旋风除尘器性能测定实验

旋风除尘器性能测定实验
旋风除尘器性能测定实验

旋风除尘器性能测定

一、实验目的

通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件.

二、实验原理

(一)采样位置的选择

正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。

(二)空气状态参数的测定

旋风除尘器的性能通常是以标准状态(P=l.013?l05Pa,T=273K)来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。

烟气状态参数包括空气的温度、密度、相对湿度和大气压力。

(三)除尘器处理风量

风量计算、流速计算

(四)除尘器进、出口浓度计算

(五)除尘效率计算

三、实验装置、流程和仪器

(一)实验装置、流程

含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。所需含尘气体浓度由发尘装置配置。

(二)仪器

分析天平分度值0.0001g l台托盘天平分度值1g l台四.实验方法和步骤

1.用托盘天平称出发尘量(G j),分别为150g和300g两组。

2.控制气流的阀门为全开状态,通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(τ),计算出除尘器入口气体的含尘浓度(Cj)。时间分别为3min 和5min。

3.称出收尘量(Gs),计算出除尘器出口气体的含尘浓度(Cz)。

4.计算除尘器的全效率(η).

5.改变调节阀开启程度为半开、重复以上实验步骤,确定除尘器各种不同的工况下的性能。以发尘量150g,发尘时间3min时,实验风量为600m3/h和1000m3/h 两种条件。

五、实验数据的计算和处理

以除尘器进口气速为横坐标,除尘器全效率为纵坐标,将上述实验结果标绘成曲线。

六、实验结果讨论

1.通过实验,你对旋风除尘器全效率(η)随入口气速变化规律得出什么结论?它对除尘器的选择和运行使用有何意义?

2.实验装置对除尘器的运行使用有何意义?

旋风除尘器性能测试实验三

旋风除尘器性能测试 一、实验目的和意义 旋风除尘器是最常用的除尘装置,它是利用设备结构形状及流体自身动力促使含尘气流高速旋转从而实现气固分离的一种中效除尘设备。通过本实验,使学生了解旋风除尘器除尘过程,掌握旋风除尘器性能测定的主要内容和方法,较全面了解影响旋风除尘器性能的主要因素,掌握旋风除尘器入口风速与阻力、全效率、分级效率之间的关系以及入口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响。 二、实验原理 1.空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.0132l05Pa,T=273K)来表示的。为了便于比较和应用,通常要将实际测定烟气状态参数,换算为标准状态下空气的参数。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: 式中:ρg一烟气密度,kg/m3; p—大气压力,Pa; T—烟气温度,K。 实验过程中,要求烟气相对湿度不大于75%。

2. 除尘器处理风量的测定和计算 测量烟气流量的仪器利用S型毕托管和倾斜压力计。 S型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图3-1所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图3-1 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s的气流中进行比较,S型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在 5~30m/s的范围内,其校正系数值约为0.84。S型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C之间,烟气绝对压力在 0.99~1.032105Pa时,可用下列公式计算烟气人口流速:

实验一旋风除尘器

实验一旋风除尘器、袋式除尘性能实验 一旋风除尘器 1.1实验目的 1.了解旋风除尘器的常用结构型式和性能特点。 2.掌握旋风除尘器的基本原理及基本操作方法。 3.掌握用质量法计算除尘器的除尘效率。 1.2实验原理 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置。气流作旋转运动时,尘粒在离心力作用下逐步移向外壁,到达外壁的尘粒在气流和重力作用下沿壁面落入灰斗。 1.3设备及用具 1.旋风除尘器:湖南长沙长风教具厂生产; 2.托盘天平; 3.锯木屑或米糠; 4.电源插线板 实验装置如图所示 1.4实验步骤 1.用托盘天平称出发尘量(Gf); 2.同时启动风机和发尘搅拌器,进行除尘,记下除尘所需要的时间 (T); 3.除尘结束后,称出被捕集的粉尘量 (Gs);

4.计算除尘器的除尘效率: %100?=f s G G η 1.5思考题 1、画出旋风除尘器除尘原理示意图; 2、简述旋风除尘器主要应用领域及处理何种含尘废气。 二 袋式除尘器 2.1实验目的 1. 通过本实验,进一步提高对袋式除尘器的结构形式和除尘机理的认识。 2. 掌握袋式除尘器基本操作方法。 2.2实验原理 含尘气流从下部进入圆筒形滤袋,在通过滤料的孔隙时,粉尘被捕集于滤料上, 透过滤料的清洁气体由排出口排出。沉积在滤料上的粉尘,通过逆气流清灰的方式, 从滤料表面脱落,落入灰斗。 2.3设备及用具 1.袋式除尘器:湖南长沙长风教具厂生产 2.木屑或米糠 3.电源插线板 实验装置如图所示

2.4实验流程 1. 过滤除尘 关闭阀门T1、打开阀门T2,如下图所示,前后两个双开开关扭至双开位置,两布袋同时过滤,净化后的气体从上部管道排出。 2. 左清灰右过滤 关闭阀门T2、打开阀门T1,正面双开开关旋向右边关位置、后面的双开开关旋向左边关位置,则左边布袋清灰、右边布袋过滤,净化后的气体从上部管道排出。 3.左过滤右清灰 关闭阀门T2、打开阀门T1,正面双开开关旋向左边关位置、后面的双开开关旋向右边关位置,左边布袋过滤,右边布袋清灰,净化后气体从上部管道排出。 2.5实验报告要求 1.画出过滤除尘、左清灰右过滤和左过滤右清灰三个流程工作示意图。 2.影响袋式除尘效率的因素主要有哪些?

旋风除尘技术原理

旋风集尘器的工作原理 旋风除尘器是利用含尘气流作旋转运动产生的离心力 将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比 具有结构简单、无运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点 主要用于捕集5~10μm以上的非黏性、非纤维性的干燥尘粒。影响除尘器效率的因素主要包括两个方面 一是旋风除尘器的结构参数 二是旋风除尘器的运行管理。对于使用者来说 设备的结构参数业已确定 运行管理便是影响旋风除尘器的重要因素。因此 研究运行管理方法对旋风除尘器的影响 对提高旋风除尘器的净化能力具有更加重要的意义。旋风除尘器运行管理和重要性是 1 稳定运行参数 2 防止漏风 3 预防关键部位磨损 4 避免粉尘堵塞。 因为旋风除尘器构造简单 没有运动部件 卸灰阀除外 运行管理相对容易 但是一但出现磨损、漏风、堵塞等故障时将严重影响除尘效率。 1、稳定运行参数 1.1 入口气速气体流量或者说旋风除尘器入口气速 对旋风除尘器的压力损失、除尘效率都有很大影响。一般来说 在一定范围内入口气速越高 除尘效率也就越高 这是因为增加入口气速 能增加尘粒在运动中的离心力 使尘粒易于分离 使以除尘效率提高。但气速太高 气流的湍动程度增加 二次夹带严重。另外 气速过高易使粉尘微粒与器壁磨擦加剧 导致粗颗粒粉碎 使细粉尘含量增加。过高的入口气速对具有凝聚性质的粉尘也会起分散作用 当入口流速超过监界值时 紊流的影响就比分离作用增加得更快 以至于除尘效率随入口气速增加的指数小于1。若入口的气速进一步增加 除尘效率反而降低 因此 旋风除尘器的入口气速不宜太高。另一方面 从理论可以分析可知 旋风除尘器的压力损失与气体流量的平方成正比。所以进气口气速成太大 虽然除尘效率会稍有提高 有时不提高甚至下降 但压力损失却急剧上升 即能耗增大 同时入口气速过大 也会加剧旋风除尘器筒体的磨损 降低使用寿命。因此在设计除尘器的进口截面时 必须使进入口气速为一适应值 一般为18~20m/s 最好不要超过30m/s 浓度高和颗粒粗的粉尘入口速度应选小些 反之可选大些。 1.2含尘气体的物理性质和进气状态影响旋风除尘器性能的含尘器体的物理性质主要是气体的密度和黏度。而含尘气体的密度随进口温度增加而降低 随进口压力增大而增大。气体密度越大 临界粒径也就越大 故除尘效率下降。但是 气体的密度和尘粒密度相比 特别是在低压下几乎可以忽略 所以 其对除尘效率的影响与尘粒密度来说 可以忽略不计。另一方面是气体的密度变小 使压降也变小。旋风除尘器的效率随气体黏度的增加而降低 气体黏度变化直接与温度的改变有关 当气体温度增加时 气体黏度增大 使颗粒受到的向心力加大 因此在入口风速一定的情况下 除尘器效率随温度的增加而上降。所以高温条件下运行的除尘器 应有较大入口气速和较小的截面气速 这在与旋风除尘器的运行管理中也应予以注意。 1.3气体含尘浓度气体的含尘浓度对旋风除尘器效率和压力损失都有影响。实验结果表明 处理含尘气体的压力损失要比处理清洁空气时小 且压力损失随含尘负荷的增加而减小 这是因为径向运动的大量尘粒拖曳了大量空气 粉尘从速度较高的气流向外运动到速度较低的气流中时 把能量传递给旋转气流的外层 减少其需要的压力 从而降低了压力损失。旋风除尘器的除尘效率随粉尘浓度增加而提高。但是除尘效率提高的速度要比含尘浓度增加的速度慢得多 因此 要根据气体的含尘浓度不断调整气体的流量和速度 始终保证较高的除尘率。在选择含尘气体的容量时 除浓度外 还要考虑粉尘的黏结性粉尘的黏结强度。

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘器性能测定(精)

实验一旋风除尘器性能测定 一、实验意义和目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件. 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。下面说明不同形状烟道采样点的布置。 1.圆形烟道 采样点分布如图1(a)。将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心在线,所分的等面积圆环数由烟道的直径大小而定。 2.矩形烟道 将烟道断面分为等面积的矩形小块,各块中心即采样点,见图1(b)。不同面积矩形烟道等面积小块数见表1。 表1 矩形烟道的分块和测点数 3.拱形烟道 分别按圆形烟道和矩形烟道采样点布置原则,见图1(c)。 (a)圆形烟道(b)矩形烟道(c)拱形烟道

图1 烟道采样点分布图 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P =l.013?l05Pa ,T =273K )来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算: T P T R P g ?=?= 287ρ (1) 式中:ρg 一一烟气密度,kg/m ; P —一大气压力,Pa ; T —一烟气温度,K 。 实验过程中,要求烟气相对湿度不大于75%。 (三)除尘器处理风量的测定和计算 1.烟气进口流速的计算 测量烟气流量的仪器利用S 型毕托管和倾斜压力计。 S 型毕托管使用于含尘浓度较大的烟道中。毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图2所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。 图2 毕托管的构造示意图 1-开口;2-接橡皮管 由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s 的气流中进行比较,S 型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。当流速在5~30m/s 的范围内,其校正系数值约为0.84。S 型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。 当干烟气组分同空气近似,露点温度在35~55?C 之间,烟气绝对压力在0.99~1.03?105Pa 时,可用下列公式计算烟气人口流速: P T K v p 1 77.2= (2) 式中:K p ——毕托管的校正系数,K p =0.84; T ——烟气底部温度,?C ; P ——各动压方根平均值,Pa ; n P P P P n +???++= 21 (3)

旋风+布袋除尘器(技术协议)

中节能(烟台)生物质热电工程 带有前置旋风除尘器的布袋除尘器 技术协议 ; 买方:中节能(烟台)生物质热电有限公司 卖方:山东环冠科技有限公司 2 010年9月 ,

目录 1 总则 (2) 2 运行环境条件 (2) 3 设计条件 (3) 4技术要求 (4) 5质量保证及性能试验 (14) 6 技术服务 (16) 7供货范围 (18) 8油漆、包装、运输 (21) 9技术资料交付 (23)

1 总则 本技术协议仅适用于中节能(烟台)生物质热电工程的2台75t/h秸秆CFB锅炉所配的两台带有前置旋风除尘器的布袋除尘器,它包括除尘器的功能设计、结构、性能、安装和试验等方面的技术要求。 本技术协议提出的是最低限度的要求,并未对一切细节作出规定,也未充分引述有关标准和规范的条文,卖方保证提供符合本技术协议和有关最新工业标准的产品。 在商务合同签订生效之后,买方有权提出因规范标准和规程发生变化而产生的一些补充要求,具体项目由买、卖双方共同商定。 本技术协议所使用的标准如遇与卖方所执行的标准不一致时,以较高标准执行。 如买方有除本技术协议以外的其他要求,应以书面形式提出,经买方、卖方双方讨论、确认后,作为本技术规范的补充,与本技术协议具有等同的法律效力。 卖方对布袋除尘器成套系统设备(含辅助系统与设备)负有全责,即包括分包(或采购)的产品。分包(或采购)的产品制造商应事先征得买方的认可。 2 运行环境条件 设备的运行环境条件 厂址:栖霞市吕家黄口 该区域属半岛内陆性气候,年平均气温℃,最冷为一月份,最低温度℃,月平均气温℃,最热七月份,最高温度℃,月平均气温℃。年平均降雨量为830mm,年平均降水天数天,多集中在7-8月份,日最大降雨量为mm(1979年7月31日),1985年降雨量最大,年降雨量达mm。年平均无霜期207天,初霜在10月底,终霜在来年3月底,历年最大冻土深度为50㎝,绝对湿度历年平均为毫巴,相对湿度平均值为66%,年平均蒸发量为mm。平均年日照小时数为2680小时,日照百分率为61%,常年主导风向夏季为南风,冬季为东北风,基本风压值为50㎏/㎡。 工作条件 安装地点:炉后,室外 3 设计条件 配套前置旋风除尘器的布袋除尘器装设在锅炉尾部,用于去除锅炉烟气

旋风除尘器试验报告

旋风除尘器性能测定 组员:戚锎1020320215 朱鹏志1020320219 彭文林1020320220 汪超1020320222 谢显宇1020320224 肖林峰1020320226 杨合详1020320235 向强1020320134 杨斌1020320126 欧琳1020320102 指导老师:赵素芬

旋风除尘器性能测定实验 一、实验目的 1、了解除尘器性能测定实验台的结构及工作原理,掌握除尘器性能测试的基本方法。 2、了解除尘器运行工况及其效率和阻力的影响。 3、掌握旋风除尘器的除尘机理以及使用方法。 4、测定旋风除尘器处理风量、压力损失和除尘效率 二、实验原理 如图所示为一个旋风除尘器,废气从(1)进入,然后经过(4)旋风除尘器作用除去粉尘颗粒,再从出气口排出净化后的气体。经过旋风除尘器除去的粉尘颗粒由(5)灰斗收集。 旋风除尘器除沉机理是使含尘气流作旋转运动,借助于离心力降

尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。废气在旋风除尘器中的运动如下图所示 1.气体流速的测定:本实验用毕托管和微压计测定管道中各测点 的动压Pd,从而可求得气体的流速。由于气体流速在风管断面上的分布式不均匀的,可在同一断面上进行多点测量,求出该断面的平均流速。毕托管所测得的断面Φ90mm,故可以分为两环。微压计测出动压平均值,相应的空气流速为 式中Pd——测得的平均动压值,ρ——空气密度kg/m3, 2.风量的测定:根据断面的气流速度确定风量Q=A 3.除尘器压力损失测定:除尘器的压力损失(Hz)即除尘器入排 风侧的全能量差,依下式求出:

实验除尘器性能测定

试验三:除尘器性能测定 一、实验目的与要求: 1. 掌握除尘器性能测定的基本方法。 2. 了解除尘器运行工况对其效率和阻力的影响。 二、 实验内容: 1.测定或调定除尘器的处理风量; 2.测定除尘器阻力与负荷的关系(即不同入口风速时阻力变化规律); 3.测定除尘器效率与负荷的关系(即不同入口风速时除尘效串的变化规律)。 三、.实验原理: 含尘气流由切线进口进入除尘器,沿外壁由上向下作螺旋形旋转运动,外涡旋气 流到达锥形底部后,转而向上,沿轴心向上旋转,最后经排出管排出。向下的外涡旋和向上的内涡旋的旋转方向是相同的。气流作旋转运动时,尘粒在惯性离心力的推动下,要向外壁移动。到达外壁的尘粒在向下气流和重力的共同作用下,沿壁面落入灰斗。 四、实验装置: 静压测孔 静压测孔 进灰口发尘器 旋风除尘器性能测定实验台 3 5 4 整流栅 毕托管测孔 高速风机 支架 灰斗 静压测孔 浓度采样口

五、实验方法: (1)风量的测定 风量的测定采用毕托管测量,其原理是利用毕托管和微压计测定风管断面的流速,从而确定风量,即: L=F*V 式中:L ——风量,m 3/s ; F ——测量断面面积,m 2; V ——断面空气平均流速,m /s 。 由于气流速度在风管断面上的分布是不均匀的,因此在同一断面上必须进行多点测量,然后求出该断面的平均流速V 。毕托管所测量的断面为ф103mm 的圆形断面,故可划分为两环,微压计测出动压值P d ,相应的空气流速 ρ d P V 2= 式中:P d ——测得的动压平均值;Pa ; ρ——空气的密度,kg /m 3; (2)小旋风除尘器阻力的测定: 小旋风除尘器阻力 △P=△P q -P l -Z 式中:△P q ——小旋风除尘器进出口空气的全压差(Pa); P l ——沿程阻力,即静压孔4与5的静压差×1.3(Pa) Z ——局部阻力,Z=∑ξρV 2/2,( ∑ξ=0.52)(Pa)。 由于小旋风除尘器进出口管段的管径相等,故动压相等,所以 △P q=△P j 式中:△P j ——小旋风除尘器进出口空气的静压值,即用微压计测得的静压3和4值.于是: △P=△P j -P l -Z (3)小旋冈除尘器效率的测定 除尘器效率测定可采用重量浓度法,即按下式 η=(Y- Y 2)/Y 1×100%

旋风除尘器设计

设计项目:旋风除尘器的设计 设计者姓名: 班级: 座号: 完成时间: 2013.11。06 一、设计题目 某工厂一台锅炉,风量10000立方米∕小时,烟气温度573℃,粉尘密度4。5克∕立方米,烟尘密度2000千克∕立方米,573K时空气粘度u=2。9*10—5pa经测试,粉尘粒径分布如表1所示。要求经除尘装置后粉尘排放浓度为0。8克∕立方米,压力损失ΔP不大于2000Pa,v=23m/s. 烟尘粒度分布 根据以上数据设计一旋风除尘器

二、选取旋风除尘器理由及选择的型号 1。其他除尘器的特点 (1)重力沉降室是使含尘气流中的尘粒借助重力作用自然沉降来达到净化气体的目的的装置。这种装置具有结构简单、造价低、施工容易(可以用砖砌或用钢板焊制)、维护管理方便、阻力小(一般50—150Pa)等优点,但由于它体积大,除尘效率低(一般只有40%—50%),适于捕集大于μ粉尘粒子,故一般只用于多级除尘系统中的第一级除尘。 50m (2)惯性除尘器是利用尘粒在运动中惯性力大于气体惯性力的作用,将尘粒从含尘气体中分离出来的设备.这种除尘器结构简单、阻力较小、但除尘效率较低,一般常用于一级除尘。惯性除尘器用于净化密度和粒径μ以上的粗尘粒)的金属或矿物性粉尘,具有较高的除较大(捕集10-20m 尘效率。对于黏结性和纤维性粉尘,因其易堵塞,故不宜采用。 (3)电除尘器是含尘气体在通过高压电场进行电离的过程中,是尘粒荷电,并在电场力的作用下使尘粒趁机在集尘板上,将尘粒从含尘气体中分离出来的一种除尘设备.其与其他除尘器的根本区别在于,分离力直接作用在粒子上,因此具有耗能小、气流阻力小的特点。其主要优点有压力损失小、处理烟气量大、耗能低、对粉尘具有很高的捕集效率和可在高温或强腐蚀性气体下操作。但其缺点为一次性投资大、安装精度要求高和需要调节比电阻。 (4)湿式除尘器是使含尘气体与液体密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使粒径增大的装置。它具有结构简单、造价低、占地面积小、操作及维修方便和净化效率高等优点,能处理高温、

旋风除尘器性能测定实验

旋风除尘器性能测定 一、实验目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件. 二、实验原理 (一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.013?l05Pa,T=273K)来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。 烟气状态参数包括空气的温度、密度、相对湿度和大气压力。 (三)除尘器处理风量 风量计算、流速计算 (四)除尘器进、出口浓度计算 (五)除尘效率计算 三、实验装置、流程和仪器 (一)实验装置、流程 含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。所需含尘气体浓度由发尘装置配置。 (二)仪器 分析天平分度值0.0001g l台托盘天平分度值1g l台四.实验方法和步骤 1.用托盘天平称出发尘量(G j),分别为150g和300g两组。 2.控制气流的阀门为全开状态,通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(τ),计算出除尘器入口气体的含尘浓度(Cj)。时间分别为3min 和5min。

旋风除尘器的类别与选型

旋风除尘器的类别与选型 旋风除尘器按其性能可分以下四大类: ①高郊旋风除尘器,其筒体直径较小,用来分离较细的粉尘,除尘效率在95%以上; ②大流量旋风除尘器,筒体直径较大,用于处理很大的气体流量,其除尘效率为50-80%以; ③通用型旋风除尘器,处理风量适中,因结构形式不同,除尘效率波动在70-85%之间, ④防爆型旋风除尘器,本身带有防爆阀,具有防爆功能。 根据结构形式,可分为长锥体、圆筒体、扩散式、旁路型。 按组合、安装情况分为内旋风除尘器、外旋风除尘器、立式与卧式以及单筒与多管旋风除尘器。 按气流导入情况,气流进入旋风除尘后的流路路线,以及带二次风的形式可概括地分为以下两种: ①流反转式旋风除尘器 ②轴流式旋风除尘器 了解了旋风除尘器的基本分类形式,根据现场烟气实际工况就比较容易选型了,一般旋风除尘器选型时应注意以下基本原则:

①旋风除尘器净化气体量应与实际需要处理风量一致。选择除尘器直径时应尽量小些,如果要求通过的风量较大,可采用若干个小直径的旋风除尘器并联为宜,如果处理气量与多管旋风除尘器相符,以选多管旋风除尘器为宜。 ②旋风除尘器的入口气速要保持在18-23m/s,低于18m/s时,其除尘效率下降,高于23m/s时,除尘效率提高不明显,但阻力损失增加,能耗增大。 ③选择旋风除尘器时,要根据工况考虑阻力损失和结构形式,尽可能做到既节省动力消耗又能得到最佳除尘分离效果及以便于制造、维护管理。 ④旋风除尘器能捕集到的最小尘粒应等于或稍小被处理气体的粉尘粒度。 ⑤当含尘气体温度很高时,要注意保温,避免水分在内凝结。假如粉尘不吸收水分,除尘器的工作温度要比露点温度高出30度左右。假如粉尘吸水性较强,除尘器的工作温度要比露点温度高出40-50度。以避免露点腐蚀。 ⑥旋风除尘器结构的密封要好,确除尘设备保不漏风。尤其是负压操作,更应该注意卸料锁风装置的可靠性。 ⑦易燃易爆粉尘,应设有防爆装置。防爆装置的通常做法是在入口管道上加一个安全防爆阀门。 ⑧当粉尘黍度较小时,最大允许含尘浓度与旋风筒直径有关,即直径越大,允许含尘质量浓度也越大。具体的关系见下表 旋风除尘器直径和允许含尘质量浓度的关系 旋风除尘器直径/mm 800 600 400 200 100 60 40 允许含尘质量浓度/(g/m3) 400 300 200 150 60 40 20

旋风除尘器性能测试实验报告

旋风除尘器性能测试实验报告 篇一:旋风除尘器性能测定实验 旋风除尘器性能测定 一、实验目的 通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器人口风速与阻力、全效率、分级效率之间的关系以及人口浓度对除尘器除尘效率的影响。通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件.二、实验原理(一)采样位置的选择 正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。 (二)空气状态参数的测定 旋风除尘器的性能通常是以标准状态(P=l.013?l05Pa,T=273K)来表示的。空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。烟气状态参数包

括空气的温度、密度、相对湿度和大气压力。(三)除尘器处理风量 风量计算、流速计算(四)除尘器进、出口浓度计算(五)除尘效率计算三、实验装置、流程和仪器(一)实验装置、流程 含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。所需含尘气体浓度由发尘装置配置。(二)仪器 分析天平分度值0.0001gl台托盘天平分度值1gl台四.实验方法和步骤 1.用托盘天平称出发尘量(G j),分别为150g和300g 两组。 2.控制气流的阀门为全开状态,通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(?),计算出除尘器入口气体的含尘浓度(Cj)。时间分别为3min和5min。 3.称出收尘量(Gs),计算出除尘器出口气体的含尘浓度(Cz)。4.计算除尘器的全效率(η). 5.改变调节阀开启程度为半开、重复以上实验步骤,确定除尘器各种不同的工况下的性能。以发尘量150g,发尘时间3min时,实验风量为600m3/h和1000m3/h两种条件。 五、实验数据的计算和处理 以除尘器进口气速为横坐标,除尘器全效率为纵坐标,

旋风除尘器设计详解

高效旋风除尘器设计

摘要00 论文主要介绍了旋风除尘器各部分结构尺寸的确定以及旋风除尘器性能的计算。以普通旋风除尘器设计为基础,结合现代此类相关课题的研究方法,设计出符合一定压力损失和除尘效率要求的除尘器,在CAD/CAM软件辅助设计的基础上,绘制旋风除尘器装配图、零件图、以及除尘系统原理图。本文分以下几部分对以上内容进行了讨论:首先,通过查阅资料计算出旋风除尘器各部分尺寸;其次,绘制出旋风除尘器装配图及旋风除尘器各零部件图;最后,整理资料,选取与论文相关的英文文献进行翻译完成设计说明书。 关键词:旋风除尘器压力损失除尘效率

目录 1.引言 (1) 2.旋风除尘器的除尘机理及性能 (2) 2.1旋风除尘器的基本工作原理 (2) 2.1.1旋风除尘器的结构 (2) 2.1.2旋风除尘器内的流场 (2) 2.1.3旋风除尘器内的压力分布 (5) 2.2 旋风除尘器的性能及其影响因素 (5) 2.2.1旋风除尘器的技术性能 (5) 2.2.2 影响旋风除尘器性能的主要因素 (6) 2.2.3 旋风除尘器选型原则 (10) 3.旋风除尘器的设计 (12) 3.1旋风除尘器各部分尺寸的确定 (12) 3.1.1形式的选择 (12) 3.1.2 确定进口风速 (12) 3.1.3 确定旋风除尘器的尺寸 (12) 3.2旋风除尘器强度的校核 (14) 3.2.1筒体和锥体壁厚s和气压试验强度校核 (14) 3.2.2排气管尺寸的确定 (15) 3.2.3.支座的选择计算 (17) 3.2.4支腿的设计计算及校核 (19) 3.3旋风除尘器压力损失及除尘效率 (20) 3.3.1计算压力损失 (20) 3.3.2除尘效率的计算 (21) 3.4风机的选择 (22) 3.5排尘阀的选择 (22) 3.6连接方式的选择 (22) 结论 (24) 致谢 (25) 参考文献 (26) 外文资料 (27)

旋风除尘器性能测试实验报告

精品文档 旋风除尘器性能测试 、实验目的 1 ?掌握除尘器性能测定的基本方法。 2?了解除尘器运行工况对其效率和阻力的影响。 、实验内容 1 ?调定除尘器的处理风量。 2 ?观测除尘器阻力与负荷的关系。(即不同入口风速时阻力变化规律或情 况) 3. 观测除尘器效率与负荷的关系。(即不同入口风速时除尘效率的变化规律 情况) 、实验台简介 实验台主要由测试系统、实验除尘器、发尘装置等三部分组成,如下图 图1旋风除尘器性能测试实验台示意图 1.接灰斗 2.实验除尘器 3.出口测压点 4.进口测压点 5.发尘装置 6.孔板 流量计 7.进风口 8.控制 板9.比托管测风管道 10.固定架11.比托管测试点 12. 风机入口软管13.引风机。注:测压表未画出 附尘器全效率的测定采用重量法,即按下式计算 -G2.G1 式中G ――进入除尘器粉尘量,g ; G 2――除尘器除下的粉尘量,g 。 四、测定方法及步骤 1 ?制作两种不同粒径的实验粉尘。 2 .称取不少于1000g 的实验粉尘G 。 3. 待起动发尘器的引射风机后,将所称取的粉尘加入发尘器灰斗中,同时 起动振 动电机。 4. 发尘完毕后,顺次停止振动开关,约 1分钟后停止风机。 5. 风机停转后打开灰斗,收集灰斗中粉尘并称重,即得 G 。 精品文档 (1)

6.根据公式(1)计算该入口风速下的除尘器全效率 五、实验数据处理 实验粉尘G仁1000~1200g 灰斗粉尘G2=800~900g 除尘器全效率=G2/G1*100%=80%~90% 误差分析:(1)旋风除尘器倾斜管段坡度小,粉尘有沉积; (2)向除尘器加入粉尘是,加入速度不够均匀; (3)旋风除尘器筒体与锥体间存在水平凹台,容易积灰。 六、思考题 1.叙述该除尘器的工作过程 2.分析旋风除尘器效率的影响因素。 答:1.该除尘器的工作过程:实验粉尘从加料口加入后,通过一段直管段进入旋风除尘器,除下的粉尘进入灰斗,清洁空气从除尘器上出口进入一段水平直管段和一段垂直管段,在风机的抽吸作用下进入周围环境。 2.影响旋风除尘器效率的因素主要由:粉尘的粒径大小,粉尘的密度,除尘器自身性 能,入口风速,除尘器的漏风量等。

旋风除尘器实验(精)

旋风除尘器实验 仿真实验指导书 通风与大气污染 控制工程仿真系列实验 蔡建安林晓飞编著 安徽工业大学

实验6-旋风除尘器实验 一、实验目的 (1).了解除尘器性能试验台的结构及工作原理,掌握除尘器性能测试的基本方法。 (2).了解除尘器运行工况对其效率和阻力的影响。 (3).设定并测量除尘器的处理风量。 (4).测定除尘器阻力与处理风量的关系。 (5).测定除尘器效率与处理风量的关系。 二、实验装置和虚拟设备 除尘器性能测定试验台的结构如下图6-1所示,它主要由测试系统、实验除尘器和发尘装置等三个部分组成。 图6-1 除尘器性能实验装置结构图 1.测试系统 测试系统由进气段、出气段、静压孔、孔板流量计、风机和调节阀等组成。其中:

(1)两静压环分别设在进、出气段上,用以测量两管段的气流静压值和计算出除尘器的阻力(当进、出气管道直径不相等时应用全压进行计算)。为了保证测量的精确性,两静压环的精确性,两静压环离除尘器的进、出口均有一定的距离,并在计算除尘器阻力时还将这两段管路的压头损失扣除。 (2)孔板流量计设在气流比较洁净的出气段上,配以微压计后可测量系统的空气流量。 (3)风量调节阀设在风机出口处,用以调节系统的空气流量。 2.实验除尘器 实验除尘器为一小型离心式除尘器,在其底部设卸灰斗,每次实验结束时可从此处将收集的灰尘取出。取灰时应注意一下两点: (1)每次取灰时,应将灰斗中的灰尘清扫干净,以免剩留。 (2)每次取灰后,应将灰斗的盖板盖严,不得漏风以免使下次测试造成误差。 3.发尘装置 发尘装置为一振动式发尘器,其发尘量可通过调节漏斗的闸板开度进行控制,漏出的粉尘可通过进灰口进入系统。 实验用粉尘可采用滑石粉、双飞粉、煤粉等干燥、松散的颗粒状粉尘。 三、实验原理和工况点参数测量及计算方法 1.风量的设置和调定 根据除尘器的工作特性,本实验在测定除尘器的阻力、除尘效率与风量的关系时,采用的除尘器进口风速范围为10-20m/s ,分4-6个测定点,可根据除尘器中的进口尺寸,计算出不同进口风速下的实验风量Q ,在利用已标定的孔板流量计“压差”-空气流量曲线查出与Q 相对应的压差值,最后利用风量调节阀门调定孔板流量计所配微压计的指示达到该“压差”值。(当室温与标定时差别较大时应进行换算修正或重新标定)。 2.测定除尘器阻力与风量关系 (1)按上述方法调定除尘器某实验风量后,利用进、出口气管段上的静压环和所配的微压计测定并计算出两处之间的静压差f P ?: )(a f p h K P ??=? 式中:K ——微压计比例系数 h ?——微压计读值 )(a p (2)计算在该风量下进、出气管段内的风速d V V 21 、,动压头2 1 d d P P 、和动压差d P ?。

旋风除尘器的性能测定

旋风除尘器的性能测定 一、实验目的 1.通过实验掌握旋风除尘器的结构及除尘原理; 2.了解除尘器的影响因素; 3.掌握入口风速、粉尘浓度与除尘效率间的关系。 二、实验原理 旋风除尘器是除尘装置的一类。除尘机理是使含尘气流作旋转运动,借助于离心力将尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。 详细原理见课本,需添加。 旋风除尘器一般由进气管、圆筒体、锥体和排气管等几个部分组成的,结构见图1. 除尘器的除尘性能除与除尘器本身的种类、规格型号有关外,还与除尘器运作的环境状况、工作条件密切相关。环境状况一般包括空气温度、密度、相对湿度和大气压力等。工作条件包括风速、处理风量以及进口含尘气体浓度。 除尘效率是考察除尘器的性能指标之一。本实验是在除尘器结构型式、滤料种类、清灰方式和粉尘特性一定的前提下,测定除尘器主要性能指标,并在此基础上,测定处理气体量Q、进口风速v,对除尘效率(η)的影响。 除尘效率可通过重量法和浓度法求得。在浓度法中,除尘器的除尘效率η为: η=(G0-Ge)/Go×100% 式1 式中:G0为发尘平均粉尘浓度(进口平均粉尘浓度),Ge为出口平均粉尘浓度。三、实验装置 本实验装置主要由直动粉尘加料装置、旋风除尘器、引风机及数据采集系统组成,自

动粉尘加料装置中采用调速电机,可用于调节不同浓度的含尘气体。 旋风除尘器为有机玻璃壳体,主要技术参数,风量、入口气体含尘量、除尘效率、风速、风压、湿度、温度等,以及在各采样口所测得的数据可直接接入系统自带的数据采集系统进行在线采集。 四、实验内容 考察不同入口风量、不同进口浓度下粉尘去除效率。 五、实验步骤及记录 1.将一定量的粉尘(滑石粉)加入到自动发生装置灰斗; 2.开机前将通风盘调至1格; 3.打开主机电源; 4.启动显示屏开关,自动采集到风量、风速、风压、效率、出入口浓度、稳定、湿度,直到显示屏上数据稳定后打开风机; 5.按顺时针方向缓缓调节风机转速调节旋钮至某一位置(注意不要调到最大),打开浓度电源,顺时针调节浓度(不能超过360o),进行不同处理气体量、不同浓度下的实验,记录相关数据; 6.实验完毕后,关机,关机顺序与开机顺序相反,即:浓度关闭—调风量(调通风盘到3-4个单位,运行10 min)—关风机-调通风盘至1格—至显示屏全为0时—关通风盘—关显示器。 一档: 序号 风量 (m3/h) 风速 (m/s) 风压 (Pa) 温度 (℃) 湿度 (%) 入口浓度 (ppm) 出口浓度 (ppm) 除尘效率 (%) 1 2 3 平均值 二档: 序号 风量 (m3/h) 风速 (m/s) 风压 (Pa) 温度 (℃) 湿度 (%) 入口浓度 (ppm) 出口浓度 (ppm) 除尘效率 (%) 1 2 3

旋风除尘器性能测试实验报告

旋风除尘器性能测试 一、实验目的 1.掌握除尘器性能测定的基本方法。 2.了解除尘器运行工况对其效率和阻力的影响。 二、实验内容 1.调定除尘器的处理风量。 2.观测除尘器阻力与负荷的关系。(即不同入口风速时阻力变化规律或情况)。 3.观测除尘器效率与负荷的关系。(即不同入口风速时除尘效率的变化规律情况)。 三、实验台简介 实验台主要由测试系统、实验除尘器、发尘装置等三部分组成,如下图。 图1 旋风除尘器性能测试实验台示意图 1. 接灰斗 2. 实验除尘器 3. 出口测压点 4. 进口测压点 5. 发尘装置 6.孔板流量计 7.进风口 8.控制板 9.比托管测风管道10.固定架11. 比托管测试点12.风机

入口软管 13.引风机。注:测压表未画出 附尘器全效率的测定采用重量法,即按下式计算 12G G =η (1) 式中 G 1——进入除尘器粉尘量,g ; G 2——除尘器除下的粉尘量,g 。 四、测定方法及步骤 1.制作两种不同粒径的实验粉尘。 2.称取不少于1000g 的实验粉尘G 1 。 3. 待起动发尘器的引射风机后,将所称取的粉尘加入发尘器灰斗中,同时起动振动电机。 4. 发尘完毕后,顺次停止振动开关,约1分钟后停止风机。 5. 风机停转后打开灰斗,收集灰斗中粉尘并称重,即得G 2。 6. 根据公式(1)计算该入口风速下的除尘器全效率。 五、实验数据处理 实验粉尘G1=1000~1200g 灰斗粉尘G2=800~900g 除尘器全效率η=G2/G1*100%=80%~90% 误差分析:(1)旋风除尘器倾斜管段坡度小,粉尘有沉积; (2)向除尘器加入粉尘是,加入速度不够均匀; (3)旋风除尘器筒体与锥体间存在水平凹台,容易积灰。

旋风除尘器的结构参数

4.1 旋风器的结构参数 旋风器结构尺寸一般以筒体直径D1(m)为定性尺寸给出各部位的无因次比值,旋风器在筒体直径D1确定之后,可以按照无因次结构比值K D2、K D3、K D4、K H1、K H2、K H、K a、K b、K S确定其他部位尺寸,参见图1。即: K D2=D2/ D1 K D2=D3/ D1 K D4=D4/ D1 K D2=D2/ D1 K H1= H1/ D1 K H2= H2/ D1 K a=a/ D1 K b= b/ D1 K S= s/ D1 K H= H/ D1 = K H1+ K H2- K S 其中D1筒体直径、D2芯管进口直径、D3芯管出口直径、D4锥体下部直径(排灰口直径),m;H芯管进口截面到锥体排灰口的距离(或称分离区高度)、H1筒体高度、H2锥体高度,m;a进口宽度、b进口高度、s芯管插入深度,m。表1中列出了部分旋风器的结 构参数[1-4]。 4.2 旋风器进口速度和筒体截面标称速度 旋风器进口速度v0(m/s)指气流L(m3/h)由旋风器进口进入时的速度,筒体截面标称速度v A( m/s)是指气流量L与旋风器筒体截 面面积的比值,即 (1) 4.3 阻力计算 (2)

式中ΔP--旋风器阻力,Pa; P d--气流动压; P d0、P dA--分别为对应于进口截面和筒体面的气流动压,Pa; ρ--气体密度,kg/m3。 Ρ=353K B/(273+t)(空气);ρ=366 K B/(273+t)(一般烟气)(3) 式中K B环境压力B的修正系数,K B =B/ B a,B a为标准大气压力(101.3kPa)。t为气体温度,℃。ξ为设备厂家提供的旋风器阻力系数,常见旋风器的阻力系数ξ见表2、3,可以用ξ0或ξA表示。 常见高效旋风器的阻力系数ξ表2-1 常见旋风器的阻力系数ξ0表2-2 ξ0为对应于进口截面的阻力系数;ξA为对应于筒体截面的阻力系数,可以反映同一直径的不同类型旋风器在处理相同风量时的阻力 大小。ξ0与ξA间关系为 ξA/ξ0=0.62(K a K b)-2(4) 旋风器安装方式不同会对旋风器阻力计算值产生影响,如旋风器出口方式采用出口涡壳比采用圆管弯头阻力下降10%左右;使多筒、多管由于增加接管,与单个使用也有差别,可以通过工程经验进行修正。一般来讲,同类型直径大小不同的旋风器阻力相同。 4.4 除尘效率计算 4.4.1 分级效率[5] (5) (6)

相关文档
最新文档