.理想电流源是一个二端元件,其输出电流为一恒定值I(直流电流源)或是一定的时间 S 函数i S(t),与端电压无关。 13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。 14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。 15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它 支路的电压或电流的控制。 16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电 流源。 17.电位:单位正电荷处在一定位置上所具有的电场能量之值。在电力工程中,通常选大地 为参考点,认为大地的电位为零。电路中某点的电位就是该点对参考点的电压。 18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。 19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同, 则这两个单口电路对端口以外的电路而言是等效的,可进行互换。 20.无源单口电路:如果一个单口电路只含有电阻,或只含受控源或电阻,则为不含独立源 单口电路。就其单口特性而言,无源单口电路可等效为一个电阻。 21.支路电流法:以电路中各支路电流为未知量,根据元件的VAR和KCL、KVL约束关系, 列写独立的KCL方程和独立的KVL方程,解出各支路电流,如果有必要,则进一步计算其他待求量。 22.节点分析法:以节点电压(各独立节点对参考节点的电压降)为变量,对每个独立节点 列写KCL方程,然后根据欧姆定律,将各支路电流用节点电压表示,联立求解方程,求 得各节点电压。解出节点电压后,就可以进一步求得其他待求电压、电流、功率。 23.回路分析法:以回路电流(各网孔电流)为变量,对每个网孔列写KVL方程,然后根据

FM调频发射器

FM调频发射器 电阻:1k x 1 ; 3.3k x 1; 47k x 1 4.7k x 1; 4.3k x 1; 51k x 1; 6.8k x 1; 10k x 2; 电容:1)、电解型:1uF x 1 ; 10uF x 1; 2)、普通型:1000pF x 2 ; 1uF x 1 ; 20pF x 2 ; 10pF x 2 ; 12pF x 1 ; 68pF x 1 ; 三极管:9014 x 1 ; 9018 x 2 ; 电感线圈:0.47mm&6T x 3; 发射天线1根; Microphone 1个; DC 直流电源供电 3.7V直稳 制作分析:声音清晰,不跑频,调制在96MHZ附近。有障碍发射范围大概90米左右,使用一条36CM软线做发射天线。 电路改进:可调频改进,改换振荡单元的振荡参数可以实现频率的调制;

《电磁波的发射和接收》教学设计 【教学内容】 人教版高中物理选修3-4第十四章第3节。 【教学目标】 1.了解有效地发射电磁波的两个条件。 2.了解调制、调幅、调频、调谐、解调、电谐振在电磁波发射、接收过程中的作用。 3.通过对电磁波的产生、发射、接收过程及基本电路的简单分析,领会无线电波在实际生活、生产中的作用。 4.了解无线电波的波长范围。 【教学重点】 1.电磁波有效发射的条件,调制的含义及调制方式。 2.无线电波接收原理。 【教学难点】 1.无线电波调制的含义及调幅和调频的区别。 2.“电谐振”概念。 【教学用具】 多媒体投影仪,示波器。 【教学方法】 讲解法,学生自学、讨论法 【教学过程】 一、提出问题、引入新课

1.古代人们有那些传递信息的方式?(烽火台,鸽子,驿站,邮差等) 2.请问现在我们有那些传递信息的方式?(广播,电视,电话,手机,互联网等) (过渡):现在的传递方式有线和无线之分,无线主要依靠电磁波,在无线电技术中使用的电磁波叫做无线电波。上节课我们学习了电磁振荡的知识,知道:在LC振荡电路中,电场主要集中在电容器的极板之间,磁场主要集中在线圈内部,电场能和磁场能主要在不同元件之间相互转化,辐射出去的电磁能或者电磁波很少。那么如何才能有效地发射和接收电磁波呢? 二、新课过程 (一)无线电波的发射 师:要有效地向外发射电磁波,振荡电路必须具有哪些特点呢?(学生阅读教材,然后回答。) 生:1.要有足够高的振荡频率。因为频率越高,发射电磁波的本领越大。 2.振荡电路的电场和磁场必须分散到尽可能大的空间,只有这样才能有效地把电磁能(电磁波)传播出去。 师:要满足上述两述条件,就需要把振荡电路改造变成开放电路(教师在黑板上画出图1、图2、图3、图4),那么如何改造呢?同学们仔细观察一下,图1到图4是如何变化? 师生讨论得出:图2中,电容器的极板倾斜,张口变大,便于把电磁能辐射出去;线圈的匝数变少,其自感系数变小,便于发射高频率的电磁波。图3中电容器极板间的距离增大,正对面积减少,线圈匝数进一步减少,便于发射较高频率的电磁波,图4中电容器极板间的距离进一步增大,正对面积减少至为零,线圈匝数为零,以便能够发射更高频率的电磁波。 图1 图2 图3 图4

高频——小功率调频发射机

通信电子线路课程设计 小功率调频发射机 设计报告 姓名: 学号: 专业:电子信息工程 指导教师: 2011年11月02日

一、绪论 通过电路设计、焊接、调试、整理资料等环节,学生可以形成独立思考问题的能力,培养学生对通信高频电路应用方面的综合实践技能,掌握综合运用理论知识以解决实际问题的能力。以及培养他们课本知识以外的一些科技工作者必须具备的基本技能,并培养学生的创新能力。 具体目的如下: 1.初步掌握高频电路分析和设计的基本方法,根据任务和指标,确定电路方案,选测元件,焊接电路,反复试验,改进方案,分析结果,写出设计总结报告。 2.培养学生独立分析问题、解决问题能力。学会自己分析、找出解决问题的方法;对设计中遇到的问题和困难,独立思考,查阅资料,分析、观察、判断、试验、再判断以寻找答案。 3.掌握制作电子产品的基本技能:焊接、调试等基本技能及常用仪器的正确使用。 功能分析: 高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号。其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。 二、主要技术指标: 1.中心频率 f=1 2.频率稳定度f?≤0.1MHz f?>10kHz 3.最大频偏 m 4.输出功率 P≥30mW o 5.电源电压 Vcc=9V 三、设计流程框图: 通常小功率发射机采用直接调频方式,并组成框图如下所示: 调频震荡级缓冲级功率输出级 其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

开关电源各功能电路详解

开关电源各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。电磁干扰Electromagnetic Interference 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5

容量变小,输出的交流纹波将增大。 2、 DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值

常见基本经典电路详解1——电源部分

常见基本经典电路详解 一、电源电路单元 一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 1、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从220V市电变换成直流电,应该先把 220V交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图1,其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 图1整流电源电路

2、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 (1)半波整流 半波整流电路只需一个二极管,见图2(a)。在交流电正半周时D导通,负半周时D截止,负载 RL 上得到的是脉动的直流电。 图2(a)半波整流电路的电路及电压波形 (2)全波整流 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。 图2(b)全波整流电路的电路及电压波形 全波整流电路的工作原理,可用图2所示的波形图说明。在0~π间内,E2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;E2b 对D2 为反向电压, D2 不导通。在π-2π时间内,E2b 对D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;E2a 对D1 为反向电压,D1 不导通。

电视与调频广播发射天线建设与改造

电视、调频广播发射天线建设与改造 1、发射天线的作用与重要性 发射天线的作用是将发射机输出的高频电能转换成向空间辐射的电磁波能量,并按预期的发射场型和电场强度对服务区进行有效覆盖。 在发射台塔桅和天线都是基础性的关键设备。(塔桅的作用主要是把天线举高)在基建或改扩建时塔桅和天线方案规划设计的好坏,选用设备品质的优劣,架设与安装施工是否专业,设备维护是否到位,都直接关系到节目的播出质量和设备的稳定与安全播出。关系到一个工程的投资,也关系到对服务区覆盖的效果以及对周边其它台服务区的干扰。可以说,一个电视或调频广播覆盖网的成功规划与建设,是与正确选择发射天线分不开的。一个发射台能否正常、有效地工作与它的天线质量也是分不开的。 2、电视与调频广播的有关技术政策 我国的电视与调频广播是由中央、省(自治区,直辖市)、市(地、州、盟)和县(旗)电视台开办的电视和调频广播节目组成四级混合覆盖网,以保证全国95%以上的人口能够看好电视、听好广播。 在国家无线电管理委员会划分给电视和调频广播使用的频段内,电视米波频段48.5MH z—223MH z内设置了12个频道,也称为VHF频段。电视分米波段470MH z—960MH z内设置了56个频道,也称为UHF频段。并规定了各电视频道图象载频和伴音载频的频率。在VHF频段内,包含了调频广播的频段;在UHF 频段中包含了与其它行业合用的部分。 我国的彩色电视每个电视频道的必要带宽为8MH z;其中图象带宽为6MH z;伴音载频与图象载频相距6.5MH z。彩色电视的发射,图象采用调幅方式,伴音采用调频方式。图象信号与伴音信号的载波功率比为10:1。 我国的调频广播频段为87MH z--108MH z,每个频道的必要带宽为200KHz,频道间隔为100KHz的整数倍,共210个频道,采用频率复用制。为了防止与电视信号相互干扰,电视的4、5频道已不使用。 关于电视和调频广播的服务场强:在彩色电视和调频立体声广播覆盖网中,一个重要的技术规定就是服务区边缘地区的最低场强要多大即可以满足接收。根据1993年公布的国标(国标选用了ITU—R第1087—1号报告书应给予保护的最低场强值): 彩色电视为:波段Ⅰ--46dB(μv/m);10米高接收天线。 波段Ⅱ--48dB(μv/m);10米高接收天线。 波段Ⅲ--49dB(μv/m);10米高接收天线。 波段Ⅳ--53dB(μv/m);10米高接收天线。 波段Ⅴ--58dB(μv/m);10米高接收天线。 调频广播为:农村--54dB(μv/m);10米高接收天线。 城市--66dB(μv/m);10米高接收天线。 覆盖区和覆盖半径:发射机的服务场强等于或大于可用场强的区域称为覆盖区,其边界称为覆盖区边界(边界上的服务场强等于最低可用场强)。发射机到覆盖区边界的距离称为覆盖半径。 电视和调频广播的电波覆盖主要靠直射波,为了提高最佳的有效人口覆盖

电路分析

Basic Analysis Methods Having understood the fundamental laws of circuit theory (Ohm’s law and Kirchhoff’s laws),we are now prepared to apply these laws to develop two powerful techniques for circuit analysis: nodal analysis, which is based on a systematic application of Kirchhoff’s current law (KCL), and mesh analysis, which is based on a systematic application of Kirchhoff’s voltage law (KVL). With the two techniques to be developed in this section, we can analyze almost any circuit by obtaining a set of simultaneous equations that are then solved to obtain the required values of current or voltage. One method of solving simultaneous equations involves Cramer’s rule, which allows us to calculate circuit variables as a quotient of determinants. 1. Nodal Analysis A convenient choice of voltages for many networks is the set of node voltages. Since a voltage is defined as existing between two nodes, it is convenient to select one node in the network to be a reference node or datum node and then associate a voltage or a potential with each of other nodes. The voltage of each of the non-reference nodes with respect to the reference node is defined to be a node voltage. It is common practice to select polarities so that the node voltages are positive relative to the reference node. For a circuit containing N nodes, there will be N-I node voltages, some of which may be known, of course, if voltage sources are present. Frequently the reference node is chosen to be the node to which the largest number of branches are connected. Many practical circuits are built on a metallic base or chassis, and usually there are a number of elements connected to the chassis, which is often then connected to the earth. The chassis may then be called ground, and it becomes the logical choice for the reference node. For this reason, the reference node is frequently referred to as ground. The reference node is thus at ground potential or zero potential, and the other nodes may be considered to be at some potential above zero. The application of KCL results in an equation relating node voltages. Clearly, simplification in writing the resulting equation is possible when the reference node is chosen to be a node with a large number of elements connected to it. As we shall see, however, this is not the only criterion for selecting the reference node, but it is frequently the overriding one. In the network shown in Fig.1-1, there are three nodes, numbered as shown. Since there four branches connected to node 3, we selected it as reference node, identifying it by the ground connection as shown. The voltage between node 1 and the reference node 3 is identified as u1, and u2 is defined between node 2 and the reference node 3. These two voltages are sufficient, and the voltage between any other pair of nodes may be found in terms of them. For example, the voltage of node 1 with respect to node 2 is u1-u2. Fig 1-1 A given three-node circuit

无线调频广播天线的种类

无线调频广播天线的种类 湖南无线调频广播,长沙创威 【短波天线】工作于短波波段的发射或接收天线,统称为短波天线。短波主要是借助于电离层反射的天波传播的,是现代远距离无线电通信的重要手段之一。【超短波天线】工作于超短波波段的发射和接收天线称为超短波天线。 【微波天线】工作于米波、分米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。微波主要靠空间波传播,为增大通信距离,天线架设较高。【定向天线】向某个方向传播的天线。 【不定向天线】在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状天线等。 【宽频带天线】方向性、阻抗和极化特性在一个很宽的波段内几乎保持不变的天线,称为宽频带天线。 【调谐天线】仅在一个很窄的频带内才具有预定方向性的天线,称为调谐天线或称调谐的定向天线。同相水平天线、折合天线、曲折天线等均属于调谐天线。【垂直天线】垂直天线是指与地面垂直放置的天线。它有对称与不对称两种形式,而后者应用较广。对称垂直天线常常是中心馈电的。不对称垂直天线则在天线底端与地面之间馈电,其最大辐射方向在高度小于1/2波长的情况下,集中在地面方向,故适应于广播。不对称垂直天线又称垂直接地天线。 【倒L天线】在单根水平导线的一端连接一根垂直引下线而构成的天线。因其形状象英文字母L倒过来,故称倒L形天线。倒L天线一般用于长波通信。它的优点是结构简单、架设方便;缺点是占地面积大、耐久性差。 【T形天线】在水平导线的中央,接上一根垂直引下线,形状象英文字母T,故称T形天线。它是最常见的一种垂直接地的天线。它的水平部分辐射可忽略,产生辐射的是垂直部分。一般用于长波和中波通信。 【伞形天线】在单根垂直导线的顶部,向各个方向引下几根倾斜的导体,这样构成的天线形状象张开的雨伞,故称伞形天线。特点和用途与倒L形、T形天线相同。 【鞭状天线】鞭状天线是一种可弯曲的垂直杆状天线,其长度一般为1/4或1/2波长。大多数鞭状天线都不用地线而用地网。小型鞭状天线常利用小型电台的金属外壳作地网。鞭状天线可用于小型通信机、步谈机、汽车收音机等。 【对称天线】两部分长度相等而中心断开并接以馈电的导线,可用作发射和接收天线,这样构成的天线叫做对称天线。因为天线有时也称为振子,所以对称天线又叫对称振子,或偶极天线。总长度为半个波长的对称振子,叫做半波振子,也叫做半波偶极天线。它是最基本的单元天线,用得也最广泛,很多复杂天线是由它组成的。半波振子结构简单,馈电方便,在近距离通信中应用较多。 【笼形天线】是一种宽波段弱定向天线。适应于近距离的干线通信。 【角形天线】属于对称天线的一类,但它的两臂不排列在一条直线上,而成90°或120°角,故称角形天线。这种天线一般是水平装置的,它的方向性是不显著的。为了得到宽波段特性,角形天线的双臂也可采用笼形结构,称角笼形天线。【折合天线】将振子弯折成相互平行的对称天线称为折合天线。折合天线是一种调谐天线,工作频率较窄。它在短波和超短波波段获得广泛应用。 【V形天线】是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。

相关文档
最新文档