降雨量等级划分

降雨量等级划分
降雨量等级划分

降雨量等级划分

降雨量等级的划分,不同部门有不同的标准。

气象部门:降雨量是指在一定时间内降落到地面的水层深度,单位用毫米表示。单位时间内降雨量称降雨强度。降雨强度用降雨等级来进行划分,具体如下:

水文部门:通常说的小雨、中雨、大雨、暴雨等,一般以日降雨量衡量。其中小雨指日降雨量在10毫米以下;中雨日降雨量为10~24.9毫米;大雨降雨量为25~49.9毫米;暴雨降雨量为50~99.9毫米;大暴雨降雨量为100~199.9毫米;特大暴雨降雨量在200毫米以上。

另外,人们也可以从降水情况来判定雨的等级:下小雨时,一般雨点清晰可辩,没有飘浮现象;落到地面、石板或屋瓦上不四溅;地面泥水浅洼形成很慢;至少两分钟以上才会润湿石板、屋瓦;屋檐下只有滴水。降中雨中,雨水如线,雨滴不易分辨;落在硬地、屋瓦上雨水四溅;水洼泥潭形成很快;屋顶有沙沙声。下大雨时,雨如倾盆,模糊成片;落在屋瓦、水泥地或石板上可四处飞溅,水潭形成很快;屋顶雨水有喧闹声。

诏安县东溪流域西潭水利中心站

工程水文学题库习题流域产汇流计算

问答题 1.在进行流域产汇流分析计算时,为什么还要将总净雨过程分为地面、地下净雨过程?简述 蓄满产流模型法如何划分地面、地下净雨? 2 .目前常用分割基流的方法有哪几种,简述其优缺点? 答:有斜线分割法及水平分割法等。水平分割法简单认为洪水期间地下径流消退,与其补充是相等:斜线分割则认为洪水期间地下径流补充量大于地下径流消退量,对于大多数流域来说,这种认识较符合实际。 3.何为前期影响雨量?简述其计算方法与步骤? 答:前期影响雨量Pa是反映本次降雨之前流域土壤干湿程度的一种指标,因此对本次降雨的产流量将产生重要影响。 Pa一般按下式计算: 且 其计算步骤如下:⑴确定流域蓄水容量Wm;⑵由蒸发资料和Wm确定土壤含水量消退系数Kt;⑶由降雨P、Wm和Kt按上式计算。 4.简述流域土壤前期影响雨量折减系数的确定方法和步骤? 答:⑴根据实测雨量资料确定流域的蓄水容量Wm;⑵根据蒸发资料计算流域多年平均的 月平均日蒸散发能力Em;⑶以折减系数公式K=1-Em/Wm计算各月的K;⑷通过产流计算 方案进一步优选。 5.土壤前期影响雨量Pa 的计算方法有哪几种,其原理和步骤? 答:⑴用公式 逐日计算,式中P a, t+1、Pa ,t分别第t+1天、第t天的前期影响雨量;Pt为第t天的降雨量;Wm为流域蓄水容量,K为折减系数。⑵按公式:Pa,t+1=P a +Pt –Rt - E t逐日计算,式 中Rt为Pt产生的径流量,Et为第t天的流域蒸散发量。 6.何谓超渗产流,何谓蓄满产流,它们的主要区别是什么? 答:不管当地的土壤含水量是否达田间持水量,只要降雨强度超过下渗强度就产生地表径流, 称此为超渗产流。蓄满产流则是指一次降雨过程中,仅当包气带的含水量达田间持水量后才 产流,且以后的有效降雨全部变为径流。可见这两种产流模式的主要区别在于,蓄满产流以 包气带的含水量达到田间持水量(即蓄满)作为产流的控制条件,而超渗产流则以降雨强度 大过于当地的下渗能力作为产流的控制条件,而不管蓄满与否。 7.超渗产流和蓄满产流的地面径流形成条件是否相同,为什么? 答:超渗产流与蓄满产流形成地面径流的条件基本相同,它们都是由超渗雨形成的地面径流, 但蓄满产流模型计算超渗雨的下渗能力总是稳渗率fc,而用超渗产流模型计算地面径流,其 中的下渗能力则不一定为fc。 8.试述绘制降雨径流相关图(P~ Pa ~R)的方法步骤? 答:⑴选取在流域上分布较均匀的,具有一定代表性的多场暴雨洪水资料和蒸发资料;⑵计 算各场雨洪的流域平均雨量P和径流深R;⑶用若干场前期十分干旱的雨洪资料,分析计算 流域的最大蓄水量Wm;⑷计算各场暴雨的前期影响雨量Pa,t;⑸以降雨量P为纵坐标,以 径流深R为横坐标,把各次降雨的P和R对应点点在坐标纸上,并在该点上注明本次降雨 开始时的Pa,t值,绘出Pa的等值线便得到一组按顺序排列的Pa等值线图,经检验合理后, 即为P~aP~R相关图。 9.简述流域蓄水容量Wm 的确定方法? 答:根据Wm的定义,当W0=0时,一次降雨可能发生的最大损失即为所求的Wm ,一般从长期记录的雨洪资料中选择久旱无雨流域极为干燥时(W=0)又遇大雨,且雨后能

降雨量论文1

大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权中国矿业大学大学生数学建模竞赛指导委员会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 参赛队员(打印) 1. 姓名学院手机号 2. 姓名学院手机号 3. 姓名学院手机号

摘要 本文是通过对某山区地形的特点以及降雨量分布的理解,从而采用数学的思维及方法得出降雨量与问题相关的数学模型: 问题一模型的建立与求解过程:首先,用给出的地形数据,通过matlab 软件绘制出地形地貌图,并结合spss 软件对南北走向线,东西走向线进行曲线拟合,分析发现该地区地貌近似为抛物面;其次,该地区的降雨量在一定时间内近似为周期性变化,于是该地区水量的求解转化为对该地区地形表面积的求解;然后,运用基于量图原理的曲面积分方法,依次求得水量: 年最大水量:3363max 731203.57021563.910 1.1410Q m m -=??=? 年最小水量:3353min 731203.5702852.510 6.2310Q m m -=??=? 年均水量:3353731203.57021206.3108.8210Q m m -=??=? 问题二模型的建立与求解:本文把山体表面水流看成是坡面流,求解动能最关键的步是计算出坡面流阻力,而坡面流阻力与降雨量,坡度,植被覆盖度,河床粗糙度等因素有关,颇为复杂。因此,本文关于坡面流阻力的建模,以降雨量为主要因素,并且引用Darcy Weisbach 的阻力系数计算模型,并结合前人研究的成果,得出山体表面水流的速度计算模型,从而计算出在z=695处的单位质量动能:2001.4E J =。 问题三模型的建立与求解:针对植被和石漠化对降雨量的影响,本文采用了对比观测法。植被对降雨量的影响,本文引用了全国以及我国林区与非林区在1951-1999年期间的年平均降水量数据并绘制了全国以及我国林区、非林区的年平均降水量折线图,根据全国6个分区的林区与非林区降水量数据得出植被具有增大降雨量的作用,即某些地区植被覆盖对降水量呈正相关,石漠化对降水量呈负相关。 【关键词】地形地貌图 曲线拟合 曲面积分 Darcy Weisbach 模型 对比观测法

在ArcGIS中利用泰森多边形法分析流域的降雨量

在ArcGIS中利用泰森多边形法分析流域降雨量 一、泰森多边形介绍: 荷兰气候学家A·H·Thiessen提出了一种根据离散分布的气象站的降雨量来计算平均降雨量的方法,即将所有相邻气象站连成三角形,作这些三角形各边的垂直平分线,于是每个气象站周围的若干垂直平分线便围成一个多边形。用这个多边形内所包含的一个唯一气象站的降雨强度来表示这个多边形区域内的降雨强度,并称这个多边形为泰森多边形。 特点: 1、每个泰森多边形内仅含有一个离散点数据; 2、泰森多边形内的点到相应离散点的距离最近; 3、位于泰森多边形边上的点到其两边的离散点的距离相等。 二、在ArcGIS中利用泰森多边形法分析流域降雨量步骤(以新安江流域为例): 1、首先在ArcMap中加载新安江流域分区和雨量站点的.shp格式的数据(必须是.shp格式的)。若雨量站点信息为.xls或.txt格式的,则应该将其加载后先转成.shp格式,再进行以下的操作。加载数据结果如图: 2、在ArcToolbox工具中选择Analysis Tools—Proximity—Create Thiessen Polygons工具,打开Create Thiessen Polygons窗口,在Input Features中输入站点

数据:雨量站点,在Output Features Class中设置输出路径,在Output Fields (optional)中选择All(即输出所有属性字段)。如图所示: 然后设置其环境,即选择Create Thiessen Polygons窗口下面的Environments…按钮,进入环境设置窗口 选择General Settings进行设置:主要设置包括两项,第一项对Output Coordinate System设置,选取流域面矢量数据以和其保持一致的坐标系,此处选择Same as Layer “流域分区图”;第二项对Extent进行设置,设置生成泰森多边形的四周边缘,此处选择Same as Layer 流域分区图,其余保持默认。如图所示:

临界雨量计算方法

1、水位/流量反推法 假定降雨与洪水同频率,根据河道控制断面警戒水位、保证水位和最高水位指标,由水位流量关系计算对应的流量,由流量频率曲线关系,确定特征水位流量洪水频率,由降雨频率曲线确定临界雨量,但此方法没有考虑前期影响雨量。 2、暴雨临界曲线法 暴雨临界曲线法从河道安全泄洪流量出发,由水量平衡方程,当某时段降雨量达到某一量级时,所形成的山洪刚好为河道的安全泄洪能力,如果大于这一降雨量将可能引发山洪灾害,该降雨量称为临界雨量。位于曲线下方的降雨引发的山洪流量在河道安全泄洪能力以内,为非预警区,位于曲线上或上方的降雨引发的山洪流量超出河道的安全泄洪能力,为山洪预警区。 3、比拟法 比拟法的基本思路为,对无资料区域或山洪沟,当这些区域的降雨条件、地质条件(地质构造、地形、地貌、植被情况等)、气象条件(地理位置、气候特征、年均雨量等)、水文条件(流域面积、年均流量、河道长度、河道比降等)等条件与典型区域某山洪沟较相似时,可视为二者的临界雨量基本相同。 4、水动力学计算方法 水动力学计算方法具有较强的物理机制,基于二维浅水方程,并考虑降雨和下渗,对山洪的形成与演化过程进行更细致的描述,具有理论先进性和实际可操作性的特点,为防御山洪灾害提供了新技术。但由于计算参数,如阻力系数和下渗变量等,增加了模型的不确定性因素;此外,流域地质、地貌等数据以及典型山洪观测资料等也是此计算方法中必不可少的。 5、实测雨量统计法 根据区域内历次山洪灾害发生的时间表,基于大量实际资料,统计区域及周边邻近地区各雨量站对应的雨量资料,取各站点各次山洪过程最大值的最小值为各站的单站临界雨量初值,计算各次山洪过程各个站点的各时间段最大值

工程水文学第3章流域产流与汇流计算

第三章流域产流与汇流计算 第一节概述 (2) 第二节降雨径流要素计算 (3) 第三节流域产流分析 (9) 第四节产流计算 (11) 第五节流域汇流计算 (22) 小结 (30) 课前学习指导 本章要求 (1)掌握实测降雨径流要素的分析计算方法; (2)掌握蓄满产流和超渗产流的基本概念,及其产流面积变化过程的分析方法; (3)了解影响流域产流量的因素,掌握蓄满产流和超渗产流的产流量计算方法; (4)了解流域汇流的物理过程,掌握流域汇流计算方法。 课时安排 共需7个课内学时,10个课外学时 课前思考 如何由单站降雨量推求流域平均降雨量? 为什么要对实测流量过程线的不同水源成分进行划分? 降雨是怎么变成径流的?有哪些基本的产流方式? 哪些因素影响流域径流的形成?如何计算一场降雨所产生的径流量? 汇流计算的目的是什么?常用的汇流计算方法有哪些? 什么是单位线?如何推求单位线?如何进行单位线的时段转换? 学习重点 掌握流域产流计算和汇流计算的方法。 难点 将水文循环中蒸发、下渗、产流、汇流等过程联系起来,结合水量平衡原理实现产汇流过程的逐时段连续演算。 知识点 单站降雨特性分析

流域降雨特性分析 实测径流量计算 前期影响雨量 包气带对降水的再分配

蓄满产流和超渗产流 产流面积及其变化过程 降雨径流关系 蓄满产流的产流量计算 蒸散发计算 超渗产流的产流量计算 流域汇流过程、流域汇流时间、流域调蓄作用 单位线的基本概念、单位线的推求、单位线的时段转换 瞬时单位线的基本概念 地下径流汇流 第一节概述 内容提要 1、由降雨过程推求径流过程的基本内容与流程 2、流域产汇流计算的基本方法与思路 学习要求 掌握由降雨过程推求径流过程的主要环节与基本思路 1、流域产汇流计算基本内容与流程 由流域降雨推求流域出口的流量过程,大体上分为两个步骤: a、产流计算:降雨扣除植物截留、蒸发、下渗、填洼等各种损失之后,剩下的部分称为净雨,在数量上等于它所形成的径流深。在我国常称净雨量为产流量,降雨转化为净雨的过程为产流过程,关于净雨的计算称为产流计算。 b、汇流计算:净雨沿着地面和地下汇入河网,然后经河网汇流形成流域出口的流量过程,关于流域汇流过程的计算称为汇流计算。 计算流程如图3-1所示: 图3-1 产汇流计算流程简图 2 、流域产汇流计算的基本方法与思路 流域产汇流计算的方法很多,本课程主要介绍目前使用比较普遍和比较成熟的计算原理及其计算方法。产流计算的方法因产流方式不同而异,分别阐述蓄满产流方式和超渗产流方式的产流计算方法;汇流计算方法重点阐述时段单位线法和瞬时单位线法。

天山地区气候平均降水的精细化分布及计算

天山地区气候平均降水的精细化分布及计算 摘要:利用天山地区气象观测站降水资料和DEM数据,结合回归分析法,分析了气候平均年和月降水与地理地形参数的关系,结果显示:天山地区气候平均降水量与测站的海拔、纬度、坡度显著相关。建立了降水量与地理地形参数的关系模型。拟合结果表明:.基于降水量与地理地形参数的关系模型,利用高分辨率DEM资料,扩展得到了天山地区100m×100m精细化分布的气候平均年降水量和各月降水量.结果表明,精细化分布的降水量场能够表现出更多与地形和地势有关的细节,这是只利用气象测站资料的分析结果所不能反映的,在天山地区平均降水量空间精细化分布基础上,南疆地区的降水量()多与北疆()地区,按照天山地区面积5.7×105 km2计算,其气候平均年降水总量约为150.6×108m3,降水主要集中在5-9月. 关键词:天山地区;DEM;降水精细化分布;降水总量 引言 支撑生命存在的最重要的物质是水,而降水作为水循环中的重要环节之一,在测量其全球降水过程中因其降水时空变化很大而显得相当困难。同时,降水作为分布式水文模型的重要输入参数,尤其是在流域产汇流计算时,更需要流域降水量的时空分布资料[1];对于处在干旱半干旱地区的西北,自2001年和2000年来,沙尘暴急剧增加,面对严峻的土地沙漠化及环境退化,水资源短缺问题已成为全国人民关注的焦点[2]。水资源的多少不仅关系着工农业生产的发展,更是国家经济命脉的基础物质。天山地区地形条件十分复杂,地形是影响局地降水时空变化的重要条件[3],而对天山地区平均降水量的精细化分布及计算,也是对水资源合理利用的分配标准。但由于天山山区气象水文站点稀少且降水区域分布不均匀, 使其对降水空间精细化分布的了解成为需要解决的难点问题[4];相应的,许多学者也在天山地区气候降水的空间分布各方面做了大量的研究();研究显示:天山地区的年降水量主要集中在北坡(500mm-700mm)),北坡多于南坡,就降水变率来讲,南坡的降水变率Cv大于北坡[5],总体而言降水量的分步呈现出自西向东逐步递减的趋势,自山区外围向中心递减的规律[6],受地形的影响,降水与海拔有很大的关系,在一定范围,二者呈现正相关,其中,天山南坡的降水随海拔的升高增加明显。尤其是在80年代后期,全球气候变暖产生巨大的影响,天山北坡作为接受西北湿润气流的迎风坡,整个天山山区的降水达到一个增长的阶段[5]。对于天山地区的降水的时空变化研究,不同学者采用不同的方法,赵传成[1]等利用TRMM卫星月平均降水资料和台站观测降水资料,采用卫星结合雨量计的降水估算方法,结果表明TRMM卫星能够很好地被探测并反映天山山区降水时空的变化特征;刘俊峰[7]等同样借助TRMM卫星降水数据分析山区降水的梯度效应,结果显示多卫星数据在天山和祁连山的精度较高,天山地区降水与海拔的正相关关系最明显。姚俊强[8]研究得出的东经85度-东经87度区域天山山区降水量增加最快及其强降水日等都显著增加与赵勇[9]等得出的东经85度-东经88度区域结论一致。但是基于DEM数据建立降水与地理地形参数的关系及精细化分布计算,孙佳[10]等在研究黑河流域降水量精细化分布计算采用的便是DEM数据和台站测量数据,得出了相应的结论,这为采用DEM数据研究天山山区降水的时空分布提供了一定的指导。 本文采用天山地区气象观测资料和高分辨率DEM数据,首先分析天山地区北坡与南坡气候平均降水量与地理地形参数的关系,在此基础上采用回归分析法,

江河流域及城镇区域面雨量计算

DB35/T 1895—2020 4 附 录 A (规范性附录) 江河流域及城镇区域面雨量计算 A.1 江河流域及城镇区域边界提取 A.1.1 应采用国家基础地理信息中心提供的福建省1:50 000及以上地形图数据、福建省河流水系图(1~5级)数据、福建省行政区划图数据。 A.1.2 江河流域边界提取,应包含以下步骤: a) 根据地形图数据和河流水系图数据构建数字高程模型(DEM ); b) 根据河段的上下游分界点、河口、水利设施在河道上的地理位置,确定流域出口断面; c) 根据地形、河流水系和流域出口断面,利用数字高程模型(DEM )提取相应江河流域边界经纬 度信息。 A.1.3 城镇区域边界提取,应采用福建省行政区划数据,提取相应城镇区域边界经纬度信息。 A.2 江河流域及城镇区域面雨量计算 A.2.1 基于格点雨量数据的面雨量计算,应包含以下步骤: a) 采用水平分辨率不大于5 km ×5 km 的格点雨量数据,确定起始格点经纬度及格点水平分辨率; b) 基于江河流域或城镇区域边界经纬度信息,筛选出江河流域或城镇区域内部和边界上的所有格 点,格点总数为n ; c) 基于各个格点在指定时段内的累计雨量值p j ,采用算术平均法计算江河流域及城镇区域的面雨 量值,计算方法应符合A.2.3的要求。 A.2.2 基于站点雨量数据的面雨量计算,应包含以下步骤: a) 将江河流域或城镇区域边界向外延伸20 km ,构建等效格点雨量计算的外延区域,见图A.1; b) 基于江河流域或城镇区域边界经纬度信息,筛选出位于江河流域或城镇区域内部、边界上和外 延区域内部的所有站点,站点总数为m ; c) 以不大于5 km ×5 km 的单位格距将江河流域或城镇区域内部和边界网格化,格点总数为n , 见图A.2; d) 基于各个站点在指定时段内的累计雨量值q k ,以格点到站点的直线距离d (j ,k )的平方为导数, 计算各个格点在指定时段内的等效累计雨量p j ,见公式(A.1); e) 基于各个格点在指定时段内的等效累计雨量值p j ,采用算术平均法计算江河流域或城镇区域的 面雨量值,计算方法应符合A.2.3的要求。 ()()=111=1,,m j k j k m k j k k d p q =??????????????????∑∑ .......................... (A.1) 式中: m ——江河流域或城镇区域内部、边界上和外延区域内部的所有站点的总数; n ——江河流域或城镇区域内部和边界上的所有格点的总数; p j ——第j 个格点指定时段的等效累计雨量,单位为毫米(mm ),j =1,2,3,……,n ;

降雨量等级划分(材料特制)

三类材料# 1 降雨量等级划分 降雨量等级的划分,不同部门有不同的标准。 气象部门:降雨量是指在一定时间内降落到地面的水层深度,单位用毫米表示。单位时间内降雨量称降雨强度。降雨强度用降雨等级来进行划分,具体如下: 雨量时段 (等级) 12小时 降雨量 24小时 降雨量 雨量时段 (等级) 12小时 降雨量 24小时 降雨量 小雨 0.1~4.9 0.1~9.9 暴雨 30.0~69.9 50.0~99.9 小到中雨 3.0~9.9 5.0~16.9 暴雨到大暴雨 50.0~104.9 75.0~174.9 中雨 5.0~14.9 10.0~24.9 大暴雨 70.0~140.0 100.0~250.0 中到大雨 10.0~22.9 17.0~37.9 大暴雨到特大暴雨 105.0~170.0 175.0~300.0 大雨 15.0~29.9 25.0~49.9 特大暴雨 >140.0 >250.0

大到暴雨30.0~49.9 38.0~74.9 防汛部门:降雨量是在一定时间内降落在地面上的某一点或某一单位面积上的水层深度,以毫米计算。根据国家防办《防汛手册》规定,凡24小时的累计降雨量超过50毫米者定为暴雨。按12小时降雨强度和24小时降雨强度划分大小降雨量等级,见下表: 强雨(等级) 12小时降雨量24小时降雨量小雨0.1~4.9 0.1~9.9 中雨 5.0~14.9 10.0~24.9 大雨15.0~29.9 25.0~49.9 暴雨30.0~69.9 50.0~99.9 大暴雨70.0~139.9 100.0~249.9 三类材料# 2

特大暴雨≥140 ≥250 水文部门:通常说的小雨、中雨、大雨、暴雨等,一般以日降雨量衡量。其中小雨指日降雨量在10毫米以下;中雨日降雨量为10~24.9毫米;大雨降雨量为25~49.9毫米;暴雨降雨量为50~99.9毫米;大暴雨降雨量为100~199.9毫米;特大暴雨降雨量在200毫米以上。 另外,人们也可以从降水情况来判定雨的等级:下小雨时,一般雨点清晰可辩,没有飘浮现象;落到地面、石板或屋瓦上不四溅;地面泥水浅洼形成很慢;至少两分钟以上才会润湿石板、屋瓦;屋檐下只有滴水。降中雨中,雨水如线,雨滴不易分辨;落在硬地、屋瓦上雨水四溅;水洼泥潭形成很快;屋顶有沙沙声。下大雨时,雨如倾盆,模糊成片;落在屋瓦、水泥地或石板上可四处飞溅,水潭形成很快;屋顶雨水有喧闹声。 三类材料# 3

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用:

α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为: 0.1 (m3/m.d)。

水利水工等级分类,水库等级,河流等级,堤防等级,拦河闸等级,河道等级,渠道等级,降雨量等级

水库等级划分 大、中、小型水库的等级是按照库容大小来划分的。 大(一)型水库库容大于10亿立方米; 大(二)型水库库容大于1亿立方米而小于10亿立方米; 中型水库库容大于或等于0.1亿立方米而小于1亿立方米; 小(一)型水库库容大于或等于100万立方米而小于1000万立方米; 小(二)型水库库容大于或等于10万立方米而小于100万立方米。 河流等级划分 大、中、小型河流的等级是按照保护面积大小来划分的。 大型河流保护面积大于30万亩; 中型河流保护面积在1—30万亩之间; 小型河流保护面积小于1万亩。 有众多支流汇入的是上游 水量稳定且较高的是中游 水量有所减少或转如地势低平地区的是下游 上中游分界线一般是最后一条大支流的汇入地点 中下游分界线一般是地势低平地区的边缘 堤防工程等级 依据堤防工程的防洪标准确定,依据堤防工程设计规范(GB50286-1998),堤防工程分为5级,详见表2。 表2堤防工程的级别

堤防分类 堤防按其所在位置及建筑材料进行分类。 按所在位置,堤防可分为河(江)堤、海堤、湖堤、水库堤及渠(沟)堤等五种,详见表1 。 表1 堤防分类表(按所在位置分) 按建筑材料,堤防可分为土堤、砂堤、石堤、混凝土堤等四种。 (1)土堤:由粘土、壤土筑成,主要建在平原地区江河沿岸、海岸、湖泊四周、排灌 沟渠沿岸及水库周边。 (2)砂堤:由沙土或砂砾石筑成,主要建在山区、丘陵区江河沿岸,水库周边、海岸。 (3)石堤:由块石或条石筑成,主要建在海岸、取土困难的江河沿岸及城区河段沿岸。 (4)混凝土堤:由混凝土或钢筋混凝土筑成,主要用于城区河段沿岸。 拦河闸等级划分 拦河闸等级是按照过闸流量大小划分的。 大型拦河闸过闸流量大于1000立方米/秒; 中型拦河闸过闸流量大于100立方米/秒而小于或等于1000立方米/秒; 小型拦河闸过闸流量大于或等于10立方米/秒而小于100立方米/秒; 流域

(完整版)水文水利计算.doc

第一章绪论 1水文水利计算分哪几个阶段?任务都是什么? 答:规划设计阶段水文水利计算的主要任务是合理地确定工程措施的规模。 施工阶段的任务是将规划设计好的建筑物建成,将各项非工程措施付诸实施 管理运用阶段的任务是充分发挥已成水利措施的作用。 2我国水资源特点? 答:一)水资源总量多,但人均、亩均占有量少(二)水资源地区分布不均匀,水土资源配 置不均衡(三)水资源年际、年内变化大,水旱灾害频繁四)水土流失和泥沙淤积严重(五)天然水质好,但人为污染严重 3 水文计算与水文预报的区别于联系? 答:水文分析与计算和水文预报都是解决预报性质的任务。 (1)预见期不同,水文计算要求预估未来几十年甚至几百年内的情况,水文预报只能预报 几天或一个月内的未来情况。( 2)采用方法不同,水文计算主要采用探讨统计规律性的统计 方法,水文预报采用探讨动态规律性的方法。 4 水文分析与计算必须研究的问题? 答:( 1)决定各种水文特征值的数量大小。(2)确定该特征值在时间上的分配过程。( 3)确定该特征值在空间上的分布方式。( 4)估算人类活动对水文过程及环境的影响。 次重点:广义上讲,水文水利计算学科的基本任务就是分析研究水文规律,为充分开发利用水资源、治理水旱灾害和保护水环境工作提供科学的依据。 第二章水文循环及径流形成 1 水循环种类:大循环、小循环 次重点定义:存在于地球上各种水体中的水,在太阳辐射与地心引力的作用下,以蒸发、降水、入渗和径流等方式进行的往复交替的运动过程,称为水循环或水分循环。 2 水量平衡定义,地球上任意区域在一定时段内,进入的水量与输出的水量之差 等于该区域内的蓄水变化量,这一关系叫做水量平衡。 3若以地球陆地作为研究对象,其水量平衡方程式为 多年平均情况下的水量平衡方程式若以地球海洋作为研究 对象,其水量平衡方程式为多年平均全球水量平衡方程式 流域水量平衡的一般方程式如下:若流域为闭合流域, 则流域多年平均 p=E+R 4 干流、支流和流域内的湖泊、沼泽彼此连接成一个庞大的系统,称为水系。 5 河流一般分为河源、上游、中游、下游及河口五段。

JAVA实验课程求计算月平均降雨量示例

求计算月平均降雨量示例,掌握数组的声明、初始化、访问方法及数组在数据进行批量处理中的优势。并将此内容写以实验报告中。 全部代码如下: /** * @(#)A verageRainfallApp.java * * * @author * @version 1.00 2010/8/3 */ import javax.swing.*; import javax.swing.JOptionPane; public class A verageRainfallApp { double []rainfall; double []differece=new double[12]; public A verageRainfallApp() {rainfall=new double[12]; for(int i=0;i<12;i++){ rainfall[i]=Double.parseDouble(JOptionPane.showInputDialog("请输入"+(i+1)+"月的降雨量值")); } } public double AnnualA verageRainfall(){ double sum=0; for(int i=0;i<12;i++){ sum+=rainfall[i]; } return sum/12; } public void computeDifferece(){ for(int i=0;i<12;i++){ differece[i]=rainfall[i]-AnnualA verageRainfall(); } } public void printArray(double[]aArray){ String output=""; for(int i=0;i

基坑降水计算

6.3基坑降水方案设计 6.3.1降水井型 选6型喷射井点:外管直径为200mm,采用环形布置方案。 6.3.2井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m处。埋置深度可由下式确定: L = H h :h i x h i r 0 l (6.2) 式中: L ――井点管的埋置深度(m); H ―― 基坑开挖深度(m);这里H =12m h ——井点管露出地面高度(m),这里可取一般值 0.2m ; h ―― 降水后地下水位至基坑底面的安全距离(m), 本次可取1.0m ; i x ―― 降水漏斗曲线水力坡度,本次为环状,取0.1; h i ——井点管至基坑边线距离(m),本次取1.0m ; r0 -----基坑中心至基坑边线的距离(m),本次工程案 例去最近值宽边的一半,即40m; l ---- 滤管长度(m),本次取1.0m。 故带入公式可得埋置深度L为: L=H h h i x h「0 I =12 0.2 1.0 0.1 (1.0 40) 1.0=18.3m 6.3.3环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为 2.5,小于10)基坑折算成半径为X0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: X0=专 (6.3) 式中: a,b ----- 基坑的长度和宽度(m),a=200m,b=80m

亠1.16型80 4 4 8 m. 2 (6.4) 式中: 例取5d ; -系数,可参照下表格选取: 表6.1 系数n 表 a = °2OO =040 ,贝U 「-1.16 故带入公式可得本次基坑的引用半径 X 。为: 6.3.4井点抽水影响半径 由下列公式可求得抽水影响半径: t 时间,自抽水时间算起(2-5昼夜)(d ),本案 k ―― 土的渗透 系数(m/d ),这里取平均值 k =2.7m/ d ; H w 含水层厚度(m ),本次取承压含水层厚度含水 层厚度④,⑤土层厚度的总和,即为 H w =5.2 ? 6 = 11.2m , m ―― 土的给水度,按表 3.2确定,本次取圆砾 m=0.2,另外由上述计算可得 X o= 73.7m 。

水文水利计算复习题

09水务水文水利计算复习题 ?何谓自然界的水文循环?产生水文循环的原因是什么?水循环的重要环节有哪几个??如何确定河流某一指定断面控制的流域面积? ?累积雨量过程线与降雨强度过程线有何联系? ?影响土壤下渗的因素主要有哪些? ?为什么对于较大的流域,在降雨和坡面漫流终止后,洪水过程还会延续很长的时间??一场降雨洪水的净雨和径流在数量上相等,但有何区别? ?一次降雨过程中,下渗是否总按下渗能力进行?为什么? ?影响径流的因素中,人类活动措施包括哪些方面? ?流域降雨特性不同,对流域出口的洪水有哪些影响? ?地球上的水量平衡。 ?某流域水量平衡方程。 ?闭合流域和非闭合流域 ?什么是下渗?下渗可分为哪三个阶段?如何描述土壤下渗规律? ?径流的形成过程?径流量有哪几部分构成? ?计算流域平均降雨量的方法 ?统计参数x、σ、C v、C s的含义如何? ?何谓离均系数Φ?如何利用皮尔逊III型频率曲线的离均系数Φ值表绘制频率曲线??何谓经验频率?经验频率曲线如何绘制? ?重现期(T)与频率(P)有何关系?P = 90%的枯水年,其重现期(T)为多少年?含义是什么? ?在频率计算中,为什么要给经验频率曲线选配一条“理论”频率曲线? ?为什么在水文计算中广泛采用配线法? ?现行水文频率计算配线法的实质是什么?简述配线法的方法步骤? ?统计参数x、C v、C s含义及其对频率曲线的影响如何? ?用配线法绘制频率曲线时,如何判断配线是否良好? ?何谓相关分析?如何分析两变量是否存在相关关系? ?怎样进行水文相关分析?它在水文上解决哪些问题? ?何谓年径流?它的表示方法和度量单位是什么? ?人类活动对年径流有哪些方面的影响?其中间接影响如修建水利工程等措施的实质是什么?如何影响年径流及其变化? ?何谓保证率?若某水库在运行100年中有85年保证了供水要求,其保证率为多少?破坏率又为多少? ?日历年度、水文年度、水利年度的涵义各如何? ?简述年径流年内、年际变化的主要特性? ?水文资料的“三性”审查指的是什么?如何审查资料的代表性? ?如何分析判断年径流系列代表性的好坏?怎样提高系列的代表性? ?展延年径流系列的关键是选取参证变量,简述参证变量应具备的条件? ?推求设计年径流量的年内分配时,应遵循什么原则选择典型年? ?简述具有长期实测资料情况下,用设计代表年法推求年内分配的方法步骤。 ?什么叫设计洪水,设计洪水包括哪三个要素? ?大坝的设计洪水标准与下游防护对象的防洪标准有什么异同? ?推求设计洪水有哪几种途径?

降水计算公式

一、潜水计算公式 1、公式1 Q k H S S R r r =-+-1366200.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m)。 2、公式2 Q k H S S b r =--1366220.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。 3、公式3 Q k H S S b r b b b =--????????1366222012.()lg 'cos ()'ππ 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 1为基坑中心距A 河岸边的距离(m);

b 2为基坑中心距B 河岸边的距离(m); b ' =b 1+b 2; r 0为基坑半径(m)。 4、公式4 Q k H S S R r r b r =-+-+1366220200.()lg()lg ('') 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m); b '' 为基坑中心至隔水边界的距离。 5、公式5 Q k h h R r r h l l h r =-++--+--136610222 000.lg lg(.) h H h -=+2 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); R 为引用影响半径(m); r 0为基坑半径(m); l 为过滤器有效工作长度(m); h 为基坑动水位至含水层底板深度(m); h - 为潜水层厚与动水位以下的含水层厚度的平均值(m)。

福建省降水特性分析(逐月降雨量)

第29卷第2期黑 龙 江 水 专 学 报 Vol 129,No.22002年6月 Journal of Heilongjiang Hydraulic Engineering College Jun.,2002 文章编号:1000-9833(2002)02-0024-03 福建省降水特性分析 余赛英 (福建省水文水资源勘测局,福州 350001) 摘 要:在统计分析了大量降水实测资料的基础上,揭示了福建省年降水量地理分布特征,降水量的年内月分配和年际变化特性。关键词:降水;特性;福建 中图分类号:P33311 文献标识码:A Analysis of precipitation characteristics of Fujian Province Y U Sai_ying (Hydrology and Water Resources Investigati on Bureau of Fujian Prov.,Fuzhou 350001,China) Abstract:On stating and analyzing abundance of observed data of precipitation,the paper shows that the annual precipita -tion geographical distribution characteristic,the disciplinarian of annual distribution and multiyear variation of precipition in Fujian Province. Key words:precipitation;charac teristic;Fujian 收稿日期:2002-04-05 作者简介:余赛英(1968-),女,福建南平人,工程师。 福建省地处我国东南沿海,介于N23b 33c ~N28b 19c , E115b 50c ~E120b 43c ,总面积为123876k m 2 。倚山面海,境内群山耸立,低丘起伏,河谷、盆地错落其间,地势自西北向东南降低。 福建省濒临海洋,气候温暖湿润,属于亚热带海洋性季风气候。东南季风及夏秋台风是我省降水的水汽来源,降雨是我省水资源的根本来源,对于水资源数量和时空分布特征有决定性的影响。1 资料情况 采用44a(1956~1999年)完整连续的年降水观测记载的241站资料,以及降水资料系列有不同程度缺、漏,通过插补延长予以补齐的320站资料。供年降水量分析用的总站数561站,其中闽江247站,闽南区193站,闽东区66站,闽西韩江水系54站,外省周边1个站,平均每站控制面积221km 2(表1)。这是目前我省同步期最长且站数尽可能多的年降水量资料系列。经过认真审查和合理性分析,改正其中的错误,作为分析评价我省降水资源的可靠依据。 由于各种原因,有些测站的年降水资料不同程度地缺失、中断等情况,分别视不同情况采用相应的方法给予插补或延长。 (1)对于个别日期或月份缺测的,一般用自然地理条件相近的邻近测站资料相关插补。 (2)对于个别年份缺测或中断停测的,一般采用年降水量相关法加以插补。 (3)对于近几年停测的雨量,用相应年份的年降水等值线图插补。 表1 选用雨量站密度表 分区名称站 数流域面积/km 2 站网密度/km 2#(站)-1 闽 江2475992224216闽东诸河661469722217闽南诸河1933582418516闽西韩江541226322711鄱阳湖、钱塘江11170全 省 561 123876 22018 注:各流域面积均为省内面积。 为保证相关插补有一定的物理成因基础和插补延长成果的质量,慎重选择相应的参证站。主要考虑以下几种因素: (1)参证站与插补站在同一流域或相邻、距离较近,以使它们具有相同或相近的自然地理条件和气候特征。 (2)参证站资料质量较好,系列完整且较长。 (3)相关程度较高,相关系数应在0180以上且可通过置信度的0105的t -检验。 (4)在有多个参证站可供选择时,优先选用同一流域或相关程度较高的测站。2 年降水量参数统计分析 对所选用的561站年降水量系列逐站进行频率统计分析,用P ó型频率曲线适线法求得各站的年降水量统计参数[1]:多年平均值,变差系数C v 及偏态系数C s 。目估适线时,当首尾点群难以兼顾时,多考虑频率在50%以右的点群,同时C s 值根据经验和分析,统一采用2C v 值。 将各站点年降水量统计参数的均值和变差系数C v ,分别绘制了/福建省年降水量多年平均值等值线图0和/福建省年降水量变差系数等值线图0。对统计参数进行合理性分

流域平均降雨量计算教学内容

流域平均降雨量计算

2.3.3 流域平均降雨量计算 由雨量站观测到的降雨量,只代表该雨量站所在处或较小范围的降雨情况,而实际工作中往往需要推求全流域或某一区域的平均降雨量,常用的计算方法有以下几种。 1.算术平均法 当流域内地形起伏变化不大,雨量站分布比较均匀时,可根据各站同一时段内的降雨量用算术平均法推求。其计算式为: ∑==+++=n i i n x n n x x x x 1211Λ (2-10) 2.泰森多边形法(垂直平分法) 首先在流域地形图上将各雨量站(可包括流域外的邻近 站)用直线连接成若干个三角形,且尽可能连成锐角三角形,然后作三角形各条边的垂直平分线,如图2-9,这些垂直平分线组成若干个不规则的多边形,如图中实线所示。每个多边形内必然会有一个雨量站,它们的降雨量以i x 表示,如量得流域范围内各多 边形的面积为i f ,则流域平均降雨量可按下式计算: ∑∑====++++++=n i n i i i i i n n n x A x f F f f f x f x f x f x 112122111ΛΛ (2-11) 此法能考虑雨量站或降雨量分布不均匀的情况,工作量也不大,故在生产实践中应用比较广泛。

3.等雨量线法 在较大流域或区域内,如地形起伏较大,对降水影响显著,且有足够的雨量站,则宜用等雨量线法推求流域平均雨量。如图2-10所示,先量算相邻两雨量线间的面积i f ,再根据各雨量线的数 值i x ,就可以按下式计算: i n i i i f x x F x )2(111 ∑=++= (2-12) 此法比较精确,但对资料条件要求较高,且工作量大,因此应用上受到一定的限制。主要用于典型大暴雨的分析。

相关文档
最新文档