【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习:专题六 第1讲 直线与圆]

【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习:专题六 第1讲 直线与圆]
【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习:专题六 第1讲 直线与圆]

第1讲直线与圆

考情解读考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题、填空题的形式出现,有时也会出现解答题,多考查其几何图形的性质或方程知识.

1.直线方程的五种形式

(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),且斜率为k,不包括y轴和平行于y轴的直线).

(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).

(3)两点式:y-y1

y2-y1=

x-x1

x2-x1

(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴

和平行于坐标轴的直线).

(4)截距式:x

a+y

b=1(a、b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于

坐标轴和过原点的直线).

(5)一般式:Ax+By+C=0(其中A,B不同时为0).

2.直线的两种位置关系

当不重合的两条直线l1和l2的斜率存在时:

(1)两直线平行l1∥l2?k1=k2.

(2)两直线垂直l1⊥l2?k1·k2=-1.

提醒当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式

(1)A (x 1,y 1),B (x 2,y 2)两点间的距离:|AB |=(x 2-x 1)2+(y 2-y 1)2.

(2)点到直线的距离:d =|Ax 0+By 0+C |

A 2+

B 2(其中点P (x 0,y 0),直线方程:Ax +By +

C =0).

(3)两平行线间的距离:d =|C 2-C 1|A 2

+B

2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By

+C 2=0).

提醒 应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等. 4.圆的方程的两种形式

(1)圆的标准方程:(x -a )2+(y -b )2=r 2.

(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 5.直线与圆、圆与圆的位置关系

(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法. (2)圆与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.

热点一 直线的方程及应用

例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( ) A .2x +y -12=0

B .2x +y -12=0或2x -5y =0

C .x -2y -1=0

D .x -2y -1=0或2x -5y =0

(2)“m =1”是“直线x -y =0和直线x +my =0互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件

D .既不充分也不必要条件

思维启迪 (1)不要忽略直线过原点的情况;(2)分别考虑充分性和必要性. 答案 (1)B (2)C

解析 (1)当直线过原点时方程为2x -5y =0,不过原点时,可设出其截距式为x a +y

2a =1,再由

过点(5,2)即可解出2x +y -12=0.

(2)因为m =1时,两直线方程分别是x -y =0和x +y =0,两直线的斜率分别是1和-1,两直线垂直,所以充分性成立;当直线x -y =0和直线x +my =0互相垂直时,有1×1+(-1)×m =0,所以m =1,所以必要性成立.故选C.

思维升华 (1)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.

(2)求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即“斜率相等”或“互为负倒数”.若出现斜率不存在的情况,可考虑用数形结合的方法去研究.

已知A (3,1),B (-1,2),若∠ACB 的平分线方程为y =x +1,则AC 所在的直线方

程为( ) A .y =2x +4 B .y =1

2x -3

C .x -2y -1=0

D .3x +y +1=0 答案 C

解析 由题意可知,直线AC 和直线BC 关于直线y =x +1对称.设点B (-1,2)关于直线y =x +1的对称点为B ′(x 0

,y 0

),则有?????

y 0-2x 0+1=-1

y 0

+22=x 0

-1

2+1

?????

?

x 0=1y 0

=0,即B ′(1,0).因为B ′(1,0)在直线AC 上,所以直线AC 的斜率为k =1-03-1=1

2,

所以直线AC 的方程为y -1=1

2(x -3),

即x -2y -1=0.故C 正确. 热点二 圆的方程及应用

例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4

(2)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的方程为( ) A .(x -1)2+y 2=4 B .(x +1)2+y 2=4 C .x 2+(y -1)2=4 D .x 2+(y +1)2=4

思维启迪 (1)确定圆心在直线x =2上,然后待定系数法求方程;(2)根据弦长为23及圆与l 2相切列方程组. 答案 (1)D (2)B

解析 (1)因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =±3,所以选D. (2)由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,得????

?

(a +2)2

+(3)2

=r 2

,|2a -4|

4+5

=r ,

解得满足条件的一组解为?

????

a =-1,

r =2,

所以圆M 的方程为(x +1)2+y 2=4.故选B.

思维升华 圆的标准方程直接表示出了圆心和半径,而圆的一般方程则表示出了曲线与二元二次方程的关系,在求解圆的方程时,要根据所给条件选取适当的方程形式.解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.

(1)已知圆C :x 2+(y -3)2=4,过点A (-1,0)的直线l 与圆C 相交于P 、Q 两点,

若|PQ |=23,则直线l 的方程为( ) A .x =-1或4x +3y -4=0 B .x =-1或4x -3y +4=0 C .x =1或4x -3y +4=0 D .x =1或4x +3y -4=0

(2)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________________. 答案 (1)B (2)x 2+(y -1)2=10

解析 (1)当直线l 与x 轴垂直时,易知x =-1符合题意;

当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),线段PQ 的中点为M ,由于|PQ |=23, 易得|CM |=1. 又|CM |=

|-3+k |k 2+1

=1,解得k =43,此时直线l 的方程为y =4

3(x +1).故所求直线l 的方程为x

=-1或4x -3y +4=0.故选B.

(2)设所求圆的半径是r ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2

=1,则r 2=d 2

+(|AB |2)2=10,故圆C 的

方程是x 2+(y -1)2=10.

热点三 直线与圆、圆与圆的位置关系

例3 如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆

C 的半径为1,圆心在l 上.

(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.

思维启迪 (1)先求出圆C 的圆心坐标,再利用几何法求出切线斜率;(2)将|MA |=2|MO |化为M 点坐标满足的条件后,可知点M 是两圆的交点.

解 (1)由题设,圆心C 是直线y =2x -4和直线y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.

设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,

|3k +1|

k 2+1

=1,解得k =0或-3

4, 故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,

所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |, 所以x 2+(y -3)2=2

x 2+y 2,

化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4, 所以圆心M 在以D (0,-1)为圆心,2为半径的圆上. 由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则2-1≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤

12

5

. 所以圆心C 的横坐标a 的取值范围为?

???0,125. 思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,两个圆的位置关系的判断依据是两圆心距离与两半径差与和的比较.

(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理处理.

(1)(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于

A ,

B 两点,且△AB

C 为等边三角形,则实数a =________.

(2)两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条公切线,则a +b 的最小值为( ) A .-6 B .-3 C .-3 2 D .3 答案 (1)4±15 (2)C

解析 圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|

a 2+1.因为△ABC 为等边三角形,所以|AB |

=|BC |=2,所以(|a +a -2|a 2+1

)2+12=22

,解得a =4±15.

(2)两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4, 圆C 2:x 2+(y -b )2=1, 所以|C 1C 2|=a 2+b 2=2+1=3, 即a 2+b 2=9.

由(a +b 2)2≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时取“=”.所

以选C.

1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.

2.确定圆的方程时,常用到圆的几个性质:

(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径); (2)圆心在过切点且与切线垂直的直线上; (3)圆心在任一弦的中垂线上;

(4)两圆内切或外切时,切点与两圆圆心三点共线;

(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称. 3.直线与圆中常见的最值问题

圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.

4.过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0.

5.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程,即为两圆公共弦所在的直线方程.

真题感悟

1.(2014·江苏)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________________. 答案

255

5

解析 圆心为(2,-1),半径r =2.

圆心到直线的距离d =|2+2×(-1)-3|1+4=35

5,

所以弦长为2r 2-d 2=2

22-(355)2=255

5

.

2.(2014·课标全国Ⅱ)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 答案 [-1,1]

解析 如图,过点M 作⊙O 的切线, 切点为N ,连接ON . M 点的纵坐标为1, MN 与⊙O 相切于点N . 设∠OMN =θ,则θ≥45°, 即sin θ≥2

2

, 即

ON OM ≥22

. 而ON =1,∴OM ≤ 2. ∵M 为(x 0,1),∴x 20+1≤2,

∴x 20≤1,∴-1≤x 0≤1,

∴x 0的取值范围为[-1,1]. 押题精练

1.在直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为________. 答案 2

解析 设P (x ,y ),则由|P A |2-|PB |2=4, 得(x +1)2+y 2-x 2-(y -1)2=4,∴x +y =2,

∴满足条件的点P 的个数转化为直线x +y =2和圆x 2+y 2=4的交点个数, ∵

|0+0-2|

2

=2<2, ∴直线与圆相交,∴点P 有2个.

2.如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,则实数a 的取值范围是____________________. 答案 -22

解析 将圆C :x 2+y 2-2ax -2ay +2a 2-4=0变形为(x -a )2+(y -a )2=4,可知圆心为C (a ,a ),半径为r =2.圆O :x 2+y 2=4的圆心为O (0,0),半径为R =2.当两圆总相交时|R -r |<|OC |

3.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________. 答案 (2-1,2+1)

解析 注意到与直线x -y -2=0平行且距离为1的直线方程分别是x -y -2+2=0和x -y -2-2=0,要使圆上有且只有两个点到直线x -y -2=0的距离为1,需满足在两条直线x -y -2+2=0和x -y -2-2=0中,一条与该圆相交且另一条与该圆相离,所以

|2-2|

2

,即2-1

(推荐时间:60分钟)

一、选择题

1.直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0互相垂直,则k 等于( ) A .-3或-1 B .3或1 C .-3或1 D .3或-1

答案 C

解析 若k =1,直线l 1:x =3,l 2:y =2

5

满足两直线垂直.

若k ≠1,直线l 1,l 2的斜率分别为k 1=k

k -1,k 2=1-k 2k +3,由k 1·k 2=-1得k =-3,综上k =1

或k =-3.

2.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( )

A.x-y-3=0 B.2x+y-3=0 C.x+y-1=0 D.2x-y-5=0 答案 A

解析圆的圆心为C(1,0).由圆的性质知,直线PC垂直于弦AB所在的直线,则k AB=-

1

k PC,

即k AB=-

1

k PC=-

1

0-(-1)

1-2

=1.

又点P(2,-1)是弦AB的中点,

由直线的点斜式方程得直线AB的方程为

y-(-1)=x-2,

即x-y-3=0.故选A.

3.若圆O:x2+y2=4与圆C:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程是() A.x+y=0

B.x-y=0

C.x-y+2=0

D.x+y+2=0

答案 C

解析圆x2+y2+4x-4y+4=0,即(x+2)2+(y-2)2=4,圆心C的坐标为(-2,2).

直线l过OC的中点(-1,1),且垂直于直线OC,易知k OC=-1,故直线l的斜率为1,直线l 的方程为y-1=x+1,即x-y+2=0.故选C.

4.若直线y=kx+2k与圆x2+y2+mx+4=0至少有一个交点,则m的取值范围是() A.[0,+∞) B.[4,+∞)

C.(4,+∞) D.[2,4]

答案 C

解析由y=k(x+2)得直线恒过定点(-2,0),因此可得点(-2,0)必在圆内或圆上,故有(-2)2+02-2m+4≤0?m≥4.又由方程表示圆的条件,故有m2-4×4>0?m<-4或m>4.综上可知m>4.故选C.

5.动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+22+1总有公共点,则圆C的面积()

A.有最大值8π

B.有最小值2π

C.有最小值3π

D .有最小值4π 答案 D

解析 设圆心为(a ,b ),半径为r ,r =|CF |=|a +1|, 即(a -1)2+b 2=(a +1)2,即a =1

4b 2,

∴圆心为(14b 2,b ),r =1

4b 2+1,

圆心到直线y =x +22+1的距离为 d =|b 2

4-b +22+1|2≤b 24+1,

∴b ≤-2(22+3)或b ≥2, 当b =2时,r min =1

4×4+1=2,

∴S min =πr 2=4π.

6.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为( ) A .1 B.3

2

C .2 3 D. 3 答案 D

解析 依题意,圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1,易知|PC |的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(

1

2|P A |·|AC |)=|P A |·|AC |=|P A |=|PC |2-1,因此四边形P ACB 的面积的最小值是22-1=3,故选D. 二、填空题

7.已知直线l 1与圆x 2+y 2+2y =0相切,且与直线l 2:3x +4y -6=0平行,则直线l 1的方程是________________.

答案 3x +4y -1=0或3x +4y +9=0

解析 依题意,设所求直线l 1的方程是3x +4y +b =0,则由直线l 1与圆x 2+(y +1)2=1相切,可得圆心(0,-1)到直线3x +4y +b =0的距离为1,即有|b -4|

5=1,解得b =-1或b =9.因此,

直线l 1的方程是3x +4y -1=0或3x +4y +9=0.

8.(2014·湖北)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=____. 答案 2

解析 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,

则∠AOB =90°.如图,此时a =1,b =-1, 满足题意, 所以a 2+b 2=2.

9.(2013·湖北)已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1(0<θ<π2).设圆O 上到直线l 的

距离等于1的点的个数为k ,则k =________. 答案 4

解析 圆心O 到直线l 的距离d =

1

cos 2θ+sin 2θ

=1,

而圆O 半径为5,所以圆O 上到l 的距离等于1的点有4个.

10.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是________. 答案 3+ 2

解析 依题意得圆x 2+y 2+kx =0的圆心(-k 2,0)位于直线x -y -1=0上,于是有-k

2-1=0,

即k =-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y

2=

1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=32

2,点P 到直线AB 的距离的

最大值是322+1,△P AB 面积的最大值为1

2×22×32+22=3+ 2.

三、解答题

11.(1)求圆心在x 轴上,且与直线y =x 相切于点(1,1)的圆的方程;

(2)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称,求圆C 的方程.

解 (1)根据题意可设圆心(a,0),则1-0

1-a =-1?a =2,即圆心为(2,0),半径r =(2-1)2+(0-1)2

=2,则所求圆的方程为(x -2)2+y 2=2. (2)设圆心为C (a ,b ),则?????

a -22+

b -22+2=0,

b +2

a +2=1,

所以?

????

a =0,

b =0,又P (1,1)在圆上,

所以圆C 的方程为x 2+y 2=2.

12.已知圆M 的方程为x 2+y 2-2x -2y -6=0,以坐标原点O 为圆心的圆O 与圆M 相切.

(1)求圆O 的方程;

(2)圆O 与x 轴交于E ,F 两点,圆O 内的动点D 使得|DE |,|DO |,|DF |成等比数列,求DE →·DF →

的取值范围.

解 (1)圆M 的方程可整理为(x -1)2+(y -1)2=8, 故圆心M (1,1),半径R =2 2. 圆O 的圆心为O (0,0), 因为|MO |=2<22,

所以点O 在圆M 内,故圆O 只能内切于圆M . 设圆O 的半径为r , 因为圆O 内切于圆M , 所以|MO |=R -r , 即2=22-r , 解得r = 2.

所以圆O 的方程为x 2+y 2=2. (2)不妨设E (m,0),F (n,0),且m

由?

????

x 2+y 2=2,y =0, 解得??? x =2,y =0,或?

??

x =-2,y =0,

故E (-2,0),F (2,0).

设D (x ,y ),由|DE |,|DO |,|DF |成等比数列, 得|DE |×|DF |=|DO |2,

即(x +2)2+y 2×(x -2)2+y 2=x 2+y 2, 整理得x 2-y 2=1.

而DE →=(-2-x ,-y ),DF →

=(2-x ,-y ), 所以DE →·DF →=(-2-x )(2-x )+(-y )(-y ) =x 2+y 2-2=2y 2-1.

由于点D 在圆O 内,故有?????

x 2+y 2<2,x 2-y 2=1,

得y 2<12,

所以-1≤2y 2-1<0, 即DE →·DF →

∈[-1,0).

13.已知△ABC 的三个顶点A (-1,0),B (1,0),C (3,2),其外接圆为⊙H .

(1)若直线l 过点C ,且被⊙H 截得的弦长为2,求直线l 的方程;

(2)对于线段BH 上的任意一点P ,若在以点C 为圆心的圆上都存在不同的两点M ,N ,使得点M 是线段PN 的中点,求⊙C 的半径r 的取值范围.

解 (1)线段AB 的垂直平分线方程为x =0,线段BC 的垂直平分线方程为x +y -3=0,所以外接圆圆心为H (0,3),半径为(-1)2+32=10, ⊙H 的方程为x 2+(y -3)2=10.

设圆心H 到直线l 的距离为d ,因为直线l 被⊙H 截得的弦长为2,所以d =10-1=3. 当直线l 垂直于x 轴时,显然符合题意,即x =3为所求; 当直线l 不垂直于x 轴时,设直线方程为y -2=k (x -3),则|3k +1|

1+k 2

=3,解得k =4

3,直线方程

为4x -3y -6=0.

综上,直线l 的方程为x =3或4x -3y -6=0. (2)直线BH 的方程为3x +y -3=0, 设P (m ,n )(0≤m ≤1),N (x ,y ), 因为点M 是线段PN 的中点, 所以M (m +x 2,n +y

2

),

又M ,N 都在半径为r 的⊙C 上, 所以????

?

(x -3)2

+(y -2)2

=r 2

,(m +x 2

-3)2+(n +y 2-2)2=r 2

. 即?

????

(x -3)2+(y -2)2=r 2,(x +m -6)2+(y +n -4)2=4r 2. 因为该关于x ,y 的方程组有解, 即以(3,2)为圆心,

r 为半径的圆与以(6-m,4-n )为圆心, 2r 为半径的圆有公共点,

所以(2r -r )2≤(3-6+m )2+(2-4+n )2≤(r +2r )2, 又3m +n -3=0,

所以r 2≤10m 2-12m +10≤9r 2对?m ∈[0,1]成立. 而f (m )=10m 2-12m +10 在[0,1]上的值域为[32

5,10],

故r 2≤32

5

且10≤9r 2.

又线段BH 与圆C 无公共点,

所以(m -3)2+(3-3m -2)2>r 2对?m ∈[0,1]成立, 即r 2<325

.

故⊙C 的半径r 的取值范围为[

103,4105

).

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考理科数学数学导数专题复习

高考理科数学数学导数专题复习

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 导数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:

1997年全国统一高考数学试卷(理科)

1997年全国统一高考数学试卷(理科) 参考答案与试题解析 一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=() A .{x|0≤x< 1} B . {x|0≤x< 2} C . {x|0≤x≤1}D . {x|0≤x≤2} 考点:交集及其运算. 分析:解出集合N中二次不等式,再求交集. 解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B 点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于() A .﹣6 B . ﹣3 C . D . 考点:直线的一般式方程与直线的平行关系. 专题:计算题. 分析: 根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行, ∴它们的斜率相等,∴=3,∴a=﹣6. 故选A. 点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是() A .B . C . D . 考点:正切函数的图象. 专题:综合题. 分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan() 的最小正周期为2π,排除B. 解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D

∵y=tan()的周期T==2π,故排除B 故选A 点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC ﹣A的大小为() A .B . C . D . 考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题. 专题:计算题. 分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的 其它边与角的关系,解三角形进行求解. 解答:解:如图所示,由三棱锥的三个侧面与底面全等, 且AB=AC=, 得PB=PC=,PA=BC=2, 取BC的中点E,连接AE,PE, 则∠AEP即为所求二面角的平面角. 且AE=EP=, ∵AP2=AE2+PE2, ∴∠AEP=, 故选C. 点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过 程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是() A .B . πC . 2πD . 4π 考点:三角函数的周期性及其求法. 分析:先将函数化简为:y=sin(2x+θ),即可得到答案. 解答: 解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x =sin(2x+θ) ∴T==π

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

高中化学步步高二轮复习全套课件专题二

[考纲要求] 1.了解物质的量的单位——摩尔(mol)、摩尔质量、气体摩尔体积、物质的量浓度、阿伏加德罗常数的含义。2.了解相对原子质量、相对分子质量的定义,并能进行有关计算。 3.理解质量守恒定律的含义。 4.能根据物质的量与微粒(原子、分子、离子等)数目、气体体积(标准状况下)之间的相互关系进行有关计算。 5.了解溶液的含义。 6.了解溶解度、饱和溶液的概念。 7.了解溶液的组成,理解溶液中溶质的质量分数的概念,并能进行有关计算。 8.了解配制一定溶质质量分数、物质的量浓度溶液的方法。 (一)洞悉陷阱设置,突破阿伏加德罗常数应用 题组一气体摩尔体积的适用条件及物质的聚集状态 1.正误判断,正确的划“√”,错误的划“×”。 (1)2.24 L CO2中含有的原子数为0.3N A(×) (2)常温下,11.2 L甲烷气体含有的甲烷分子数为0.5N A(×) (3)标准状况下,22.4 L己烷中含共价键数目为19N A(×) (4)常温常压下,22.4 L氯气与足量镁粉充分反应,转移的电子数为2N A(×) (5)标准状况下,2.24 L HF含有的HF分子数为0.1N A(×) 突破陷阱 抓“两看”,突破“状态、状况”陷阱 一看“气体”是否处于“标准状况”。 二看“标准状况”下,物质是否为“气体”(如CCl4、H2O、Br2、SO3、HF、己烷、苯等在标准状况下不为气体)。 题组二物质的量或质量与状况 2.正误判断,正确的划“√”,错误的划“×”。 (1)常温常压下,3.2 g O2所含的原子数为0.2N A(√) (2)标准标况下,18 g H2O所含的氧原子数目为N A(√) (3)常温常压下,92 g NO2和N2O4的混合气体中含有的原子数为6N A(√) 突破陷阱

1992年全国统一高考数学试卷(理科)

1992年全国统一高考数学试卷(理科) 一、选择题(共18小题,每小题3分,满分54分) 1.(3分) 的值是( ) A . B . 1 C . D . 2 2.(3分)如果函数y=sin (ωx )cos (ωx )的最小正周期是4π,那么常数ω为( ) A . 4 B . 2 C . D . 3.(3分)极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是( ) A . 2 B . C . 1 D . 4.(3分)方程sin4xcos5x=﹣cos4xsin5x 的一个解是( ) A . 10° B . 20° C . 50° D . 70° 5.(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是( ) A . 6:5 B . 5:4 C . 4:3 D . 3:2 6.(3分)图中曲线是幂函数y=x n 在第一象限的图象.已知n 取±2,±四个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为( ) A . ﹣2,﹣,,2 B . 2,,﹣,﹣2 C . ﹣,﹣2,2, D . 2 ,,﹣2,﹣ 7.(3分)若log a 2<log b 2<0,则( ) A . 0<a <b <1 B . 0<b <a <1 C . a > b >1 D . b >a >1 8.(3分)直线(t 为参数)的倾斜角是( )

A . 20° B . 70° C . 45° D . 135° 9.(3分)在四棱锥的四个侧面中,直角三角形最多可有( ) A . 1个 B . 2个 C . 3个 D . 4个 10.(3分)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A . x 2+y 2﹣x ﹣2y ﹣=0 B . x 2+y 2+x ﹣2y+1=0 C . x 2+y 2﹣x ﹣2y+1=0 D . x 2+y 2﹣x ﹣ 2y+=0 11.(3分)在(x 2+3x+2)5的展开式中x 的系数为( ) A . 160 B . 240 C . 360 D . 800 12.(3分)若0<a <1,在[0,2π]上满足sinx≥a 的x 的范围是( ) A . [0,arcsina ] B . [arcsina ,π﹣arcsina ] C . [π﹣arcsina ,π] D . [arcsina ,+arcsina ] 13.(3分)已知直线l 1和l 2的夹角平分线为y=x ,如果l 1的方程是ax+by+c=0,那么直线l 2的方程为( ) A . b x+ay+c=0 B . a x ﹣by+c=0 C . b x+ay ﹣c=0 D . b x ﹣ay+c=0 14.(3分)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( ) A . B . C . D . 15.(3分)已知复数z 的模为2,则|z ﹣i|的最大值为( ) A . 1 B . 2 C . D . 3 16.(3分)函数y=的反函数( ) A . 是奇函数,它在(0,+∞) 上是减函数 B . 是偶函数,它在(0,+∞)上是减函数 C . 是奇函数,它在(0,+∞) 上是增函数 D . 是偶函数,它在(0,+∞)上是增函数 17.(3分)如果函数f (x )=x 2+bx+c 对任意实数t 都有f (2+t )=f (2﹣t ),那么( ) A . f (2)<f (1) B . f (1)<f (2) C . f (2)<f (4) D . f (4)<f (2)

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

【步步高】2019版高考化学(全国通用)考前三个月专题1 物质的组成、分类及化学用语

[高考关键词] 1.标准与分类、俗名与物质类别。2.变化——物理变化、化学变化。3.化学用语——化学式、电子式、结构式、方程式。4.古文中蕴含的化学知识。 1.有下列10种物质:①明矾②消石灰③小苏打 ④SiO2⑤氯水⑥蛋白质溶液⑦生石灰 ⑧Na2O2⑨漂白粉⑩淀粉 (1)属于纯净物的是________,属于碱性氧化物的是________,属于酸式盐的是________,属于离子化合物的是________。 (2)属于混合物的是________,其中属于溶液的是__________,其中属于胶体的是__________。 答案(1)①②③④⑦⑧⑦③①②③⑦⑧ (2)⑤⑥⑨⑩⑤⑥ 2.下列变化中属于化学变化的是________。 ①煤的干馏②蒸馏③重油裂化④煤的气化 ⑤焰色反应⑥钝化⑦电镀⑧胶体聚沉⑨氧气转化为臭氧⑩137I转变为131I 答案①③④⑥⑦⑨

3.按要求用化学用语表示下列物质。 (1)乙烯的结构式:________,结构简式:________。 (2)Na2O2、H2O2、HClO的电子式________________、____________、 ____________。 (3)MgCl2、NaOH、NaH的电子式________________、____________、 ____________。 答案(1)CH2===CH2 (2) (3) 4.判断下列说法是否正确,正确的打“√”,错误的打“×”。 (1)物质发生化学变化时,物质的总能量和总质量保持不变( ) (2)电解质溶液导电时,必然伴随着化学变化( ) (3)H2SO4、SO2、CH3COOH、NH3·H2O均为共价化合物( ) (4)因为Fe2O3是金属氧化物,所以它能与水反应生成碱( ) (5)非金属氧化物不一定是酸性氧化物,但酸性氧化物一定是非金属氧化物( ) (6)Al2O3可与盐酸和氢氧化钠反应,SiO2可与氢氟酸和氢氧化钠反应,因而二者均属于两性氧化物( ) (7)铁粉加入FeCl3溶液中的反应既属于化合反应,又属于离子反应,还属于氧化还原反应( ) 答案(1)×(2)√(3)√(4)×(5)×(6)×(7)√

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

高考数学二轮专题复习 数学思想方法

高考数学二轮专题复习 数学思想方法 【考纲解读】 1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想. 2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系. 【考点预测】 1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。 2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。 3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。 【要点梳理】 1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。 2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数. 3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。分类的原则是:不重复、不遗漏、分层次讨论。分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。 4.转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。 【考点在线】 考点一 函数与方程思想 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f -1 (x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐

相关文档
最新文档