Extraction of cluster parameters with future Sunyaev-Zel'dovich observations

Extraction of cluster parameters with future Sunyaev-Zel'dovich observations
Extraction of cluster parameters with future Sunyaev-Zel'dovich observations

a r

X

i

v

:a

s t

r o

-

p

h

/

2

1

2

3

9

2v

2

1

2

M

a

y

2

3

Extraction of cluster parameters with future Sunyaev-Zel’dovich observations Nabila Aghanim ?,Steen H.Hansen ?,Sergio Pastor §and Dmitry V.Semikoz ??IAS-CNRS,B?a timent 121,Universit′e Paris Sud F-91405Orsay,France ?Institute for Theoretical Physics,Univ.of Zurich,Winterthurerstrasse 190,CH-8057Zurich,Switzerland §Institut de F′?sica Corpuscular (CSIC/Universitat de Val`e ncia),Ed.Institutos de Investigaci′o n,Apdo.22085,46071Valencia,Spain Max-Planck-Institut f¨u r Physik (Werner-Heisenberg-Institut),F¨o hringer Ring 6,80805Munich,Germany ?Institute of Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a,Moscow 117312,Russia Abstract.The Sunyaev-Zel’dovich (SZ)e?ect of galaxy clusters is characterized by three parameters:Compton parameter,electron temperature and cluster peculiar velocity.In the present study we consider the problem of extracting these parameters using multi-frequency SZ observations only.We show that there exists a parameter degeneracy which can be broken with an appropriate choice of frequencies.As a result we discuss the optimal choice of observing frequencies from a theoretical point of view.Finally,we analyze the systematic errors (of the order μK)on the SZ measurement introduced by ?nite bandwidths,and suggest a possible method of reducing these errors.E-mail:Nabila.Aghanim@ias.u-psud.fr ,hansen@pegasus.physik.unizh.ch ,pastor@ific.uv.es ,semikoz@mppmu.mpg.de

1.Introduction

The interaction of the Cosmic Microwave Background Radiation(CMBR)photons with the free electrons in the ionized gas of clusters of galaxies produces a small change in the intensity known as the Sunyaev-Zel’dovich(SZ)e?ect.This distortion arises from the transfer of photons from the low-energy to the high-energy or Wien side of the planckian spectrum.The underlying physics of the SZ e?ect is well understood and a quantitative description was given by Sunyaev&Zel’dovich[1],who already realized its cosmological signi?cance.Nowadays there exists reliable observations of the SZ e?ect (see e.g.[2,3,4])and dedicated experiments are being prepared,which will provide information about the kinematics and evolution of clusters,which in turn can be used to extract cosmological parameters(see e.g.[5,6,7]for recent reviews).

The intensity change of the CMBR caused by the SZ e?ect is proportional to the Comptonization parameter,

y c= dl T e

(e x?1)2 x(e x+1)

x4e x

T e

-6-4

-2

2

4

6

8100200300400

500600

?I / I 0 y c freq (GHz)?I T - ?I T (T e =0)?I k

NR ?I T ?I total Figure 1.The normalized intensity change caused by the thermal and kinetic SZ

e?ects for the choice T e =15keV and v p =500km/sec.The solid line is the non-

relativistic SZ e?ect.The dashed lines are the relativistic corrections,both alone and

together with the thermal e?ect.The dot-dashed lines are the kinetic SZ e?ect,both

alone and together with the thermal e?ect.

The total intensity change is just the sum of the thermal and kinetic SZ e?ects,

?I total =?I T +?I K ,(5)

and it is characterized by three parameters:y c ,T e and v p .The di?erent contributions to the SZ distortion are presented in ?gure 1,where the total intensity change in (5)is compared to the thermal e?ect with vanishing temperature (the ?rst term in (2)).The kinetic SZ e?ect and the contribution of the relativistic corrections (the second term in

(2))are presented for the parameter choice T e =15keV and v p =500km /s.

Let us emphasise that all 3SZ parameters can in principle be extracted from multi-frequency observations of the SZ e?ect.This is because the frequency dependence of the SZ e?ect is di?erent for the di?erent parameters.This is clear from ?gure 1,where one can see that the main e?ect (the non-relativistic SZ e?ect characterized by the comptonization parameter,y c )has one crossing with the zero-line.The kinetic e?ect (governed by v p )has no crossings of the zero-line,and the relativistic e?ect (governed by T e )crosses the zero-line twice.Thus with several observing frequencies placed optimally and with good sensitivity,one can extract all 3SZ parameters as we describe in detail in section 6.

In this paper we discuss the possibilities for future SZ observations to extract these 3cluster parameters,taking into account the parameter degeneracies described in section 2.To this end we try to extract the 3SZ parameters from a set of simulated galaxy clusters with realistic temperatures and peculiar velocities,using the sensitivities of upcoming experiments like ACT and Planck.In section 6,we discuss the optimal observing frequencies from a theoretical point of view.Finally,we analyze in section 7

Figure2.The intensity change for3di?erent clusters,normalized at150GHz.The

solid line is T=5keV,v p=?145km/sec and the dotted is T=7keV,v p=?260

km/sec.These two are virtually indistinguishable.The dashed line is T=6keV,

v p=0km/sec,which di?ers signi?cantly for large frequencies.

the systematic error introduced by a?nite frequency bandwidth,which may be as large as fewμK and hence important for the next generation of SZ observations.

2.Parameter degeneracies

When one estimates the expected error-bars of a given experiment,it is always important to consider the e?ect of parameter degeneracies.This is naturally also true when considering the SZ e?ect.Let us clarify that by degeneracies we mean that two sets of parameters give an indistinguishable intensity change due to the limited sensitivity of the observations.In other words,the extracted values of y c,v p and T e from the same experiment will have larger error bars for some of the clusters than for others.

The degeneracy between the3SZ parameters depends on the chosen value of the parameters,e.g.if the peculiar velocity is large and positive,then it is virtually impossible to adjust the temperature and comptonization parameter to mimic the e?ect on the intensity change of the peculiar velocity.On the other hand,for large and negative peculiar velocities,such imitation is possible.In?gure2the solid and dotted lines are virtually indistinguishable.They are with T=5keV,v p=?145km/sec and T=7keV,v p=?260km/sec respectively,the comptonization parameter is normalized to make the intensity change agree at150GHz.For comparison we see,that the dashed line,T=6keV,v p=0km/sec,also normalized to agree at150GHz,can more easily be distinguished.As a speci?c example,let us consider a hypothetical experiment,with4 frequencies at90,181,220and330GHz,with1μK sensitivity.With3test clusters all with the same temperature,T=6keV and comptonization parameter,y c=2×10?4,

Figure3.2σcontour plots for an experiment with4frequencies at90,181,220and

330GHz,with1μK sensitivity.The3clusters have the same temperature T=6keV

and comptonization parameter,y c=2×10?4,but have di?erent peculiar velocities,

v p=?200,0,+200km/sec.

but with di?erent peculiar velocities,v p=?200,0,+200km/sec.The resulting2σerror-contours are given?gure3,and it is clear from the?gure,that whereas the temperature error-bars are virtually independent of the real value of v p(always about±1keV),then the error-bar of v p is strongly dependent,and may di?er from10km/sec for v p=+200 km/sec to70km/sec for v p=?200km/sec,i.e.by a factor of7.Hence it is important to consider a range of cluster parameters when one wants to make predictions about future experiments.

In this paper we therefore use realistic simulations of clusters of galaxies(described below),and the error-bars will not be for a speci?c cluster,but instead presented for a large samples of clusters.

3.Simulated clusters

In order to produce a large sample of clusters with realistic temperatures, comptonization parameters and peculiar velocities,one must basically use an extended Press–Schechter formalism.Let us here discuss the details of the used simulation which closely follows[18].

The physical parameters(temperature,core and virial radii,central electron density,...)used to describe the clusters are computed according to their mass and redshift.In the following,we use the most favoured cosmological model with critical density described by the following cosmological parameters:the reduced Hubble constant h=0.70,cold dark matter density parameter?cdm=0.12h?2,baryonic density parameter?b=0.02h?2,total matter density parameter?M=?cdm+?b,and a

cosmological constant?Λ=1??M=0.714.

The cluster core radius R c is related to the virial radius R v through the parameter p=R vir/R c,where we use p=10[19].The virial radius is given by the following equation

R vir=

(G M)1/3

(3πH0)2/3

1

R c 2 ?3β/2,(8)

where n0is the central electron density andβis a parameter describing the steepness of the pro?le.The X-ray brightness pro?les of galaxy clusters mostly agree withβ=2/3, which is the value we use.Finally knowing the virial radius,we can derive the central electron density n0from the gas mass of the cluster M G using the following relation M G ?b

2β H2(z)?c

of the initial density perturbations,the initial power spectrum P(k)gives a complete description of the velocity?eld through the three–dimensional rms velocity(v rms) predicted by the linear gravitational instability for an irrotational?eld at a given scale R[25].This velocity is given by

v rms=a(t)H f(?,Λ) 1

v rms √2v2

rms

)

which is fully described by v rms.This prediction is in agreement with numerical simulations.The velocity of each cluster(at mass M associated with the scale R) is then randomly drawn from the Gaussian distribution.

Thus we have produced a large sample of realistic galaxy clusters each with their true comptonization parameter,temperature and peculiar velocity,and we will in the next sections consider this sample as being what can be observed in future all-sky observations.

4.General method

In this section,we present the method used to answer the following question:How well can a multi-frequency experiment measure the physical cluster parameters(namely T e, v p and y)?For a given simulated cluster,we have the true value of the parameters, T t e,v t p and y t c.With these values we can calculate what the true SZ signal should be at each frequency,and then the sensitivity of the experiment gives us an estimate of the expected observational error-bars at each frequency.Now given this observed SZ signal(with its error-bars),we can try to deduce the3parameters T d e,v d p and y d c,and corresponding error-bars,and we can then compare with the true values,T t e,v t p and y t c.

To deduce the parameters we have developed a method which in3steps?nds the central value and1σerror-bars of each parameter.The code is an extension of the method developed in Hansen et al.[28].First,we?nd the approximate5σregion in y c (in the range10?6.5

In the approach described above,we have assumed that no external information is known about the observed value.In that case,all three parameters are derived from

the SZ observations.We can relax this assumption by allowing the temperature T e to be known at±10%accuracy,e.g.from X-rays observations.The temperature is in that case in the limited range of±10%around the real temperature.This would be true for a limited sample of clusters,however,the X-ray observations are time consuming, so one might not want to rely on them for large cluster surveys.By doing this,we estimate the importance of priors on the temperature on the determination of the deduced parameters.

5.Application to CMBR and SZ experiments

5.1.The ACT experiment

Let us consider the Atacama Cosmology Telescope(ACT),a proposed future SZ experiment[29].This experiment will observe at3frequencies(150,220and270GHz), with0.9?1.7′resolution,and an expected sensitivity of2μK per pixel[30].The ACT team expects conservatively to observe~103galaxy clusters through the SZ e?ect.

In order to test the capabilities of ACT to the determination of the cluster parameters,we analyze a subsample with the500hottest clusters of our simulation (which with the chosen cosmological parameters lie in the range3.6

We?nd that the comptonization parameter can be deduced with1σerror-bars of 10%when the temperature is unknown,whereas the results are about2%with prior temperature information.These accuracies are obtained for a cluster with y c≈10?4. For a Compton parameter about ten times smaller the accuracy is still very good?15% without prior and?6%if the temperature is known to10%.We also notice that the error-bars are not symmetric for the unknown temperature case,being larger for positiveδy c/y t c,which is because a larger y c can be compensated by a simultaneous larger temperature and larger negative peculiar velocity.

The results for the peculiar velocity show a strong e?ect of the degeneracies discussed in section2,namely positive peculiar velocities will be extracted with much smaller error-bars than negative peculiar velocities.In the case with known temperature (always within10%)this degeneracy is almost completely broken,the error-bars are almost symmetric,and of the order10?20%for most peculiar velocities.

5.2.An experiment with4frequencies

As we saw above,a SZ experiment measuring at3frequencies like ACT produce large error-bars when trying to extract all3SZ parameters simultaneously.One way around this problem is to have prior knowledge of the temperature,which thus e?ectively reduces the number of parameters to two.This improves the accuracy with which the parameters are determined.

Another way around this problem is to increase the number of frequencies of observation.As an example,we show in?gures4and5the1σerror-bars resulting from3di?erent runs.Two of these have no prior information about the SZ parameters. The?rst(open squares)is the same as discussed above,namely3frequencies centred on150,220and270GHz and sensitivity2μK.The second run(stars)is an extension of ACT,with one extra observing frequency added at90GHz.As can be seen on the?gures,the error-bars for both y c and v p become smaller and more symmetric,an indication of breaking of the degeneracy.Unfortunately,the level of accuracy reached in this way is far from what was achieved using the prior on the temperature.This is because contrary to the previous case,one then has to solve for the values of all three parameters.One should keep in mind that it may not be realistic to expect X-ray measured temperatures for that many clusters,and that additional observing frequencies thus might be an interesting alternative.For comparison,we have also calculated the1σerror-bars when the electron temperature is restricted to the range T e<5keV(which is true for most clusters in our subsample),presented in?gures4and5with triangles. Making such model-dependent assumption(temperatures restricted to the range T e<5 keV)is essentially the same as having prior temperature knowledge.

An alternative to add a new frequency band to the ACT experiment could be to measure the SZ e?ect of the same clusters with a di?erent experiment.An example is the Atacama Large Millimetre Array(ALMA)project,which has a frequency centred on35GHz with precision up to a fewμK[31].Such low frequencies are very good in restricting the dominating comptonization parameter.The main feature of ALMA will be a very good angular resolution up to scales of a few to tens of arc-seconds,which will lead to high resolution SZ images.

5.3.Planck mission

The Planck satellite[32]will be observing the millimetre and sub-millimetre wavelengths in nine frequencies.It is thus natural to investigate how well the three SZ parameters can be extracted with the Planck sensitivity.Such analysis was?rst made by Pointecouteau et al.[33],with the simplifying assumption of vanishing peculiar velocity.As discussed above,due to the parameter degeneracy such simpli?cation should not be made.In the present study,we rather take explicitly into account the kinetic SZ e?ect in order to deduce all three cluster parameters.It is worth making the remark that the component separation algorithms for Planck are so e?cient that even though the exact shape of the SZ e?ect is unknown(due to relativistic corrections)the SZ contamination will not

Figure4.The deduced versus the real comptonization parameter for the upcoming SZ survey ACT with3observing frequencies150,220and270GHz,and an extension of it with one extra channel at90GHz.The open squares(stars)are the1σerror-bars for ACT(ACT+90)when we have no prior information on the SZ parameters. For comparison,the triangles are the1σerror-bars when the electron temperature is restricted to the range T e<5keV.

Figure5.Same as?gure4for the peculiar velocity v p.

Figure6.The1σerror-bar on the deduced Compton parameter y c for the Planck

satellite.The open squares are with no prior temperature knowledge,and the stars

are when the temperature is known within10%.

Figure7.Same as?gure6for the peculiar velocity v p.

be a problem for the CMBR analysis[34].

We assume that the central Planck frequencies(44,70,100,143,217and353 GHz)are observing with sensitivities(2.4,3.6,1.7,2.0,4.3and14.4μK).We do not include the lowest and highest frequencies(30,545,and857GHz)which are dominated by other astrophysical sources(point sources,dust),and will thus be used to remove the contaminants.Assuming that the6central frequencies have a clean SZ signal is naturally too ambitious,and our results will therefore provide an upper bound on the abilities of Planck.Also Planck will for most clusters not provide any temperature determination,although we note again that this is partly because of the low

Figure8.1σerror-bars on T e as a function of the observing sensitivity for a cluster

with T e=5keV,v p=200km/sec and y=2×10?4.The solid line is for an experiment

with3observing frequencies centred at150,220and270GHz(ACT-like).The dashed

and dot-dashed lines include one additional observing frequency,at90GHz or330

GHz respectively.

temperatures of our subsample.The1σerror-bars on the deduced Compton parameter and peculiar velocities are shown in?gures6and7.

The comptonization parameter will be determined to about2%and10-15%for y c=2×10?4and y c=2×10?5respectively.A10%temperature knowledge will only improve these numbers slightly.The peculiar velocity will only be determined within a factor of a few,however,a10%temperature knowledge will improve this to about 20-50%.

5.4.Extracting the cluster temperatures

Our previous results tell us that extracting the electron temperatures from the data of the studied SZ experiments is problematic due to the limited sensitivities.We have calculated the error-bars on T e for a speci?c cluster(T e=5keV,v p=200km/sec and y=2×10?4)as a function of the sensitivity.The result is shown in?gure8.The solid line is for an ACT-like experiment with3observing frequencies placed at150,220and 270GHz.As one sees,to reach?T e of the order1keV one must have a sensitivity of about0.5μK.However,by introducing one additional channel the errors can be signi?cantly reduced.In particular with an extra measurement at90GHz,one can reach?T e of1keV(4keV)already with1μK(4μK)sensitivity.We thus emphasize that future SZ observations with several observing frequencies should be able to extract the electron temperature directly without the need for independent X-ray information.

Good temperature sensitivities are expected for the next generation of SZ experiments.For instance the South Pole Telescope(SPT)is a new and ambitious

project[35],that will use the SZ e?ect to search for and count10,000clusters of galaxies and cover4000squared degrees per year.This telescope will consist of a single 8meter primary dish,accompanied by an array of1,000bolometers,and will measure temperature di?erences with an accuracy of0.1μK.With several observing frequencies and such impressive sensitivity one will be able to deduce the electron temperature purely from SZ observations.

We remark that SZ can probe the outermost regions of clusters better than X-ray observations,simply because the SZ e?ect decreases like n e,whereas X-ray brightness decreases as n2e.Thus with direct SZ temperature observations and good angular resolution one can?nd the density pro?le of the outer cluster region,which directly allows one to infer the outer dark matter density pro?le[36].This dark matter pro?le has not been measured yet at such very large radii,but is predicted from N-body simulations to beρ~r?3.

6.Optimal frequency choice for a SZ experiment

The question of an optimal choice of observing frequencies for the SZ e?ect has been posed a long time ago and is motivated by the fact that one wants to measure both the thermal and kinetic SZ e?ects.The measurement of both e?ects has great importance for cosmology since it allows to probe the clusters physics(through thermal SZ)and the matter distribution at large scales(through kinetic SZ,see for instance Dor′e et al.

[37]).In order to attain this goal,one needs to have observations at several frequencies in the positive and negative part of the intensity change.In particular,one should have an observation near218GHz,where the thermal e?ect vanishes(?gure1,solid line).At this frequency one can theoretically measure the kinetic e?ect directly(?gure9,dashed line)which happens to be maximal at this frequency.In a recent paper[38]it was pointed out,that217GHz may not be an optimal frequency when one observes with only3frequencies.We will discuss observations with more than3frequencies for which such arguments may not apply.

A future,optimal and dedicated SZ experiment could possibly have many observing frequencies.Let us here discuss,from a theoretical point of view,which frequencies would be preferable.Basically we want to extract all3SZ parameters,and the actual frequency choice depends upon which parameters we want to extract most precisely,and whether we have prior information such as a temperature determination from X-rays. In order to address the question of optimal frequency choice,we start by re-computing the frequency dependence of both thermal and kinetic SZ e?ects in view of the most recent developments in the https://www.360docs.net/doc/5d16506650.html,ly,we compute the thermal e?ect in its exact form,i.e.including the corrections for the relativistic e?ects according to Dolgov et al.

[12].The3dash-dotted lines in?gure9are the relativistic contributions to the thermal e?ect,for cluster temperatures T e=5,10and15keV.That is,for a given temperature one can calculate?I(T e),and the3dot-dashed curves are thus?I(T e)??I(T e=0), normalized to I0y c.As is clear from the?gure,this quantity is approximately zero

Figure9.The3dash-dotted lines are the relativistic contributions to the thermal

e?ect for temperatures5,10and15keV.The short-dashed line is ten times the

relativistic correction to the kinetic SZ e?ect(long-dashed line)for v p=200km/sec

and T e=10keV.

around181GHz and again near475GHz.This feature is almost independent of the temperature in the?rst case,but not for the frequency region around475GHz.

We have also included in?gure9the kinetic SZ e?ect(long-dashed line)for a peculiar velocity of200km/sec,while the short-dashed line is the small relativistic correction to it[17,16],enlarged10times.That is,for a given temperature and peculiar velocity one can calculate?I kin(v p,T e),and the short-dashed curve is thus,?I kin(v p,T e)??I kin(v p,T e=0).The particular case shown was calculated for T e=10 keV.Thus,if one wants to di?erentiate between variations in the background CMBR signal and the kinetic SZ signal,then one should use these corrections,and place observing frequencies at the zero and extrema of the short-dashed curve.The relativistic correction to the kinetic e?ect is proportional to v p T e,and for a10keV cluster with very large peculiar velocity1000km/sec,this e?ect is about a factor10smaller than the relativistic correction to the thermal e?ect.We have seen that the temperature roughly can be detected through the relativistic correction to the thermal e?ect with an observing sensitivity about1μK,so one should have at least0.1μK sensitivity(the expected sensitivity of SPT)in order to distinguish between variations in the background CMBR signal and the kinetic SZ e?ect.

First of all,to extract the dominating comptonization parameter y c,one should pick a frequency where the relativistic corrections to the thermal and the kinetic SZ e?ects give small contributions.Clearly,which is well known,the smaller frequencies are good in this respect(see e.g.[38]for a recent discussion).Thus if one wants to remain in the atmospheric window,then a frequency of90GHz is good(a smaller frequency is even better if the point sources can be acceptably removed).It turns out,however,that an

Figure10.A hypothetical experiment with sensitivity of1μK,with only4frequencies

placed for optimal temperature determination.Open squares are with no prior

temperature knowledge,stars are with10%temperature information.

equally good frequency is near475GHz(?gure9).At this frequency,the contributions from both the kinetic SZ e?ect and the relativistic corrections are very small,while at the same time the thermal SZ e?ect is still quite signi?cant.Observations at such large frequencies would require a careful removal of dust contamination,which can be achieved by?tting the observations at several even higher frequencies to a dust model. The resulting?t can be extended down to lower frequencies in order to extract the dust from the signal[33,39].

Let us now concentrate on the cluster temperature.One can in theory extract the temperature using the relativistic corrections to the thermal e?ect.To do so one should choose frequencies where the relativistic contribution(dot-dashed lines in?gure9)is maximal and zero[40].The maxima are near120and330GHz,and as discussed above the zero points are at181GHz and near475GHz.On the other hand,in order to extract the peculiar velocity one has to measure the kinetic SZ e?ect(dashed line,?gure9)which reaches its maximum near217GHz.The relativistic corrections to the kinetic SZ e?ect(long dashed line,?gure9)are maximal near200and510GHz,and disappear near310GHz.

As a speci?c example of the parameter extraction,let us consider an experiment with4frequencies and sensitivity of1μK.Let us try to extract the temperature as well as possible.Due to the importance of the comptonization parameter we choose 30GHz(assuming that point sources can be removed).For the temperature itself we choose the maximum and zero of the dot-dashed lines,namely181and330GHz. To remove the e?ect of peculiar velocity we include as the last frequency220GHz. The results are presented in?gure10.One?nds that for a cluster of5keV and comptonization parameter of3×10?5,that with only4frequencies,one can extract

all3parameters simultaneously with1σerror-bars(open squares)of about2keV, 10?6for y c,and v p about50%.For larger cluster temperatures the temperature will be extracted with better precision,since the relativistic corrections to the thermal SZ e?ect are more important.With prior knowledge about the temperature of10%(stars), then the precision on y c is improved by almost a factor of2,and the precision on v p with almost a factor of5.It is therefore clear again,that prior temperature knowledge is very important and should be included if one considers small cluster samples.It is even crucial when one wants to deal with the proper motion of the galaxy clusters and the large scale motions.

7.Bandwidth and precision of measurements

We have so far been discussing how well a given experiment with fewμK sensitivity can extract the cluster parameters,however,for this discussion to be relevant we must make sure thatμK sensitivity is achievable.As we will see below,systematic errors as large asμK can appear simply through the?nite bandwidths,and such systematic errors cannot easily be removed even in principle.

The distortion of the CMBR caused by the SZ e?ect can be formally de?ned through an e?ective change of temperature for each frequency

?T(x)=T0?I(x)

x4e x

,(13)

which is only a formal representation of the SZ distortion,since strictly speaking temperature is not a well de?ned quantity when the photons are not in equilibrium. The above expression is derived from the relation?I(x)=I0x3(f?f0)assuming that x?T(x)/T0?1,and can have corrections of the order x?T(x)/T0,which can be important for precise measurements.However,we will consider eq.(13)as an exact de?nition of the e?ective temperature di?erence in order to avoid confusions.

The SZ e?ect in terms of temperature di?erence from eq.(13)is shown in?gure11 for cluster parameters y c=2×10?4,T=5keV and v p=?200km/sec.The typical values of?T~100?500μK are more than two orders of magnitude larger than the desired precision of future experiments,which are of the order0.1?5μK.In this section, we investigate the e?ects of a?nite frequency bandwidth,which can be comparable to, or even larger than,the expected error-bars of future SZ experiments.

Let us start with the SZ e?ect in the non-relativistic approximation,and emphasize the well known fact that one must use the exact shape of the SZ e?ect when reducing the observations in a given bandwidth to just one https://www.360docs.net/doc/5d16506650.html,ually the experiments detect all photons which fall inside of a bandpass with?nite width±δνaround a central frequencyνmid and extremaνmax andνmin.However,because the energy of photons in the atmospheric window is unknown,the resulting?ux should be rescaled to the central frequency.In the non-relativistic case this is simple,because the functional shape of the

Figure11.The SZ e?ect in terms of an e?ective?T from

(13)

for y c=2×10?4, T e=5keV and v p=?200km/sec.

Figure12.Shift in the non-relativistic SZ e?ect from?nite bandwidth(δν=10,20,30

and40GHz)with a broad top-hat?lter,if the shape of the SZ e?ect is ignored.The

40GHz?lter gives the larger e?ect.Parameters are the same as in?gure11.

SZ e?ect is known,

?I exp(νmid)

νmax?νmin νmaxνmin dν(f0(ν)?f0(νmid)).(15) There are two possible sources of error in(15).First,the central frequency might not be at the exact centre of the band,νmid=(νmin+νmax)/2.It was recently shown

Figure13.The systematic error in the SZ e?ect from?nite bandwidth with a broad

top-hat?lter that arises from the shape of the SZ e?ect when taking into account the

relativistic corrections for y c=2×10?4and T e=5keV(δν=10,20,30and40GHz

top-hat?lter,where the40GHz?lter gives the larger e?ect).

that bandpass errors at the10%level are acceptably small for Planck[41].Second,the band can be wide enough that the shape of the SZ e?ect becomes important.We show in?gure12what the error would be if one does not take the shape of f(x)into account. The curves correspond toδν=10,20,30and40GHz.Fortunately,such error can be taken into account exactly from equations3,14and15.

Now,let us consider the case including relativistic corrections,where the exact shape is a priori unknown,

?I exp(νmid)

νmax?νmin νmaxνmin dν(δf(ν,T e)?δf(νmid,T e))(17) is the bandwidth error from the relativistic corrections to the thermal SZ e?ect.This error is shown for bandwidthsδν=10,20,30and40GHz in?gure13.From this ?gure we conclude that,if the experimental precision is better than~5μK and the frequency bands are large enough,one should take into account the correction from (17).This error will increase for larger temperatures and may also have important contribution from non-zero peculiar velocities,which will shift the shape and zero-point of?gure13slightly.The main problem of taking into account the error?1(δν)in (17)is that the electron temperature is a priori unknown.Thus,by using the non relativistic form in eq.(3),to reduce the observations in a given bandwidth to one single frequency,one will always have a systematic error as large as shown in?gure13.

The simplest way to avoid such error is to reduce the bandwidth,but this would lead to a reduction in the signal to noise and would increase the statistical error-bars.A possible procedure to signi?cantly reduce this systematic errors could be the following. First,reduce to one frequency,taking into account only?0from(15)(that is,assume the non-relativistic form).Afterwards,one?nds the best?t point in the parameter space(y c,v p,T e).Finally,one can recalculate everything,taking into account?1(δν)for the reduction to one frequency(that is,using the real form of the SZ e?ect including temperature corrections and peculiar velocity),and subsequently?nd the new best?t point values for the SZ parameters.

8.Conclusions

We have pointed out that there are parameter degeneracies for the Sunyaev-Zel’dovich e?ect.This in particular implies that the error-bars on the peculiar velocities for clusters with positive peculiar velocities is signi?cantly smaller than for cluster with negative peculiar velocities.This parameter degeneracy can be broken either by having prior temperature knowledge,or by observing at several frequencies.For an experiment with2μK sensitivity and3observing frequencies(ACT-like),we?nd that a Compton parameter of the order of10?4is often deduced with a good accuracy2%(10%)with (without)prior information on the electron temperature.The prior information on the electron temperature is even more important for the extraction of the peculiar velocity for which the accuracy reaches10–20%.Additional observing frequencies also break the parameter degeneracies but the accuracies are not better than with the prior temperature knowledge.In the particular case of Planck,the Compton parameter of 10?4is extracted very accurately(2%)even without information on the temperature. Prior temperature knowledge is,however,necessary to go from a peculiar velocity determination of a factor of a few to20–50%.

We have discussed the needed sensitivity in order to extract the cluster temperature using SZ observations only.We have seen that experiments with only3observing frequencies need very good sensitivity(~0.5μK)in order to determine the cluster temperature with1keV error-bars.Already with4frequencies one can reach1keV(4 keV)temperature error-bars with only1μK(4μK)sensitivity.

We have identi?ed the frequencies which are optimal for deducing the3cluster parameters from a theoretical point of view.This optimal choice of4observing frequencies and sensitivity of1μK allows one to deduce the parameters of a5keV, y c=3×10?5cluster with1σerror bars of about2keV and10?6.The velocity is extracted with a50%accuracy.The optimal frequencies for an actual experiment will depend both on the sensitivity of the experiment and also on which cluster parameters are of primary interest.

We have studied the systematic error which appears due to the?nite band-width. This error is related to the shape of the SZ e?ect.The exact shape of the SZ e?ect depends on the cluster temperature and peculiar velocity,which cannot be known a

priori.This systematic error can be of the order of a fewμK,and must therefore be considered seriously by future experiments which aim at such impressive sensitivity. Acknowledgments

It is a pleasure to thank Lloyd Knox,Francesco Melchiorri,Fran?c ois Pajot and Rocco Pi?aretti for useful discussions.The work of DS was partly supported by the Deutsche Forschungsgemeinschaft under grant No.SFB375.SP was supported by the Spanish grant BFM2002-00345and a Marie Curie fellowship under contract HPMFCT-2002-01831.

References

[1]Sunyaev R A and Zel’dovich Ya B1972Comments Astrophys.Space Phys.4173

[2]LaRoque S J et al2002.Astrophys.J.(submitted),Preprint astro-ph/0204134

[3]De Petris M et al2002Astrophys.J.574L119

[4]Joy M et al2001Astrophys.J.551L1

[5]Rephaeli Y1995Ann.Rev.Astron.&Astrophys.33541

[6]Birkinshaw M1999Phys.Rep.31097

[7]Carlstrom J E,Holder G P and Reese E D2002Ann.Rev.Astron.&Astrophys.40643

[8]Rephaeli Y1995Astrophys.J.44533

[9]Challinor A D and Lasenby A N1998Astrophys.J.4991

[10]Itoh N,Kohyama Y and Nozawa S1998Astrophys.J.5027

[11]Nozawa S,Itoh N,Kawana Y and Kohyama Y2000Astrophys.J.53631

[12]Dolgov A D,Hansen S H,Pastor S and Semikoz D V2001Astrophys.J.55474

[13]Itoh N,Kawana Y,Nozawa S and Kohyama Y2001Month.Not.Roy.Astron.Soc.327567

[14]Colafrancesco S,Marchegiani P and Palladino E2003Astron.&Astrophys.39727

[15]Sunyaev R A and Zel’dovich Ya B1980Ann.Rev.Astron.&Astrophys.18537

[16]Sazonov S Y and Sunyaev R A1998Astrophys.J.5081

[17]Nozawa S,Itoh N and Kohyama Y1998Astrophys.J.50817

[18]Aghanim N,G′o rski K M and Puget J L2001Astron.&Astrophys.3741

[19]Arnaud M2001Proc.Rencontres de Moriond2001

[20]Grego L et al2001Astrophys.J.5522

[21]Bryan G L and Norman M L1998Astrophys.J.49580

[22]Sheth R K and Tormen G1999Month.Not.Roy.Astron.Soc.308119

[23]Wu J H2001Month.Not.Roy.Astron.Soc.327629

[24]Viana P T P and Liddle A R1999Month.Not.Roy.Astron.Soc.303535

[25]Peebles P J1993Principles of Physical Cosmology(Princeton University Press)

[26]Carroll S M,Press W H and Turner W L1992Ann.Rev.Astron.&Astrophys.30499

[27]Peebles P J1980The large-scale structure of the universe(Princeton University Press)

[28]Hansen S H,Pastor S and Semikoz D V2002Astrophys.J.573L69

[29]ACT https://www.360docs.net/doc/5d16506650.html,/~angelica/act/act.html

[30]Kosowsky A2002Private communication

[31]ALMA https://www.360docs.net/doc/5d16506650.html,/projects/alma/

[32]Planck http://astro.estec.esa.nl/SA-general/Projects/Planck/

[33]Pointecouteau E,Giard M and Barret D1998Astron.&Astrophys.33644

[34]Diego J M,Hansen S H and Silk J2003Month.Not.Roy.Astron.Soc.338796

[35]South Pole Telescope https://www.360docs.net/doc/5d16506650.html,/spt/

[36]Hansen S H and Stadel J2003Preprint astro-ph/0303416

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

离心分离基本原理和离心分离分类

离心分离基本原理和离心分离分类 离心分离基本原理 当非均相体系围绕一中心轴做旋转运动时,运动物体会受到离心力的作用,旋转速率越高,运动物体所受到的离心力越大。在相同的转速下,容器中不同大小密度的物质会以不同的速率沉降。如果颗粒密度大于液体密度,则颗粒将沿离心力的方向而逐渐远离中心轴。经过一段时间的离心操作,就可以实现密度不同物质的有效分离。 根据离心方式的不同,可分为差速离心法和密度梯度离心法等。 (1)差速离心:又叫分级离心法; 是生化分离中最为常用的离心分离方法。它指采用低速和高速两种离心方式交替使用,用不同强度的离心力使具有不同密度的物质分级分离的方法。离心后把上清液与沉淀分开,然后再将上清液加高转速离心,分离出第二部分沉淀,如此往复加高转速,逐级分离出所需要的物质。 (2)密度梯度离心:也叫区带离心; 即离心是在具有连续密度梯度的介质中进行。将试样铺放在一个密度变化范围较小、梯度斜度变化比较平缓的密度梯度介质表面,在离心力场作用下试样中的颗粒按照各自的沉降速率移动到梯度介质中的不同位置,而形成一系列试样组分区带,使不同沉降速率的颗粒得以分离。 赫西HR/T16MM微量实验室高速冷冻离心机 离心分离分类 固一固分离 使固体之间相互分离的离心分离法称离心分级,设备为离心分离机。用控制离心时间的办法,使得溶液中只沉淀大颗粒,而不是所有颗粒,这样就可逐次将颗粒按大小分开。 液一液分离 不互溶的液体在离心机中因密度不同而很快分离。这种方法比重力分离时间要短得多。常用一种称为离心萃取机的装置来分离液体溶液组分。该装置由放置在圆筒转鼓中的一系列多孔同心环组成,转鼓环绕着一个筒形轴以每分钟2 0005 000转的速度旋转,液体通过筒形轴进出,以径向顺流方式在转筒中流动而达到液体溶液组分的分离。 气一气分离 同位素研究中常用的手段。在高速旋转下,气体状态的同位素混合物得以相互分离。用离心分离浓缩235U是有前景的方法之一。 固一液分离 常量分析中常用过滤法,半微量分析中则用离心分离法。常用的旋转装置有手摇离心机和电动离心机(通常转速为1}4千周/分),分离速度远比过滤为快。

稀土萃取分离技术

稀土溶剂萃取分离技术 摘要 对目前稀土元素生产中分离过程常用的分离技术进行了综述。使用较多的是溶剂萃取法和离子交换法。本文立足于理论与实际详细地分析了溶剂萃取分离法。 关键词稀土分离萃取 前言 稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。“稀土”一词系17种元素的总称。它包括原子序数57—71的15种镧系元素和原子序数39的钇及21的钪。由于钪与其余16个元素在自然界共生的关系不大密切,性质差别也比较大,所以一般不把它列入稀土元素之列。 中国、俄罗斯、美国、澳大利亚是世界上四大稀土拥有国,中国名列第一位。中国是世界公认的最大稀土资源国,不仅储量大,而且元素配分全面。经过近40余年的发展,中国已建立目前世界上最庞大的稀土工业,成为世界最大稀土生产国,最大稀土消费国和最大稀土供应国。产品规格门类齐全,市场遍及全球。产品产量和供应量达到世界总量的80%一90%[1]。 稀土在钢铁工业有色金属合金工业、石油工业、玻璃及陶瓷工业、原子能工业、电子及电器工业、化学工业、农业、医学以及现代化新技术等方面有多种用途。由于稀土元素及其化合物具有不少独特的光学、磁学、电学性能,使得它们在许多领域中得到了广泛的应用。但由于稀土元素原子结构相似,使得它们经常紧密结合并共生于相同矿物中,这给单一稀土元素的提取与分离带来了相当大的困难[2]。 常用稀土分离提取技术 萃取分离技术:包含溶剂萃取法、膜萃取分离法、温度梯度萃取、超临界萃取、固—液萃取等萃取方法。 液相色谱分离技术:包含离子交换色谱、离子色谱技术、反相离子对色谱技术、萃取色谱技术、纸色谱技术、以及薄层色谱技术。 常用方法为溶剂萃取法和离子交换法[3]。 稀土溶剂萃取分离技术

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 1word格式支持编辑,如有帮助欢迎下载支持。

硅胶上键合乙基 500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 合物。500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 核酸碱,核苷,表面活化剂。容量:0.2毫当 量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生 素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶, 糖苷,激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药 物,染料,锄草剂,农药,PCBs,酣,含氮类化 合物,有机酸,苯酚,类固醇 固相萃取柱及填料(SPE column) 2word格式支持编辑,如有帮助欢迎下载支持。

固液萃取

第十章固液浸取 第一节萃取原理 教学目标: 理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。 教学重点: 萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 单级萃取、多级逆流萃取的物料流动过程。 教学难点: 萃取分配定律的含义,分配常数计算公式的具体应用。 教学内容: 一、萃取基本原理 1.萃取过程 如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后, 则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。 2.萃取原理 物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。 在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在 进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则: 假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y ==萃取相()萃余相

固相萃取柱常见问题及对策 SPE问题

固相萃取柱常见问题及对策SPE问题

问题可能的原因解决方法 回收率低 柱活化条件不恰当 根据固定相的不同正确活化SPE小 柱 反相填料:甲醇、乙腈等,1倍柱管 体积或3倍柱床体积 正相填料:非极性有机溶剂如正己烷 等,1倍柱管体积或3倍柱床体积 离子交换填料:1倍柱管体积的甲醇、 乙腈或异丙醇等与水互溶的极性溶 剂。 样品溶剂对目标成分 的作用力比固定相强 选择对目标组分具有更强选择性的 SPE小柱; 调整样品溶剂的PH值,增加目标组 分在固定相中的作用力; 改变样品溶剂的极性,降低目标组分 在溶剂中的作用力。 清洗溶剂选择不当; 洗脱能力太强 使用正确的清洗溶剂; 选择洗脱能力更弱的溶剂载样时流速过快 重力自然载样或控制载样流速 ≤1ml/min SPE小柱太小 用更大规格的SPE小柱; 用选择性更强的SPE小柱; 用载样量更大的SPE小柱 洗脱前SPE小柱清洗 溶剂抽干不充分 充分抽干冲洗溶剂 洗脱不充分 增加洗脱剂的体积;增加洗脱剂的强 度;用更小规格的SPE小柱 洗脱时流速过快或过 慢 控制流速1-2ml/min 目标成分不能从SPE小柱上 洗脱固定相对目标组分选 择性太强 选择对被分析物保留较弱的小柱; 选择洗脱能力更强的洗脱溶剂。对酸 碱目标成分,调节洗脱剂的PH值,

减弱固定相对目标组分的选择性 SPE小柱规格太大 增加洗脱剂的用量;用更小规格的SPE小柱 洗脱剂用量不足增加洗脱剂 洗脱时流速过快或过 慢 控制流速1-2ml/min 洗脱剂洗脱能力太弱调节洗脱剂的PH值,提高溶剂对目标成分的洗脱能力(对酸、碱目标成 分); 改变洗脱液的极性,提高溶剂对目标 成分的洗脱能力 重现性差 上样前柱床干涸重新活化SPE小柱 超出小柱的载样能力 减小载样量,或用规格更大的SPE小 柱 载样过程流速过高 降低流速,重力自然载样或控制载样 流速≤1ml/min 清洗溶剂洗脱能力太 强 降低清洗溶剂洗脱强度洗脱流速过快 先让洗脱液渗透小柱,再对小柱抽真 空或加压,控制流速1-2ml/min 洗脱剂分两次加入洗脱剂用量不足 增加洗脱剂的用量或者用更小规格的 SPE小柱 干扰物清洗不 干净固定相对干扰物的选 择性太强 选择合适的清洗液,有选择性的将干 扰物清洗掉 选择对目标组分专属性更强的SPE 小柱 固定相残留的干扰物活化前先用洗脱剂清洗SPE小柱 操作过程流速 过低样品中含有过多的颗 粒物质 载样前过滤或离心样品溶液或改用溶 解能力更强的样品溶剂

固相萃取柱

SPE固相萃取各个填料等的区别 CNWBOND Carbon-GCB(碳黑) 石墨化碳黑(CNWBOND Carbon-GCB)固相萃取小柱在萃取很多极性物质,如氨基甲酸酯和硫脲等农药,有着比C8或C18更高更稳定的回收率。有数据显示,石墨化碳黑SPE同时提取食品中超过200多种农残有很好的效果,如有机氯、有机磷、含氮以及氨基甲酸酯类农药等。Carbon-GCB石墨化碳黑由于其非多孔性,对样品的吸附不要求扩散至有孔区域,所以萃取过程非常迅速。此外,虽然其比表面积小于硅胶基质,对化合物的吸附容量却比硅胶大一倍有余。由于Carbon-GCB碳表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如地表水和果蔬中的色素(如叶绿素和类胡萝卜素)、甾醇、苯酚、氯苯胺、有机氯农药、氨基甲酸盐、三嗪类除草剂等。技术参数:目数120-400目,比表面积100 m2/g。 CNWBOND Coconut Charcoal(活性炭) 椰子壳活性炭专用于美国环保署EPA 521方法(饮用水中亚硝胺的检测)以及EPA 522方法(饮用水中1,4-二噁烷的检测)。 技术参数:目数80-120目。 CNWBOND Si (硅胶) CNWBOND Silica硅胶是极性最强的小柱,填料为酸洗硅胶,它通常从非极性溶剂中通过氢键相互作用提取极性化合物,然后再通过提高溶剂的极性来洗脱物质。 技术参数:粒径40-63μm,平均孔径60Å,未封尾。 CNWBOND Florisil PR 农残级弗罗里硅土同样适合于分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等,粒径更大,满足EPA 608方法。 技术参数:目数60-100目。 CNWBOND Florisil(弗罗里硅土) 弗罗里硅土作为氧化镁复合的极性硅胶吸附剂(硅镁吸附剂),适合于从非极性基质中吸附极性化合物,如分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等。 技术参数:目数100-200目,比表面积289 m2/g。

分离技术

型分离技术,如膜分离、泡沫分离、超临界流体萃取以及耦合技术等得到重视和发展。 1.2 化工分离技术的多样性 由于化工分离技术的应用领域十分广泛, 原料、 产品和对分离操作的要求多种多样, 这 就决定了分离技术的多样性。按机理划分,可大致分成五类,即:生成新相以进行分离(如 蒸馏、结晶) ;加入新相进行分离(如萃取、吸收) ;用隔离物进行分离(如膜分离)

体试剂进行分离 (如吸附、 离子交换) 和用外力场或梯度进行分离 (如离心萃取分离、 电泳) 等,它们的特点和设计方法有所不同。 K e l l e y [3] 于 1987 年总结了一些常用分离方法的技术成 熟度和应用成熟度的关系图 ( 图 1) 。十余年来,化工分离技术虽然有了很大的发展,但图中指出的方向仍可供参考。 例如 ,

萃取、 吸收、 结晶等仍是当前使用最多的分离技术 [4-5] 。 液膜分离虽然构思巧妙 , 但由于技术上的局限性 , 仅在药物缓释等方面得到有限的应用。 图 1 分离过程的技术和应用成熟度 [3] Fig.1 The technology and use maturity of the separating process 2

传统分离技术 精馏虽然是最早期的分离技术之一,几乎与精馏同时诞生的传统分离技术 , 如吸收、蒸 发、结晶、干燥等,经过一百多年的发展,至今仍然在化工、医药、冶金、食品等工业中广 泛应用并起着重要作用 。 2.1 精馏技术 精馏是关键共性技术, 已经被广发应用了 200

多年, 从技术和应用的成熟程度考虑, 目 前仍然是工厂的首选分离方法 [6] 。 精馏市场的经济效益至今仍是令人刮目相看的。而近年来, 随着相关学科的渗透、 精馏学科本身的发展及经济全球化的冲击, 我国精馏技术正向新一代 转变,以迎接所面临的挑战。其特征 [7] 为: ( 1 )精馏学科正由传统的依靠经验、半经验过渡

常用固相萃取柱

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 填料含量容量包装应用范围填料含量容量包装应用范围 ODS(C18) 硅胶上键合十八烷基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲苯酸取代酯, 苯酚, 邻苯二甲酸酯,类固醇, 表面活化剂,茶碱,水溶性维生 素。 EVIDEXII 辛烷和阳 离子交换 树脂 200mg 400mg 3ml 6ml 50 30 Amphetamina/Methamphetamine、 PCP、 Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana) Cctyl(C8) 硅胶上键合辛烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲基酸取代酯, 苯酚,邻苯二甲酸酯,类固醇,表 SAX 硅胶上键 合卤化季 氨盐 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阴离子交换萃取,适合于阴离子,有机酸,核酸, 核苷酸, 表面活化剂。容量:0.2毫当量/克。

【精品】常用固相萃取柱

【关键字】精品 常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品

Ethyl(C2) 硅胶上键合乙基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,因为短链,保 持作用小的多,适合非极性化 合物。 SCX 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阳离子交换萃取,适合于阳离子,抗菌素,药 物,有机碱 ,氨基酸,儿茶酚胺,锄草剂,核酸 碱,核苷,表面活化剂。容量:0.2毫当量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。子 交换.适合于维生素,抗菌素,芳香油,酶,糖苷, 激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药物, 染料,锄草剂,农药,PCBs,酣,含氮类化合物, 有机酸,苯酚,类固醇

萃取设备中离心萃取机的技术要求

萃取设备中离心萃取机的技术要求 前言 萃取设备是一类用于萃取操作的传质设备,能够实现料液所含组分的完善分离。 萃取设备可按结构分为混合澄清器、萃取塔和离心萃取机。下面我们主要从离心萃取 机的简介,性能要求,技术要求及外观质量方面说明离心萃取机的技术要求。 1.离心萃取机的简介 在离心力场中,利用液/液两相密度的不同,在同一机器中完成混合传质过程和分离过程,达到液/液两相萃取分离的连续萃取设备。(简称“萃取机”) 在离心力场中先进行充分混合,使溶质的转移,再进行两相液体的分离和排出。 轻相液体从靠近转鼓壁处进料,重液相则从转鼓中心进料。在转鼓内形成两相分散的 逆流接触。最终两相达到转鼓另一端时轻重液相分别浓缩在转鼓中心和内壁处排出。 利用管式、多室式和碟片式离心机结构制成离心萃取机,充分地发挥了管式离心机分 离因数高、轴向长度大,适于处理密度差较小的两相液体,室式和碟片式离心机对两 相液体分散度高,接触面积大,停留时间长等特点,有利于萃取过程先使两相流分散 接触,再使两相流分别浓缩的工艺要求。分别称为管式、室式和碟片式离心萃取机。 目前市面上最先进的离心萃取机为CWL-M型离心萃取机。 2.性能要求 2. 1 离心萃取机在额定工况下,转速应不低于额定转速的97%。 2. 2 离心萃取机在额定转速运行时,其空运转时振动速度应不大于4.5 mm/s,负荷运转时振动速度应不大于7.1 mm/s。 2. 3 离心萃取机在额定转速下,空运转时噪声(声压级)应不大于80 dB(A);负荷运转时噪声(声压级)应不大于85 dB(A)。 2. 4 离心萃取机主轴承温升:空运转时应不高于40℃;负荷运转时应不高于45℃。 2. 5 离心萃取机主轴承温度:空运转时应不高于75℃;负荷运转时应不高于80℃。 2. 6 离心萃取机最大通量应符合设计要求。 3.结构要求 3.1 离心萃取机应设置适合于整体吊装的起吊装置。 3.2 离心萃取机各密封部位应密封良好。

固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物

2006年5月M ay 2006 色谱C h inese J ou rna l of C h rom a tog raphy Vo l .24N o.3 267~270 收稿日期:2005207231 第一作者:李 竺,女,博士研究生,E 2m a il:lizhu 98@https://www.360docs.net/doc/5d16506650.html,.通讯联系人:陈 玲,女,教授,博士生导师,Te l:(021)65984261,E 2m a il:chen ling @m a il .tongji https://www.360docs.net/doc/5d16506650.html,. 基金项目:国家自然科学基金项目(N o 120477030),上海市科委2005年重点研究资助项目(N o.05JC 14059,N o.05dz 22330). 固相萃取2高效液相色谱法测定环境水样中的三嗪类化合物 李 竺1 , 陈 玲1 , 郜洪文1 , 董丽娴1 , 赵建夫 1,2 (1.同济大学污染控制与资源化研究国家重点实验室,上海200092; 2.同济大学长江水环境教育部重点实验室,上海200092) 摘要:建立了固相萃取2高效液相色谱法(SPE 2H PLC )测定地表水中三嗪类化合物的方法。考察了4种不同固相萃 取柱对三嗪类化合物的吸附效果,最终选择ENV I 218固相萃取柱用于萃取地表水中的三嗪类化合物;系统研究了环境水样中三嗪类化合物的最佳固相萃取条件,选择洗脱溶剂为甲醇,洗脱溶剂用量5mL,水样在萃取前不需要添加甲醇,不调节pH 值。测定了方法的检测限,结果表明,扑草净、莠去津、西玛津、脱乙基莠去津、羟基化莠去津和脱异丙基莠去津的最低检测限依次为0114μg /L,0112μg /L,0108μg /L,0108μg /L,0110μg /L 和0118μg /L 。将该法应用于实际环境水样的分析测定,结果表明某湖水中扑草净的含量为(9133±0127)μg /L,某江水中莠去津和扑草净的含量分别为(5128±0143)μg /L 和(7112±0154)μg /L 。关键词:固相萃取;高效液相色谱;三嗪类化合物;预富集中图分类号:O 658 文献标识码:A 文章编号:100028713(2006)0320267204 栏目类别:研究论文 D e te rm in a t io n o f T r ia z in e s in S u rfa ce W a te r U s in g S o lid P h a s e E x t ra c t io n 2H igh P e rfo rm a n ce L iq u id C h rom a to g rap h y L I Zhu 1 ,CH EN L ing 1 ,GAO H ongw en 1 ,DON G L ix ian 1 ,ZHAO J ianfu 1,2 (1.S ta te Key L a bora tory of Pollu tion Con trol a n d R esou rces R eu se,Ton gji U n ivers i ty,Sha n gha i 200092,Ch in a;2.Key L abora tory of Ya ngtze Aqu a tic En vironm en t,M in is try of Edu ca tion,Tongji U n ivers ity,Sha ngha i 200092,Chin a ) A b s t ra c t:A m e thod w as deve lop ed to m on ito r triazines in su rface w a te r us ing the com b ina tion of so lid p hase ex trac tion (SPE )and h igh p e rfo r m ance liqu id ch rom a tog rap hy .Fou r d iffe ren t SPE ca rtridges w e re tes ted fo r ex trac ting s ix triazines,inc lud ing a trazine (A ),s i m azine (S ),p rom e tryn (P ),dese thy la trazine (D EA ),22hyd roxya trazine (O HA )and des isop rop yla trazine (D I A ),and fina lly ENV I 218w as se lec ted as op ti m a l . The m e thod fo r so lid p hase ex trac tion w as fu rthe r sys tem a tica lly s tud ied fo r de ta ils.O p ti m a l resu lts of o rthogona l des ign w e re de te r 2m ined as fo llow s:pH 6,5m L m e thano l as e lu ting so lven t,and no m e thano l added in to w a te r sam p le befo re ex trac tion.The de tec tion li m its of s ix triazines w e re 0114μg /L fo r P,0112μg /L fo r A,0108μg /L fo r S,0108μg /L fo r D EA,0110μg /L fo r O HA and 0118μg /L fo r D I A.Th is m e thod w as app lied fo r environm en ta l aqua tic sam p les,and the resu lts show ed tha t the con 2cen tra tion of p rom e tryn in a lake w as de tec ted as (9133±0127)μg /L,as w e ll as the concen 2tra tions of a trazine and p rom e tryn in a rive r w e re de tec ted as (5128±0143)μg /L and (7112± 0154)μg /L resp ec tive ly . Ke y w o rd s:so lid p hase ex trac tion (SP E );h igh p e rfo r m ance liqu id ch rom a tog rap hy (H PLC ); triazines;p reconcen tra tion 三嗪类除草剂作为农田杂草生长的抑制性农药在世界范围内广泛使用。这类农药由于地表径流,常造成地表水污染,并对人类、动植物和水生生物造成不利影响。因此,美国环保署(U S EPA )将莠去津、西玛津等三嗪类除草剂列入优先控制污染物名单,规定饮用水中莠去津含量不得超过3μg /L,西玛津含量不得超过4μg /L [1] 。欧盟(EU )规定饮用水中单一农药浓度不得超过011μg /L,总浓度不得 超过015μg /L [2-5] 。我国《地表水环境质量标准》(GB 383822002)则规定地表水中莠去津的标准限值为3μg /L 。 环境水体中的三嗪类除草剂浓度很低,常处于

化工原理液液萃取概念题

化工原理液液萃取概念 题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

化工原理《液-液萃取》概念题 一、单项选择题 1、单级萃取中,若增加纯溶剂S的加入量,则萃取液的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 2、单级萃取操作时,若降低操作温度,其他条件不变,则溶剂的选择性 将。 A.变差 B.变好 C.不变 D.不确定 3、选用溶剂进行萃取操作时,其必要条件为。 A.分配系数k A <1 B.萃取相含量y A ≤萃余相含量x A C.选择性系数β>1 D.分配系数k B =1 4、单级萃取中,若升高操作温度,则萃取液中溶质的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 5、对于萃取过程,若溶剂的选择性好,则溶剂的溶解度也将。 A.变大 B.变小 C.不变 D.不确定 6、当萃取过程溶剂比S/F减小时,萃取液中溶质A的浓度,所需理论级数。 A.不变,减小 B.减小,减小 C.增大,减小 D.减小,增大 7、萃取过程的能耗主要集中在。 A.萃取操作时溶剂的输送 B.萃取操作时原溶液的输送 C.萃取操作时溶剂的回收 D.萃取操作时温度的升高 8、以下说法错误的是。

A.临界混溶点位于溶解度曲线最高点 B.临界混溶点左方曲线表达式为:)(A S x x ψ= C.临界混溶点右方曲线表达式为:)(A S y y ?= D.溶解度曲线内的平衡联结线两端的表达式为:)(A A x f y = 9、一般情况下,稀释剂B 组分的分配系数k B 值 。 A.大于1 B.小于1 C.等于1 D.难以判断,都有可能 10、单级(理论)萃取中,在维持进料组成和萃取相浓度不变的条件下,若用含有 少量溶质的萃取剂代替纯溶剂所得萃余相浓度将 。 A. 增加 B.减少 C.不变 D.不一定 11、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,则萃取相量与萃余相量之比将 。 A.增加 B.不变 C.降低 D.不定 12、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,萃取液的浓度(指溶质)将 。 A.增加 B.不变 C.降低 D.不定 13、萃取剂加入量应使原料和萃取剂的和点M 位于 。 A.溶解度曲线之上方区 B.溶解度曲线上 C.溶解度曲线之下方区 D.座标线上 14、萃取是利用各组分间的 差异来分离液体混合物的。 A.挥发度 B.离散度 C.溶解度 D.密度 15、采用多级逆流萃取与单级萃取相比较,如果溶剂比、萃取相浓度一样,则多 级逆流萃取可使萃余相分率 。

萃取与分离技术 萃取基本概念及分离方法

模块三萃取技术 学习目标 知识目标 1.掌握萃取操作的基本知识、三角形相图、相平衡关系、单级萃取操作的工艺计算;掌握萃取操作的适用场合;掌握萃取操作、常见事故及其处理方法。 2.理解萃取过程的基本原理,理解萃取操作过程的控制与调节。 3.了解各种萃取操作的基本流程,了解各种萃取设备的结构、特点及其选择方法。能力目标 1.能够用三角形相图表示萃取操作过程,分析萃取操作过程的影响因素,并 能够进行萃取剂的选择,液—液萃取操作的选择。 2.能够了解萃取操作的开停车,常见事故及其处理方法。 素质目标 1.培养学生工程技术观念; 2.培养学生独立思考的能力,逻辑思维的能力; 3.培养学生能应用所学知识解决工程实际问题的能力。 任务单 东方化工集团有限分司,乙酸水溶 液中回收乙酸,这一过程中使用萃取 的方式进行,要求处理量为每批1t, 其中乙酸含量为50%(质量百分率 下同),要求最终乙酸的组成达70% 以上。完成下列任务: (1)确定回收方法; (2)选用适宜的萃取剂; (3)选用合适的萃取设备; (4)计算萃取剂用量。

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取: 萃取剂: 萃取相: 萃余相: 萃取液: 萃余液: 溶质: 原溶剂(稀释剂): 溶解溶解度曲线: 连接线(共轭线): 共轭液层(共轭相): 辅助曲线: 临界混熔点: 分配曲线: 分配系数: 萃取操作的分类及适用场合 萃取操作的分类 适用场合 建议选用分离方法 得分

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取:利用混合物中的各组份在溶剂中的溶解度的不同,而达到混合物分离的目的。萃取剂:萃取剂:所选用的溶剂。 萃取相:以萃取剂为主溶有溶质的相。E 萃余相:以原溶剂为主溶质含量较低的相。R 萃取液:除去萃取相中的溶剂而得到的液体。E’ 萃余液:除去萃余相中的溶剂而得到的液体。R’ 溶质:混合物中被分离出的组份。A 原溶剂(稀释剂):原混合物中与溶剂不互溶或仅部分互溶的组份。 溶解溶解度曲线:将代表诸平衡液层的组成坐标点连接起来的曲线。 连接线(共轭线):萃取相E和萃余相R两点的联线。 共轭液层(共轭相):二元混合物中加入适量的萃取剂,即形成了二个液层萃取相E和萃余相R,把达到平衡时的两个液层称为“共轭液层或共轭相”。 辅助曲线:分别过共轭液层的两点作三角形任意两条边的平行线,其交点的连线。 临界混熔点:辅助曲线与溶解度曲线的交点。 分配曲线:将三角形相图中各组相对应的平衡液层中溶质A的浓度转移到x-y直角坐标上,所到的曲线。 分配系数:组份在萃取相E中浓度与其在萃余相R中的浓度之比值。 萃取操作的分类及适用场合 萃取操作的分类物理萃取:利用溶剂对欲分离的组份具有较大的溶解能力,溶质通过扩散作用转移到溶剂中,从而达到分离的目的的过程。 化学萃取:由于化学作用,溶剂选择性地与溶质化合或络合,从而帮助溶质重新分配,达到分离目的的过程。 适用场合(1)原料液中各组分间的相对挥发度接近于1或形成恒沸物。若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分。若采用蒸馏方法须将大量稀释剂汽化,能耗较大; (3)原料液中需分离的组分是热敏性物质。这种物料蒸馏时易于分解、聚合或发生其它变化。 (4)高沸点有机物的分离。用萃取方法代替技术很高的真空蒸馏、分子蒸馏,可降低能量消耗。 建议选用分离方法 得分

HL-20离心萃取器HL-20型离心萃取器解决了目前国内在此微型萃取

HL-20离心萃取器 HL-20型离心萃取器解决了目前国内在此微型萃取设备领域的空白,属于高级实验室专用离心萃取设备。目前国内外专业萃取研究人员在实验室中还是使用传统式的分液漏斗萃取分离方法,若用分液漏斗的间歇操作来模拟四级连续逆流萃取的串联实验就比较困难。经验表明,要使萃取过程达到真正的稳态分液漏斗的进料排料振荡的操作至少要进行48次以上,其操作的复杂可想而知,不仅操作人员费时费力,这样多次的人工操作也难免不出现误操作,这时就会前功尽弃。由于物料倒来倒去,必然造成物料损失,从而使数据误差较大。如果级数再多,使用分液漏斗几乎就是不可能的。 用HL-20离心萃取器取代上述操作,将是很容易的。运用26级离心萃取器可以成功地进行锆铪的分离试验,而采用分液漏斗是根本不可能的。对于极困难的分离体系,我们可以采用多级离心萃取来实现分离,这是分液漏斗不可能实现的。 因此,在萃取实验室,无论是一级操作,还是连续错流、连续逆流操作,HL-20离心萃取器均可完全替代分液漏斗完成分液漏斗可以完成的和无法完成的试验。因此说,用HL-20离心萃取器进行溶剂萃取的实验研究,不但省时省力省经费,还具有可观的经济效益,即可省略再放大的中间试验环节。因为进出料操作是连续进行的,所以由实验室的逐级萃取设备转到工程的离心萃取器已有非常成功的经验。 此外,HL-20离心萃取器的操作简便、流比调节范围宽、萃取分离快速完成、取样方便,省时省力。例如:我单位为北京某研究中心的稀土元素分离项目所做的试验,若是采用分液漏斗模拟逆流萃取来获得不同的实验参数至少需要半个月的时间,工作量非常大,而HL-20只需几个小时即可轻松完成。而且,HL-20萃取器改变流比参数极为方便,只需调节流量计即可。 其特点:HL-20离心萃取器采用先进的CPU电脑程序控制系统,实现了仪器的过压、过热、超速等保护以及控制面板速度设定、分离因数可调等功能。 此设备可多级串联实现逆流萃取,萃取效率高,两相停留时间短,滞留量少,操作智能化,操作简便可任意改变转速及分离因数。适应性非常强、两相流比可在较大范围内进行调整。

分散液液微萃取—高效液相色谱法测定食品中农药的含量

分散液液微萃取—高效液相色谱法测定食品中农药的 含量 张良温指导教师:翦英红 (吉林化工学院环境与生物工程学院环境科学0501班,吉林吉林132022) 摘要:本实验采一种较新的提取分析食品中农药(以阿特拉津为例)残留的方法——分散液液微萃取—高效液相色谱法。分散液液微萃取条件优化后为:水样体积:6mL;萃取剂:氯苯,30.0μL;分散剂:丙酮,1.0mL;离心时间:4min,盐度为4.5%,pH=5.5。最佳条件下,富集因子(EF)和萃取回收率(ER)分别介于105.71-129.19和45.81% - 58.28%。阿特拉津的最低检出限为1μg/L。水样中阿特拉津在加标浓度为40、60、80 μg/L的相对回收率分别为50.72% - 52.95%,45.81% - 52.16%和51.68% - 58.28%。此种方法测定食品浸出液中阿特拉津方便,快速。 关键词:分散液液微萃取;阿特拉津;高效液相色谱法;萃取回收率阿特拉津(atrazine)又名莠去津,化学名:为2-氯4-乙氨基-6一异丙氨基.1,3,5-三嗪,系均三氮苯类农药,常温下,阿特拉津的纯品是无色、无臭晶体,,分式:C18H14ClN5,熔点173~175 ℃,在25℃时,蒸汽压为38.5 μPa,水中溶解度为33 mg/L。在微酸及微碱介质中稳定,但在高温下,碱和无机盐可将其水解为无除草活性的羟基衍生物[23]。 阿特拉津是~种在世界范围内广泛使用的中等偏低毒性除草剂,曾被认为是生态安全的除草剂,但由于使用量大、残留期长,农田施用后随着地表径流、淋溶、沉降等多种途径进入地表水和地下水,阿特拉津的残留物在世界许多国家和地区的地表水和地下水中已有检出。近来不断有阿特拉津污染事件的报道,已有的研究证明阿特拉津对动物的生殖功能有极大的影响,被世界野生动物基金会列为环境荷尔蒙(内分泌干扰剂)的可疑物质,有扰乱内分泌的作用,是人类潜在的致癌物。由于阿特拉津被认为是一种最具污染力的农药,目前,包括德国、法国、瑞典在内的欧洲7个圈家禁止使用。 分散液液微萃取(DLLME)技术由于其萃取时间短、操作简便,是水样分析的前处理方法之一,它建立于三相溶剂体系。在分散剂的作用下,萃取剂以微小

相关文档
最新文档