高速铁路大跨度连续梁拱徐变研究

高速铁路大跨度连续梁拱徐变研究
高速铁路大跨度连续梁拱徐变研究

万方数据

万方数据

高速铁路大跨度连续梁拱徐变研究

作者:许三平

作者单位:中铁第四勘察设计院集团有限公司,湖北,武汉,430063

刊名:

中国水运(下半月)

英文刊名:CHINA WATER TRANSPORT

年,卷(期):2010,10(5)

参考文献(5条)

1.石现峰.王澜.万家无砟轨道混凝土桥梁的徐变变形研究[期刊论文]-石家庄铁道学院学报 2007(01)

2.王书庆徐变自动增量分析方法及其实现[期刊论文]-同济大学学报(自然科学版) 2000(2)

3.郭向荣阳澄湖特大桥动力特性及列车走行性分析报告 2009

4.铁道科学研究院高速铁路线桥结构与技术条件的研究总报告 1996

5.王鹏大跨度预应力混凝土连续刚构桥施_L控制研究 2007

本文读者也读过(10条)

1.蒋波.季日臣.JIANG Bo.JI Ri-chen高速铁路无碴轨道预应力连续梁徐变影响分析[期刊论文]-河南城建学院学报2010,19(4)

2.彭秋艳轨道交通预应力砼梁的徐变控制研究[学位论文]2006

3.崔幼飞.Cui Youfei大跨度无碴轨道混凝土连续梁桥的施工计算及徐变变形研究[期刊论文]-石家庄铁道学院学报(自然科学版)2008,21(3)

4.荆州长江公路大桥主梁高性能混凝土徐变试验[期刊论文]-中国公路学报2006,19(4)

5.叶梅新.刘杰.YE Mei-xin.LIU Jie无碴轨道桥梁高强混凝土徐变变形的试验研究[期刊论文]-石河子大学学报(自然科学版)2009,27(1)

6.沈松勇.王艳林.SHEN Songyong.WANG Yanlin高速铁路桥梁梁体徐变的观测与计算[期刊论文]-人民长江2010,41(20)

7.赵海博.喻泽红T梁徐变效应及其上拱度计算[期刊论文]-中国水运(下半月)2009,9(5)

8.薛伟辰.王巍.XUE Wei-chen.WANG Wei城市轻轨预应力混凝土轨道梁徐变性能试验研究[期刊论文]-铁道学报2006,28(6)

9.张晔芝高速铁路连续结合梁的响应分析[期刊论文]-铁道学报2002,24(6)

10.刘杰.叶梅新大跨度无碴轨道桥梁后期徐变变形试验研究[会议论文]-2008

本文链接:https://www.360docs.net/doc/5616275445.html,/Periodical_zgsy-xby201005080.aspx

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

高速铁路客运专线常用跨度桥梁设计

1 绪论 1.1 概述 自1964年世界上第一条高速铁路—日本东海道新干线建成以来,日本、法国、德国、西班牙、比利时、英国、韩国等国已经建成并投入使用的时速250km高速铁路已达6350多km。可以说铁路客运专线是一个国家经济社会发展到一定程度是适应交通运输要求的必然产物。按照国务院审议通过的?中长期铁路网规划?,到2020年,我国铁路运营里程将达到10万km,其中客运专线1.2万km。目前已经开工建设的京津、武广、郑西等高标准的铁路客运专线规模已达3200多km。铁路客运专线建设是一个庞大的系统工程,在基础工后沉降、无碴轨道技术、系统集成等方面环节多,技术难度大,虽然有秦沈客运专线建设的经验,但尚没有采用无碴轨道客运专线系统成熟的经验。在客运专线铁路建设中尚有一些问题需要统筹考虑以保证我国未来铁路客运网的安全、先进和合理。 1.2 客运专线的线路选线 铁路客运专线建设应充分体现“以人为本、服务运输、强本简末、着眼发展”的铁路建设新理念,由于其铁路建设标准,线路选线的控制因素多,难度大,但线路选线的优化与合理性直接关系铁路和地方经济社会的发展,所以,是客运专线建设重视的首要问题。 在客运专线引入特大、大城市区段的铁路,建议加强客运专线移入地下的设计方案研究。我国城市扩容的潜力很大,这是经济社会发展的需要,也是我国人口多的国情实际,铁路作为百年大计应充分考虑今后城市发展需要,不对其造成过多的制约。从国外高速铁路的经验看,轨道交通在进入大城市的主城区时,引入地下对城市的发展制约相对要小,比如日本东京、法国巴黎等国际都市的地铁和城郊铁路大多采用这种方式。由此带来的问题是铁路建设投资成本的增加,到这部分投资的增加主要受益者是城市本身,应调动相关地方政府的积极性,研究确定铁路与地方政府合理的投资比例加以解决。 1.3 京津城际轨道交通工程概况 京津城际轨道交通是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道。线路由北京南站东段引出,沿京津高速公路第二通道至杨村,后沿京山铁路至天津站,正线全长113.544km。2005年7月4日正式开工建设,将于2008年奥运会前正式通车运营,是我国开工建设并将最早建成的第一条高速客运专线铁路,即一流的工程质量、一流的装备水平、一流的运营管理。采用国际上最先进的无碴轨道技术,确保列车高速平稳舒适运行,使京津两地间实现30分钟到达。 京津城际轨道交通全线桥梁总长度100.171km。其中最长的桥梁为杨村特大桥,全桥长36.5km;该桥最大跨度大128m. 1.4 京津城际轨道交通桥梁工程特点 ①技术标准高 全线采用无杂轨道技术,桥梁必须满足高速客运专线无杂轨道铁路技术标准要求,桥梁的动力性能、刚度指标、变形控制等均达到目前国内铁路桥梁技术标准最高水平; ②桥梁长度占线路长度的比例高 桥梁总长度占线路长度比例达88.22%,其中以32、24m等常用跨度桥梁均占全线桥梁总长度的90%以上; ③自然条件复杂,桥梁工程难度大 沿线处于华北冲积平原,大部分地段分布有广泛的软土和松软土,地基承载力不高,

高速铁路桥梁高墩专项施工方案

目录 1.编制依据和原则.................................................................. - 1 - 1.1.编制依据.................................................................. - 1 - 1.2.编制原则.................................................................. - 1 - 2.工程概况........................................................................ - 1 - 2.1.工程概况.................................................................. - 1 - 2.2.气象特征.................................................................. - 2 - 2.3.水文地质.................................................................. - 2 - 3.人员及机械部署.................................................................. - 2 - 4.施工进度计划.................................................................... - 3 - 5.高墩施工方案.................................................................... - 4 - 5.1.圆端形实体高墩施工........................................................ - 4 - 5.2.圆端形空心高墩施工....................................................... - 10 - 6.安全保证措施................................................................... - 16 - 6.1制度保证措施.............................................................. - 16 - 6.2机械安全保证措施.......................................................... - 18 - 6.3高空作业安全保证措施...................................................... - 18 - 6.4桥梁施工安全基本要求...................................................... - 20 - 7.质量保证措施................................................................... - 20 - 7.1质量保证体系.............................................................. - 20 - 7.2 质量保证措施............................................................. - 23 - 7.3 冬季施工措施............................................................. - 28 - 7.4 夏季施工措施............................................................. - 31 - 8.环境保护措施................................................................... - 34 - 8.1 临时工程环保措施......................................................... - 34 - 8.2 废水、废渣处理措施....................................................... - 35 - 8.3防止空气污染和扬尘措施.................................................... - 35 - 8.4施工噪音控制措施.......................................................... - 35 - 8.5施工水土保持措施.......................................................... - 36 - 9.文明施工措施................................................................... - 36 - 9.1文明施工管理措施.......................................................... - 36 - 9.2文明施工措施.............................................................. - 37 -

大跨度预应力混凝土连续梁

建筑与工程 46 科技展望 2014/12 摘 要:混凝土连续梁从主筋配置上分为钢筋混凝土连续梁和预应力混凝土连续梁。对于曲线半径过小的匝道桥,不宜设计成预应力结构;从结构上来看一般有等高度连续梁、变高度连续梁、连续刚构、连续V?构等四种,本文主要讲述变高度连续梁。变高度连续梁适用于跨度小于25m ~200m 的结构中。 关键词:结构特点?预应力体系?施工?计算 中图分类号:TU201 文献标识码:A 文章编号:1672-8289(2014)12-0046-01 大跨度预应力混凝土连续梁 钟?娟 (武汉市山海桥梁设计咨询有限公司,湖北?武汉?430000) 1结构特点1.1 桥跨 L 边/L 中一般为0.55~0.6,以不超过中跨长度的0.65倍为宜。1.2梁高 (1)曲线变高度连续梁。根部高跨比1/15~1/18;跨中高跨比1/30~1/50。 (2)梁高变化曲线。曲线变高度连续梁梁底曲线一般采用抛物线,抛物线方程指数一般取1.5~2。1.3 顶板厚 顶板厚度一般为25~32cm 。1.4 底板厚 跨度较大时,底板厚度从跨中向根部逐步变厚。根部底板厚度可取跨径的1/140~1/170,或梁高的1/10~1/12;跨中底板厚度的最小值可取预应力管道直径的2.5 倍,一般为30cm ~35cm 。厚度沿纵向变化一般为二次抛物线。1.5 腹板厚 一般为40~80cm ,板厚由跨中向支承处逐步加厚,可以将变化段设在L/4 处;腹板厚度不应小于35cm ,如有下弯束通过,还要满足构造要求。1.6 悬臂板 悬臂板长2.5~4.5m , 悬臂端部厚度一般取0.16~0.22m ,悬臂根部厚度一般为0.4~0.6m 。超过3m 设横向索。1.7 桥面横坡的形成 桥面横坡一般通过以下几种方法: (1)铺装垫层成坡:优点:设计简单;缺点:不经济;常用于窄桥中。 (2)顶板成坡:优点:铺装简单;缺点:会造成腹板高度不一致,箱梁细部设计繁琐;常用于一般变高度箱梁中。 (3)旋转成坡:优点:设计简单;缺点:施工不方便;常用于单坡箱梁中。2 预应力体系 2.1 纵向预应力体系 应配置适当的腹板下弯束,以改善箱梁腹板的主拉应力,锚固位置位于距顶面2/3位置附近。底板钢束应尽量靠近腹板布置,钢束应平弯靠近腹板锚固,锚固板下齿板不宜连成整体。2.2 竖向预应力体系 一般情况下,竖向预应力宜作为安全储备,不参与主拉应力计算。必要时,按0.5倍效应考虑。竖向预应力筋滞后2~3节段张拉。一般采用精轧螺纹钢筋,并采用二次张拉工艺,以保证其有效性。2.3 横向预应力体系 横向预应力采用扁锚体系,单端张拉。横向预应力束滞后2~3节段张拉。3 施工 3.1 支架现浇 整联现浇,施工中无体系转换。该方法桥梁整体性好,但是需要大量支架,施工周期长,施工费用较高;一般只适用于桥址地形平坦、地面土质较好、且桥梁净空较低的情况。3.2 支架逐孔现浇 该工艺分为移动模架法和移动(局部满堂)支架法。施工快速,施工费用低,但对于移动模架法来说需要一定的项目工程规模才能体现出优势;对一般项目,如果桥址能满足1 中的条件,采用移动(局部满堂)支架法能体现出一定的经济优势。3.3 悬臂施工 包含悬臂现浇和悬臂拼装法,是国内最常见的中大跨径连 续梁施工方法,具有适用性、经济性好,但施工体系转化次数多,线形较难控制的特点。4 截面验算及结果处理 直线连续箱梁一般采用平面杆系分析程序计算,主要采用桥博和MIDAS 软件。曲线半径小于300m 或一联对应圆心角大于1弧度的连续箱梁宜按照曲线桥梁进行计算。4.1 正常使用状态下正截面及斜截面抗裂 (1)按照规范《D62》第6.3.1 条验算,按全预应力构件设计。 (2)具体验算项目:短期效应组合最大拉应力、短期效应组合最大主拉应力。 (3)对于竖向预应力钢筋,应谨慎对待其力学效果,计算中尽量不计入其效应。 (4)拉应力超标处理方式:加钢束,或减钢束(上缘超标可减下缘钢束,下缘超标可减上缘钢束);主拉应力超标处理方式:加钢束,调腹板束,调整腹板厚度。4.2 应力验算 (1)持久状况下箱梁计算截面的应力,需满足《D62》第7.1.5 条、7.1.6 条的规定。内容包正截面混凝土法向压应力、受拉钢束的拉应力和斜截面混凝土主压应力。应力计算的组合采用标准值组合,汽车荷载考虑冲击系数。 (2)短暂状况下施工阶段的验算也按照应力验算的原则计算。需满足《D62》第7.2.8 条的规定。 (3)压应力和主压应力超标处理方式:减钢束;钢束应力超标处理方式:降低张拉控制应力。4.3 挠度验算和预拱度设置 (1)预应力构件的挠度计算按《D62》第6.5.3~6.5.4 条计算; (2)注意规范《D62》第6.5.5 条规定的预拱度是成桥预拱度,不能直接作为施工立模的依据。 4.4 持久状况下承载能力极限状态下正截面及斜截面强度 (1)正截面强度验算应保证最大轴力、最大弯矩、最小轴力、最小弯矩组合工况都能够满足要求。 (2)相对受压区高度应尽量满足规范要求,一般将其限至在箱梁底板或顶板范围内,若受压区侵腹板,则受压区高度将难以控制在ξb 内,而使结构破坏形态属于脆性破坏。此时,宜增大结构尺寸或提高混凝土标号。 (3)构件截面应满足最小配筋率要求。对预应力混凝土构件,截面抗力应大于开裂弯矩。 (4)按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.10 条进行检算,若满足该条,则不可进行抗剪计算。若不满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.10 条,则应按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)5.2.9 条进行检算,若不满足,需要改变截面尺寸,重新进行纵向计算。 参考文献: [1]中建标公路委员会.公路工程技术标准(JTG?B01-2003)[M].北京:人民交通出版社,2004. [2]中交公路规划设计院.公路桥涵设计通用规范(JTG?D60-2004)[M].北京:人民交通出版社,2004. [3]中交公路规划设计院.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG?D62-2004)[M].北京:人民交通出版社,2004.[4]孙广华.曲线梁桥计算[M].北京:人民交通出版社,1997.

连续梁连续刚构桥

连续梁、连续刚构桥 一、等截面连续梁 1、等截面连续梁,构造简单施工方便,适用于中等跨径(20~60米),25米以下可选用钢筋混凝土连续梁桥,较大跨径采用预应力混凝土连续梁桥。小跨径布置一般用于高速公路的跨线立交桥、互通立交的匝道桥、环形立交桥及其他异形桥梁,较大跨径多用于接线引桥。可采用预制装配或就地浇筑施工。 2、连续梁桥常采用有支架施工法、逐孔现浇法、架设施工法、移动模架法和顶推施工法。 3、等截面连续梁桥的跨径、截面形式和主要尺寸 等截面连续梁桥的总体布置及主要尺寸见下表 等截面连续梁总体布置及主要尺寸 (1)等截面连续梁可选用等跨和不等跨布置。当标准跨径较大时,为考虑减少边跨正弯矩,可使边跨小于中跨,边跨与中跨的比在0.6~0.8左右。 (2)跨径小于15米,一般选用矩形截面;15~30米可采用T形或工字形截面;大于30米的可采用箱形截面。钢筋混凝土连续梁桥跨度不大时,可首先考虑采用板式(包括空心板)和T形截面。当需要采用箱形断面时,也可以采用低矮的多室箱,很少采用宽的单室箱。 (3)等截面连续梁的梁高,一般高跨比采用1/15~1/25。采用顶推法施工,从施工阶段受力要求考虑,梁高与顶推跨径之比选在1/12~1/17为宜。 (4)截面形式与桥宽关系。对于小跨径的城市高架桥或立交匝道桥,为求最小建筑高度,常用板式或肋板式截面,而在较大跨径时主要采用箱形截面。箱梁在横向布置,主要与桥宽有关。单箱室常用于桥宽在14米以内;单箱双室截面一般用于桥宽12~18米;超过18米的可以采用单箱多室或分离箱。 (5)板厚与梁高。板式截面分为实体截面和空心截面,实体截面多用于小跨径,且以支架现浇施工为主,板厚约为1/22~1/18L(L为跨径);空心截面的板厚为0.8~1.0米,顶、

高速铁路桥梁主要设计原则

高速铁路桥梁主要设计原则 1. 一般原则 为了满足高速列车安全运行和旅客乘坐舒适度的要求,高速铁路桥梁结构应具有安全舒适,造型简洁,设计标准化,便于施工架设和养护维修的特点,并须具有足够的耐久性和良好的动力性能。正是基于上述基本要求,桥梁上部结构一般采用预应力混凝土结构,下部结构一般采用混凝土或钢筋混凝土结构。跨度大于或等于20m的梁部结构,采用双线整孔箱形截面梁,必要时,也可采用两个错孔布置的单线箱形截面梁。跨度小于20m的梁部结构,一般采用钢筋混凝土刚构、框构和多片式T梁,多片式T梁需施加横向联结形成整体桥面。简支梁桥的上部结构一般采用架桥机架梁,中小跨度连续梁桥一般采用架桥机架设后连续张拉的施工方法,有条件的地方,也可采用满布支架现浇施工。大跨度预应力混凝土梁采用悬臂灌注施工。 高速铁路桥梁设计主要依据《京沪高速铁路设计暂行规定》(以下简称《暂规》)、《铁路桥涵基本设计规范》、《铁路桥涵钢结构设计规范》、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》、《铁路桥涵混凝土和砌体结构设计规范》、《铁路桥涵地基和基础设计规范》、《铁路工程抗震设计规范》、《新建铁路桥上无缝线路设计暂行规定》等规程或规范。根据上述规范,高速铁路桥梁的主要设计原则主要体现在以下几个方面: (1)设计活载采用ZK活载,动力系数、离心力、制动力、横向摇摆力、脱轨荷载等均按《暂规》计算,并考虑由于桥上铺设超长无缝线路而产生的长钢轨纵向力。 (2)为了保证桥上轨道的平顺性和结构具有良好的动力性能,对结构刚度和基频进行严格控制。 (3)为了保证桥上无缝线路保持正常的使用状态,增加了墩台最小纵向水平线刚度限值的要求。 (4)对基础工后沉降及不均匀沉降严格限制。 (5)提高桥梁结构的整体性。 (6)桥面构造更为合理,满足各种桥面设施的安装要求,采取了提高结构耐久性、减振降噪等措施,满足养护维修的要求。 2. 桥涵设计细则 (1)梁跨结构及标准跨度 1)高速正线V≥200Km/h时,标准梁跨采用京沪高速铁路标准梁;200Km/h>V≥160Km/h 时可采用秦沈线标准梁。 采用的标准梁跨有: 多片式简支T梁:L=12、16m。 简支箱梁:L=20、24、32、40m。 中小跨度连续梁:3×20、2×24、3×24、2×32、3×32、4×32、2×40。 连续箱梁:32+48+32m、40+64+40m、48+80+48m。 连续结合梁:32+40+32、40+50+40、40+56+40m。 2)高速动车段走行线、高中速联络线V≤160Km/h时,可采用采用普通梁。 (2)桥跨布置 1)除受控制点影响外,尽量按等跨布置,等跨布置以32m、24m梁跨为主。一座桥尽量采用同一梁跨类型。 2)跨越河堤的桥孔应尽量一孔跨越,堤上及边坡上不宜设墩,如确有困难,桥墩应设在背水坡。特殊困难时,另行研究。 3)斜交过路过河时,尽量采用较大跨度通过,可采用双线圆形桥墩,可采用异形墩或带洞式背靠背T台进行调孔。

连续梁刚构

客专铁路 桥梁监理应知应会(二)连续梁(刚构)

目录 1 预应力混凝土连续梁(刚构)悬浇------------------------------2 1.1 悬浇施工程序简介---------------------------------------------------2 1.2 施工工序流程--------------------------------------------------------2 1.3 T构0#段施工------------------------------------------------------ 3 1.4 挂篮悬浇梁段施工-------------------------------------------24 1.5 边直段施工----------------------------------------------------24 1.6 合龙段施工----------------------------------------------------25 1.7 梁体结构(尺寸)施工要求--------------------26 1.8 线型控制-------------------------------------------------------27 1.9 施工安全-------------------------------------------------------28

2 预应力混凝土连续梁(刚构)悬拼-----------------------------29

高速铁路桥梁综述

高速铁路桥梁综述 【摘要】高速铁路桥梁在高铁建设中起到了至关重要的作用,我国高速铁路桥梁的建设发展迅速,与实际工程结合中也凸显其特色。本文全面介绍了高速铁路桥梁的特点,我国高速铁路桥梁的主要设计标准及主要结构型式,提出了在基础理论研究、新技术的应用方面与国外存在的差距及急需解决的问题。 【关键词】高速铁路桥梁;发展;特点;结构形式 前言 高速铁路桥梁可分为高架桥、谷架桥和跨越河流的一般桥梁。其中,高架桥用以穿越既有交通路网、人口稠密地区及地质不良地段,通常墩身不高,跨度较小,桥梁往往长达十余公里;谷架桥用以跨越山谷,跨度较大,墩身较高。由于桥梁建设投资规模大,列车高速运行时对桥上线路的平顺性要求高,特别是采用无渣轨道技术后,对桥梁的变形控制提出了更高的要求,因此高速铁路桥梁是我国高速铁路建设中重点研究的问题之一。 1 高速铁路桥梁的发展现状: 桥梁建设作为高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。以京沪高速铁路为例,它经过的区域是东部经济发达地区,京沪高速铁路桥梁总长达1060km,桥梁比重为80%。我国通过借鉴德国、日本等国高速铁路桥梁先进技术和成功建设经验,逐渐完善技术的同时形成自己的特色。 2 高速铁路桥梁的特点 桥梁是高速铁路土建工程的重要组成部分,与普通铁路桥梁相比,在数量、设计理念及方法、耐久性要求、养护维修等诸多方面都存在较大差异。其特点可归纳为以下几个方面: (1)高架桥所占比例大。主要原因是在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。 (2)大量采用简支箱梁结构形式。根据我国高速铁路建设规模、工期要求和技术特点,通过深入的技术比较,确定以32m简支箱梁作为标准跨度,整孔预制架设施工。 (3)大跨度桥多。据统计,在建与拟建客运专线中,100m以上跨度的高速桥梁至少在200座以上。其中,预应力混凝土连续梁桥的最大跨度为128m,预应力混凝土刚构桥的最大跨度为180m。

大跨度连续刚构桥的研究和发展

大跨度连续刚构桥的研究和发展 (所属杂志:此文章来自原稿)发布时间:2008-07-16 已阅读:1290 张伟,胡守增,韩红春,张勇 (西南交通大学土木工程学院桥梁系,四川成都610031) 摘要:介绍大跨度连续刚构桥的桥型特点,分析了连续刚构桥的结构受力特点,以及应用和发展现状,并以武汉军山长江公路大桥为例对其进行探讨;同时介绍了对连续刚构桥设计,施工控制等方面的创新方面的内容。 关键词:大跨径;连续刚构桥;桥型特点;受力特点 中图分类号:U448.23 文献标识码:A 就当代技术水平而言,大跨度、特大跨度桥梁无论是在设计理论、施工方法、建桥材料等方面都存在自身固有的特点和困难,这些问题解决的合理程度,不仅直接影响着大跨度桥梁的发展,制约着大跨度桥梁建设的经济效益,而且影响着交通事业的发展以及人类征服自然的历史进程。 在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构—连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁固结代之以设置支座的连续结构。 连续刚构是将连续梁的桥墩与梁部固结,以减小支座处的负弯矩和增

强结构的整体性。由于墩属小偏压构件,故与连续梁的桥墩相比配筋并不增加很多,而梁体受力则更为合理,因而在同等条件下连续刚构要比连续梁更为经济。此外,墩梁固结也在一定程度上克服了大吨位支座设计与制造的困难,也省去了连续梁施工过程中墩梁临时固结、合拢后再行调整的这一施工环节。 1连续刚构桥的结构受力特点、应用及现状 1.1 结构受力特点 连续刚构桥由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展:具有一个主孔的单孔跨径已达 270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用下,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构—连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构—连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具

浅谈我国高速铁路桥梁的特点

浅谈我国高速铁路桥梁的特点 发表时间:2019-01-18T10:41:56.390Z 来源:《防护工程》2018年第31期作者:刘忠华[导读] 桥梁建设作为高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。 中建二局第三建筑工程有限公司北京 100070 摘要:近年来,随着我国经济快速发展,高速铁路的建设得到不断地提升。高速铁路桥梁在高铁建设中起到了至关重要的作用,我国在建造高速铁路桥梁的技术相比以前有了非常快速度的发展。高速的铁路建设技术需求也越来越高,这也是现代关键技术重要的一部分。本文以我国高速铁路桥梁建设中的设计和施工为论点,简要论述我国高速铁路桥梁的特点。 关键词:高速铁路桥梁;发展;特点 1.高速铁路桥梁发展现状 桥梁建设作为高速铁路土建工程的重要组成部分,主要功能是为高速列车提供平顺、稳定的桥上线路,以确保运营的安全和旅客乘坐的舒适。在人口稠密地区和地质不良地段,为了跨越既有交通网,节省农田,避免高路基的不均匀沉降等,我国各地区高速铁路建设中大量采用高架线路。近些年我国通过借鉴德国、日本等国高速铁路桥梁先进技术和成功建设经验,逐渐完善技术的同时形成自己的特色。 2.我国高速铁路桥梁的特点 2.1 桥梁占比大,高架多、大跨度桥梁多 高速铁路在建设中通常为控制地基的沉淀,避免大量占用农田以及保护环境、利于保养等宗旨来综合考虑。在经过桥梁和路基工程技术的比较之后,我国高速铁路在平原、地质不良地段以及人口和建筑密集地区,通常采用高架桥通过。例如广珠城际铁路桥梁所占线路比例为94.2%,京津城际铁路桥梁所占线路比例为87.7%,京沪铁路桥梁所占线路比例为80.5%,哈大客专铁路桥梁所占线路比例为73.7%。 其中京津城际铁路,全线桥梁共计100.3km,约占正线全长的87%。其中特大桥5座,长99.56km。大量采用双线整孔箱梁结构,以32m简支箱梁为主,跨越主要河流、道路采用连续梁,最大跨度为跨北京四环(60+128+60m)加劲拱连续梁、五环桥跨(80+128+80m)连续梁。 由于我国国情影响,高速铁路需要跨越大江大河,例如长江、黄河所以我国大跨度铁路桥梁多。据统计,在建与拟建客运专线中,100m以上跨度的高速桥梁至少在200座以上。其中,预应力混凝土连续梁桥的最大跨度为128m,预应力混凝土刚构桥的最大跨度为180m。钢桥的最大跨度为504m。 2.2大量采用简支箱梁结构形式 根据我国高速铁路建设规模、工期要求和技术特点,通过深入的技术比较,确定我国常用跨度桥梁以等跨布置的32m双线整孔预应力混凝土简支箱梁为主型结构,少量配跨采用24m简支箱梁。施工方法主要采用沿线设置预制梁厂进行箱梁预制,运梁车、架桥机运输架设。部分采用移动模架、膺架法桥位灌筑。我国新建高速铁路桥梁中90%以上为32m预应力混凝土简支箱梁结构。跨越公路、站场、河流等跨度较大的桥梁主要采用预应力混凝土连续箱梁,根据结构跨度布置、类型和工期要求,多采用悬臂、膺架法施工。 2.3桥梁刚度大,整体性好 桥上线路与路基上、隧道中的线路不同,由于桥梁结构在列车活载通过时产生变形和振动,并在风力、温度变化、日照、制动、混凝土徐变等因素作用下产生各种变形,桥上线路平顺性也随之发生变化。因此,每座桥梁都是对线路平顺的干扰点。尤其是大跨度桥梁。 为了保证高速列车的行车安全和乘坐舒适,高速铁路桥梁除了具备一般桥梁的功能外,还必须具有足够大的竖向和横向刚度以及良好的整体性,以防止桥梁出现较大挠度和振幅。同时,还必须严格控制由混凝土产生的徐变上拱和不均匀温差引起的结构变形,以保证轨道的高平顺性。 2.4无砟轨道桥梁建设 无砟轨道的高速铁路桥梁多数具有弹性均匀、轨道稳定、乘坐舒适度进一步改善。线路平、纵断面参数限制放宽,曲线半径减小,坡度增大。在施工架设方面以及养护维修的环节都有方便之处。无砟轨道基本类型有,轨道板工厂预制、现场铺设——日本板式轨道、德国博格型无砟轨道,现场就地灌筑——德国雷达型无砟轨道(长枕埋入式、双块式)。我国目前对高速铁路桥梁的无砟道桥梁的建设设计研究已然娴熟。 2.5桥上无缝线路与桥梁共同作用 修建客运专线要求一次铺设跨区间无缝线路,以保证轨道的平顺和稳定。桥上无缝线路可看作为不能移动的线上结构,而桥梁在列车荷载、列车制动作用下和温度变化时要产生位移。当梁、轨体系产生相对位移时,桥上钢轨会产生附加应力。客运专线桥梁必须考虑梁轨共同作用。尽量减小桥梁的位移与变形,以限制桥上钢轨的附加应力,保证桥上无缝线路的稳定和行车安全。我国采用“无缝线路”轨道作用的标准规程,根据一系列的模型分析实验,论证了理论的可实行性,规定了相对的技术范围。 2.6高性能混凝土技术 自2001年我国修建青藏铁路以来,高性能混凝土逐渐在我国高速铁路的施工中得到了广泛的运用。根据我国的自然环境特点,以及材料工艺水平和装备度来看,在建造高速铁路桥梁的过程中采用了高性能的混凝土这种优质的原材料。高性能混凝土具有以下优点:抗冻性,我国地域辽阔,不同地区的环境和气候差异较大,因而其寒冷程度不同,对高速铁路中混凝土结构的抗冻性要求也就不同。不同的高速铁路工程应仔细分析其施工环境,并以此来确定对高性能混凝土抗冻性的要求。 抗裂性,综合对各方面性质的考量,高性能混凝土地收缩量较普通混凝土来说是比较小的,因而其抗裂性也就相对较高。高速铁路对混凝土的抗裂性要求往往较高,因而高速铁路中大量使用高性能混凝土。 抗渗性,由于高性能混凝土中往往添加了高效减水剂和硅粉等,这不但有效提高了高性能混凝土内部的密度,也使其抗渗性能大大提升。而抗渗性又是反映高性能混凝土强度和使用寿命的一个重要指标,因而作为一种抗渗性能优越的混凝土材料,高性能混凝土更适用于对使用寿命要求较高的高速铁路的混凝土结构的施工。

高速铁路桥涵工程施工质量验收标准

根据最新下发的施工质量验收标准,我部将简支梁架设规范摘录出来,便于各部门学习: 《高速铁路桥涵工程施工质量验收标准》TB10752-2010 第一章架桥机架设预应力混凝土简支箱梁 1、架梁 8.4.1梁体规格和质量应符合设计要求。(P63) 8.4.2梁体存放和运输支点位置应符合设计要求。且支点应位于同一平面上,箱梁同一端支点相对高差不得大于2mm。架设时吊点位置应符合设计要求。(P64) 8.4.2预制箱梁架设落梁应采用支点反力控制,支承垫石顶面与支座底面间隙灌浆硬化前,每个支点反力与四个支点反力的平均值之差不得超过±5%。支座砂浆强度达到20MPa,千斤顶撤出后方可通过运架设备。(P64) 8.4.4预制箱梁架设后的相邻梁跨梁端桥面之间、梁端桥面与相邻桥台胸墙顶面之间的相对高差不得大于10mm。预制箱梁桥面高程不得高于设计高程,也不得低于设计高程20mm。(P64) 8.4.5 预制箱梁支承垫石顶面与支座底面间的砂浆厚度不得小于20mm,也不得大于30mm。(P64) 8.4.6梁体架设后应梁体稳固,梁缝均匀,梁体无损伤。(P64) 2、支座 15.1.1支座安装前应检查桥梁跨度、支承垫石尺寸和高程、预 留锚栓孔位置和尺寸等。支承垫石和锚栓孔应清理干净,做到无

泥土、无浮沙、无积水、无冰雪和油污等杂物,并对支承垫石顶 面进行凿毛处理。(P158) 15.1.2预制箱梁架设完成后应保证每个支座反力与四个支座反力的平均值相差不超过±5%。(P158) 15.1.3支座防尘罩应及时安装,并应做到严实、牢固、栓钉齐全,防尘罩开启不应与防落梁装置或梁端限位装置相抵触。(P158) 15.2 支座安装 15.2.1支座品种、规格、质量和调商量等应符合设计要求和相关标准的规定。(P158) 15.2.2支座的安装位置及方向应符合设计要求。同一座桥梁上固定支座和纵向活动支座应安装在梁的同一侧,横向活动支座与 多向活动支座应安装在梁的另一侧。(P158) 15.2.3固定支座上下座板应互相对正,活动支座上下座板横向应对正,纵向预偏量应根据支座安装施工温度与设计安装温度之 差和梁体混凝土未完成收缩、徐变量及弹性压缩量计算确定,并 在各施工阶段进行调整,当体系转换全部完成时梁体支座中心应 符合设计要求。(P159) 15.2.4支座锚栓应拧紧,其埋置深度和外露长度应符合设计 要求。(P159) 15.2.5支座砂浆的类别和质量应符合设计要求,其施工及检验应符合铁道部现行《铁路混凝土工程施工质量验收标准》(TB10424-2010)第9.9.6条~第9.9.13条的规定。(P159)

连续梁、连续刚构桥梁施工

连续梁、连续刚构桥梁施工 《铁路预应力混凝土连续梁(刚构)悬臂浇筑施工技术指南》TZ324-2010 该标准为推荐性标准,施工单位可选择使用 术语 连续梁:沿梁长方向有三处或三处以上由支座支承的梁; 连续刚构:梁与中间墩刚性连接的连续梁结构; 《高速铁路桥涵工程施工技术指南》铁建设[2010]241号术语 连续梁、连续刚构、刚构桥,施工方法均可采用悬臂浇筑法,主要的设备为挂篮,施工前根据施工图纸,设计挂篮形式并经过计算。 第117页第13章混凝土连续梁、连续刚构 模板、钢筋、混凝土应按照《铁路混凝土施工技术指南》(铁建设[2010]241号)施工要求规范施工 连续刚构施工时,挂篮焊接拼装和高空立体交叉作业较多,施工过程中应加强控制各个关键节点的工序质量及安全管控措施。严格执行现行规范《铁路桥涵工程施工安全技术规程》TB10303-2009 3.1.6 桥涵工程施工按照《铁路工程施工组织设计指南》(铁建设[2009]26号)的规定编制施工组织设计,加强控制工程、重难点及高风险工程的管理。 重难点及高风险体现在具体的工程条件,如高墩、超高墩连续刚构,或者施工条件极端不利的工程均属于重难点工程范畴,高墩悬臂浇筑采用拼装挂篮,本身高空作业频繁,属于高风险工程,施工时应加强施工过程的管控。

施工时应根据具体的工程条件编制详细的施工组织设计和相应的专项施工方案、安全施工专项方案及应急预案。 3.4.3 施工单位应编制实施性施工组织设计及关键工序的作业指导书,明确施工作业标准和要求。 4.3.1 桥涵工程开工前,应根据设计文件、施工调查报告和承包合同编制施工组织设计。 一般以单独的一座大桥或特大桥为单位工程编制详细的施工组织设计。详细的规定以《高速铁路桥涵工程施工质量验收标准》TB10752-2010,3.2工程施工质量验收单元划分; 施工时应根据每座桥梁的复杂程度,编制各个分部工程的专项施工方案。 高墩翻模属于墩台身专项施工方案,空心高墩、实体墩台模板设计应单独编制模板设计计算书及设计图纸,作为方案的附件; 模板验算时需要用到的数据 《铁路混凝土施工技术指南》铁建设[2010]241号 模板工程第10页至第15页 模板设计《钢结构设计规范》GB50017,《木结构设计规范》GB50005,4.2.6 模板及支架的刚度应符合: 结构外露表面和直接支承混凝土重力的模板计算挠度不得大于构件跨度的1/400; 承台尺寸较大时,模板承受混凝土侧压力较大,应对模板刚度、强度进行验算,确定采用的模板类型及型式,采用钢模板强度、刚度较大,

《高速铁路桥涵工程施工质量验收标准》TB 10752-2018更改

3基本规定 一般规定 1.新增 高速铁路桥涵工程施工应加强现场标准化管理和过程控制。 工程施工质量保证资料应齐全、真实、系统、完整,并应包括: 所用原材料、构配件、半成品和成品质量检验结果。 材料配合比、拌合过程检验和实验数据。 隐蔽工程检查记录。 各项质量控制指标的实验记录和质量检验汇总资料。 施工过程中遇到的非正常情况记录以及对工程质量影响分析。 施工过程中发生质量缺陷,经处理和,满足质量要求的技术资料。 工程施工质量验收合格应符合工程设计文件要求、本标准和相关验收标准的规定。 符合下列条件之一的,可调整抽样检验、实验数量、调整后的抽样检验、实验方案应由施工单位编制、并报监理单位、建设单位审核确认。 同一项目中由相同的施工单位施工的多个单位工程,使用同一生产厂家的同品种、同规格、同批次的材料、构配件、半成品、设备。 同一施工单位在现场加工的产品、半成品、构配件用于同一项目的多个单位工程。 在同一项目中,针对同一抽样对象已有检验成果可以重复利用。 获得产品认证的产品来源稳定且连续三批次均一次检验合格的产品。 对于梁拱等组合结构可按相关章节内容进行验收。 本标准对高速铁路桥涵工程中的验收项目未做出相应规定的,应有建设单位组织设计、监理、施工等单位制定专项验收方案。涉及安全、环境保护等项目的专项方案应由建设单位组织专家论证。 验收单元划分 新增 分项工程应按工种、工序、材料、施工工艺等划分。 检验批可根据施工及质量控制和验收需要,按施工段、施工部位或工程量的划分。检验批的划分以同一分项工程内部便于一次验收的工程内容为一个检验批。 桥梁、涵洞工程的分布工程、分项工程、检验批划分可按本标准附录B采用。 原材料、构配件、半成品、设备等应按进场批次进行检验。属于同一工程项目且同期施工的多个单位工程,对同一厂家生产的同批次的原材料、构配件、半成品、设备等可同一进行验收。 施工前,应由施工单位结合工程特点制定分项工程和检验批的划分方案,并由监理单位审批,建设单位备案。 本标准未涵盖的分布、分项工程和检验批,可由建设单位组织监理、施工单位协商确定。 验收内容和要求 检验批合格质量应符合下列规定新增5外观质量验收应符合要求6施工作业责任人员登记情况真实、全面。 当工程施工质量不符合规定时,因按下列规定进行处理新增了原经返修或加固处理的分项工程,满足安全和使用功能时,可按技术处理方案的要求验收。 新增 工程质量控制资料应齐全完整,当部分资料缺失时,应委托由资质的检测机构按有关标准进行相应的实体检验或抽样实验。 新增

相关文档
最新文档