高考圆锥曲线题型归类总结50

高考圆锥曲线题型归类总结50
高考圆锥曲线题型归类总结50

高考圆锥曲线题型归类总结50

高考圆锥曲线的七种题型;题型一:定义的应用;1、圆锥曲线的定义:;(1)椭圆;(2)椭圆;(3)椭圆;2、定义的应用;(1)寻找符合条件的等量关系;(2)等价转换,数形结合;3、定义的适用条件:;典型例题;例1、动圆M与圆C1:(x+1)+y=36内切,;例2、方程;题型二:圆锥曲线焦点位置的判断(首先化成标准方程;1、椭圆:由2、双曲线:由,,分母的大小决高考圆锥曲线的七种题型

题型一:定义的应用

1、圆锥曲线的定义:

(1)椭圆

(2)椭圆

(3)椭圆

2、定义的应用

(1)寻找符合条件的等量关系

(2)等价转换,数形结合

3、定义的适用条件:

典型例题

例1、动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。

例2、方程

题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):

1、椭圆:由

2、双曲线:由,,分母的大小决定,焦点在分母大的坐标轴上。项系数的正负决定,焦点在系数为正的坐标轴上;表示的曲线是2222

3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

典型例题

x2y2

例1、已知方程??1表示焦点在y轴上的椭圆,则m的取值范围是m?12?m

??1的曲线:例2、k为何值时,方程9?k5?k

(1)是椭圆;

(2)是双曲线.

题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题

1、椭圆焦点三角形面积S?btan2?

2 ;双曲线焦点三角形面积S?bcot2?

2

2、常利用第一定义和正弦、余弦定理求解

3、m?n,m?n,mn,m2?n2四者的关系在圆锥曲线中的应用;

典型例题

22xy例1、椭圆22?,求1(a?b?0)上一点P与两个焦点FFPF?1,2的张角

∠F12?ab

证:△F1PF2的面积为btan2?。

2

例2、已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且

.求该双曲线的标准方程

题型四:圆锥曲线中离心率,渐近线的求法

1、a,b,c三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值;,

2、a,b,c三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围;

3、注重数形结合思想不等式解法

典型例题

例1、已知F1、F2是双曲线2?2?1(a?0,b?0)的两焦点,以线段F1F2为边作正ab

三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是()A. 4?2 B. ?1 C.

?1 D. ?1

2

x2y2

例2、双曲线2?2?1(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,ab

则双曲线离心率的取值范围为

A. (1,3)

B.?1,3?

C.(3,+?)

D.?3,???

x2y2

例3、椭圆G:2?2?1(a?b?0)的两焦点为F1(?c,0),F2(c,0),椭圆上存在ab

点M使F1M?F2M?0. 求椭圆离心率e的取值范围;

??????????

x2y2

例4、已知双曲线2?2?1(a?0,b?0)的右焦点为F,若过点F且倾斜角为60?的直线ab

与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是

(A)(1,2] (B)(1,2) (C)[2,??) (D)(2,??)

题型五:点、直线与圆锥的位置关系判断

1、点与椭圆的位置关系

x2y2

点在椭圆内?2?2?1 ab

x2y2

点在椭圆上?2?2?1 ab

x2y2

点在椭圆外?2?2?1 ab

2、直线与圆锥曲线有无公共点或有几个公共点的问题:

?>0?相交

?=0?相切(需要注意二次项系数为0的情况)

?<0?相离

3、弦长公式:AB??k2x1?x2??k2(x1?x2)??k2? a

AB??111? y?y??(y?y)??1212222kkka

4、圆锥曲线的中点弦问题:

1、伟达定理:

2、点差法:

(1)带点进圆锥曲线方程,做差化简

(2)得到中点坐标比值与直线斜率的等式关系

典型例题

例1、双曲线x2-4y2=4的弦AB被点M(3,-1)平分,求直线AB的方程.

例2、已知中心在原点,对称轴在坐标轴上的椭圆与直线L:x+y=1交于A,B 两点,C是AB的中点,若|AB|=22,O为坐标原点,OC的斜率为2/2,求椭圆的方程。

题型六:动点轨迹方程:

1、求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;

2、求轨迹方程的常用方法:

(1)直接法:直接利用条件建立之间的关系;

例1、如已知动点P到定点F(1,0)和直线

的距离之和等于4,求P的轨迹方程.

(2)待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。

例2、如线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,则此抛物线方程为

(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;

例3、由动点P向圆作两条切线PA、PB,切点分别为A、B,∠APB=60,则动点0P的轨迹方程为

例4、点M与点F(4,0)的距离比它到直线

例5、一动圆与两圆⊙M:

的轨迹为

(4)代入转移法:动点

在某已知曲线上,则可先用迹方程:

例6、如动点P是抛物线则M的轨迹方程为__________

(5)

参数法:当动点

虑将

例7、过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M 的轨迹方坐标之间的关系不易直接找到,也没有相关动点可用时,可考上任一点,定点为,点M分所成的比为2,依赖于另一动点

的代数式表示的变化而变化,并且,再将又和⊙N:都外切,则动圆圆心的距离小于1,则点M的轨迹方程是_______ 代入已知曲线得要求的轨均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。程是

题型七:(直线与圆锥曲线常规解题方法)

一、设直线与方程;(提醒:①设直线时分斜率存在与;二、设交点坐标;(提醒:之所以要设是因为不去求出;三、联立方程组;;四、消元韦达定理;(提醒:抛物线时经常是把抛物线;五、根据条件重转化;常有以下类型:;①“以弦AB为直径的圆过点0”(提醒:需讨论K是;?????????OA?OB?K1?K2??1?;

②“点在圆内、圆上、圆外问题”;?“直角、锐角、钝角问题

一、设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n的区别)

二、设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)

三、联立方程组;

四、消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)

五、根据条件重转化;常有以下类型:

①“以弦AB为直径的圆过点0”(提醒:需讨论K是否存在)

?????????OA?OB ?K1?K2??1 ?OA?OB?0 ? x1x2?y1y2?0

②“点在圆内、圆上、圆外问题”

?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问

题” ?x1x2?y1y2>0;

③“等角、角平分、角互补问题” ?斜率关系(K1?K2?0或K1?K2);④“共线问题”

????????(如:AQ??QB ?数的角度:坐标表示法;形的角度:距离转化法);

(如:A、O、B三点共线?直线OA与OB斜率相等);

⑤“点、线对称问题” ?坐标与斜率关系;

⑥“弦长、面积问题”

?转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);

六、化简与计算;

七、细节问题不忽略;

①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.

基本解题思想:

1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;

2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;

3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无

关;⑵也可先在特殊条件下求出定值,再给出一般的证明。

4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明

5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;

6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;

7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

典型例题:

例1、已知点F?0,1?,直线l:y??1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP?QF?FP?FQ.

(1)求动点P的轨迹C的方程;

(2)已知圆M过定点D?0,2?,圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设DA?l1,DB?l2,求

例2、如图半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为

线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上

运动且保持|PA|+|PB|的值不变.

(1)建立适当的平面直角坐标系,求曲线C的方程;

????????????????l1l2?的最大值.l2l1

(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设

求λ的取值范围.

DM=λ,DN

x2y2

例3、设F1、F2分别是椭圆C:2?2?1(a?b?0)的左右焦点。ab

(1)设椭圆C

上点到两点F1、F2距离和等于4,写出椭圆C的方程和焦点坐标;

(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程;

(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N 两点,当直线

PM ,PN 的斜率都存在,并记为kPM,kPN ,试探究kPM?KPN的值是否与点P及直线L有关,并证明你的结论。

例4、已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y?kx?m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

例5、已知椭圆两焦点F1、F2在y

轴上,短轴长为

,P是椭圆在第一 2

?????????象限弧上一点,且PF1?PF2?1,过P作关于直线F1P对称的两条直线PA、PB分别交椭圆

于A、B两点。

(1)求P点坐标;

(2)求证直线AB的斜率为定值;

典型例题:

例1、

由①、②解得,x?a?2.

不妨设A?a?2,0?,B?a?2,0?,

l1?

l2?.

l1l2l12?l222∴???l2l1l1l2

?

? ③ l1l2??

? l2l1 当a?

0时,由③得,

当且仅当a??

当a?0时,由③得,l1l2??

2.l2l1

故当a??l1l2?的最大值为l

2l1

例2、解:(1)以AB、OD所在直线分别为x轴、y轴,O为原点,建立平面直角坐标系,

∵|PA|+|PB|=|QA|+|QB|=222;设其长半轴为a,短半轴为b,半焦距为c,则2a=;x22;∴曲线C的方程为+y=1.;(2)设直线l的方程为y=kx+2,;x2222;代入+y=1,得(1+5k)x+20kx+15=;Δ=(20k)-4×15(1+5k)>0,得k>;DMx13;?.由图可知

=λDNx25;20k?;x?x??122??1?

∵|PA|+|PB|=|QA|+|QB|=222?12?2>|AB|=4. ∴曲线C为以原点为中心,A、B 为焦点的椭圆.

设其长半轴为a,短半轴为b,半焦距为c,则2a=2,∴a=5,c=2,b=1.

x22

∴曲线C的方程为+y=1.

5

(2)设直线l的方程为y=kx+2,

x2222

代入+y=1,得(1+5k)x+20kx+15=0.

5

Δ=(20k)-4×15(1+5k)>0,得k>

2

2

2

DMx13

?.由图可知=λ DNx25

20k?

x?x??122??1?5k由韦达定理得?

15?x?x?

12?1?5k2?

将x1=λx2代入得

?400k222

?(1??)x2??(1?5k2)2

?

??x2?15

2?1?5k2?

(1??)2400k280两式相除得??2?15(1?5k)3(5?) k2

3151208016

?k2?,?0?2?,?5?2?,即4??

1533kk?533(2?5)k(1??)216DM1?4??,????0,?解得???3

?3DN3

①②

???

x1DM?,M在D、N中间,∴λ<1 x2DN

又∵当k不存在时,显然λ=综合得:1/3 ≤λ<1.

DM1

? (此时直线l与y轴重合) DN3

例3、解:(1

)由于点?

2

2

?1b2

得2a=4, ?2分

x2y2

??1椭圆C的方程为43x2y2??1把K的坐标代入椭圆43

,焦点坐标分别为(?1,0),(1,0) ??4分

(2)设KF1的中点为B(x, y)则点K(2x?1,2y) ?????????5分(2x?1)2(2y)2

??1中得

43

?????7分

?1线段KF1的中点B的轨迹方程为(x?)?2

4

设M(x0,y0)N(?x0,?y0),

?????????8分

(3)过原点的直线L与椭圆相交的两点M,N关于坐标原点对称

p(x,y),

x02y02x2y2

M,N,P在椭圆上,应满足椭圆方程,得2?2?12?2?1 ??10分

ababb2y?y0y?y0y2?y02

=?2 ???????????13分kPM?KPN=??2

2

ax?x0x?x0x?x0

故:kPM?KPN的值与点P的位置无关,同时与直线L无关,??????14分x2y2

??1.????(5分)例4、解:(Ⅰ)椭圆的标准方程为43

(Ⅱ)设A(x1,y1),B(x2,y2),

?y?kx?m,

?222

联立?x2y2得(3?4k)x?8mkx?4(m?3)?0,

?1.??

43?

?

???64m2k2?16(3?4k2)(m2?3)?0,即3?4k2?m2?0,则?

x?x??,?122

3?4k?

?4(m2?3)

.?x1?x2?

3?4k2?

3(m2?4k2)

又y1y2?(kx1?m)(kx2?m)?kx1x2?mk(x1?x2)?m?, 2

3?4k

2

2

0),因为以AB为直径的圆过椭圆的右焦点D(2,

?kADkBD??1,即

y1y

2??1,x1?2x2?2

3(m2?4k2)4(m2?3)16mk

???4?0,?y1y2?x1x2?2(x1?x2)?4?0,?

3?4k23?4k23?4k2

?9m2?16mk?4k2?0.

解得:m1??2k,m2??

2k22

,且均满足3?4k?m?0,7

1、当m1??2k时,l的方程为y?k(x?2),直线过定点(2,0),与已知矛盾;

2、当m2??

2k2??2??

时,l的方程为y?k?x??,直线过定点?,0?.77??7??

所以,直线l过定点,定点坐标为?,0?.????(14分)

?2

?7??

y2x2

??1例5、解(1)F1F2(0,,设P(x0,y0)(x0?0,y0?0)

42。

??????????????????22则PF1?PF2?x0?(2?y0)?1 1?(?x0y0),PF2?(?x0,y0), ?PF

222

x0y04?y02

?1. ?x0? ?点P(x0,y0)在曲线上,则?

2422

4?y02

?(2?y0)?

1,得y0?P

的坐标为从而2

(2)由(1)知PF1//x轴,直线PA、PB斜率互为相反数,设PB斜率为k(k?0),

?y?k(x?1)?

则PB

的直线方程为:y?k(x?1)

由?x2y2得

?1??

?24

(2?k2)x2?2kk)x?k)2?4?0

2k(k?k2??2

?1?设B(xB,y

B),则xB? 22

2?k2?kx?x?

同理可得xA?,则AB

(xA?1)?k(x1 yA?yB??kB?

所以:AB

的斜率kAB?

8k

2

2?k

yA?yB

?

xA?xB

sin?

4例6、解:(1)由23?1|OF|?|FP|?sin?,得|OF|?|FP|?43,由cos??tsin?,2

得tan??4.????????3分

t

?4?t?43?1?tan?????[0,?] ∴夹角?的取值范围是(

??

,)??643

(2)设P(x0,y0),则(x0?c,y0),?(c,0).

????????

?OF?FP?(x0?c,y0)?(c,0)?(x0?c)c?t?1)c2 ?1???S?OFP?|OF|?|y0|?y0?2?x0????8分

?????|OP|?10分

∴当且仅当3c?

4,即c?2时,|OP|取最小值26,此时,OP?(23,?23) c

??

3

(2,23)?(0,1)?(2,3) 33

或?(2,?23)?(0,1)?(2,?1) ????12分椭圆长轴

2a?(2?2)2?(3?0)2?(2?2)2?(3?0)2?8

?a?4,b2?12

或2a?(2?2)2?(?1?0)2?(2?2)2?(?1?0)2?1??a?

1?21? ,b?

22

x2y2

??1.或x2?y2?1 ????14分故所求椭圆方程为

16129?1?2

2

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线基本题型总结

锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)

1?设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是() 1/1 C.圆 D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】 2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为() A.5J+= 1 (yH0) - B.+ ? f ( X2,9)=1 (yH 0 ) C错误!-错误!=1 G?≠ 0) °D?错误! + = 1 (y≠0)【注:检验去点】 3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为() A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣?射线,注意一支与两支的判断】 4?已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是() A↑?PF i?-?PF2 I |=5 B.∣ I PFll-I PF2? I =6 C.∣∣PF1∣-∣PF2∣∣=7 D.∣ I PF1?-?PF2? I =0 【注ι2a<∣Fι F2∣是双曲线】 5?平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是() A.? f(x2, 1 6)- 错误! = l(xW-4) " B.错误!?=l(xW?3)

最新圆锥曲线题型总结

圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点 1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2)

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考圆锥曲线题型归类总结(可编辑修改word版)

1 2 圆锥曲线的七种常考题型 题型一:定义的应用 1、圆锥曲线的定义: (1) 椭圆 (2) 双曲线 (3) 抛物线 2、定义的应用 (1) 寻找符合条件的等量关系 (2) 等价转换,数形结合 3、定义的适用条件: 典型例题 例 1、动圆 M 与圆 C : ( x +1)2 + y 2 = 36 内切,与圆 C : ( x -1)2 + y 2 = 4 外切,求圆心 M 的 轨迹方程。 例 2、 = 8 表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由 x 2、y 2 分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由 x 2、y 2 系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 x 2 例 1、已知方程 + y 2 2 - m = 1表示焦点在 y 轴上的椭圆,则 m 的取值范围是 例 2、k 为何值时,方程 x 2 9 - k - y 2 5 - k = 1 表示的曲线: (1)是椭圆;(2)是双曲线. m -1

3 3 2 题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解 2、 PF 1 = m ,PF 2 = n , m + n ,m - n ,mn ,m 2 + n 2 四者的关系在圆锥曲线中的应用 典型例题 x 2 例 1、椭圆 a 2 + y 2 b 2 = 1(a > b > 0) 上一点 P 与两个焦点 F 1,F 2 的张角∠F 1PF 2 =, 求?F 1PF 2 的面积。 例 2、已知双曲线的离心率为 2,F 1、F 2 是左右焦点,P 为双曲线上一点,且∠F 1PF 2 = 60 , S ?F PF = 12 .求该双曲线的标准方程 1 2 题型四:圆锥曲线中离心率,渐近线的求法 1、a ,b ,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a ,b ,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 例 1、已知 F 、 F x 2 是双曲线 - y 2 = ( )的两焦点,以线段 F F 为边作 1 2 a 2 b 1 a > 0,b > 0 1 2 正三角形 MF 1F 2 ,若边 MF 1 的中点在双曲线上,则双曲线的离心率是( ) A. 4 + 2 B. x 2 y 2 - 1 C. 3 + 1 D. + 1 2 例 2、双曲线 - a 2 b 2 = 1 (a > 0,b > 0) 的两个焦点为 F 1、F 2,若 P 为其 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B. (1, 3] C.(3,+ ∞ ) D. [3, +∞) 3 3

直线和圆锥曲线题型总结

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 直线和圆锥曲线总结 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范围 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 题型三:动弦过定点的问题 例题3、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任 一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭 圆的焦点?并证明你的结论

题型四:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。 题型五:共线向量问题 例题5、设过点D(0,3)的直线交曲线M :22 194 x y +=于P 、Q 两点,且DP DQ ,求实数的取值范围。

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

最新高中圆锥曲线经典题型归纳

基本方法:点差法 适用类型:出现弦中点和斜率的关系 已知椭圆C :2 2233b y x =+,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点,求直线ON (O 为坐标原点)的斜率K ON 。 解:设00(,)N x y ,设11(,)A x y ,22(,)B x y ,将其带入椭圆C 得: 22211222223333x y b x y b ?+=??+=??①② ①减②,并整理,得:12121212()()3()()x x x x y y y y +-=-+- 进一步整理:012012111333 ON AB y x x k x y y k -= =-=-=-- 题型:求轨迹方程 类型:弦中点型 曲线E :22 12516 x y +=,过点Q (2,1)的E 弦的中点的轨迹方程。 解:设直线与椭圆交与1122(,),(,)G x y H x y 两点,中点为00(,) S x y 由点差法可得:弦的斜率0121212120 1616()25()25x y y x x k x x y y y -+==-=--+, 由00(,)S x y ,Q (2,1)两点可得弦的斜率为0012y k x -= -, 所以0000 116225y x k x y -==--, 化简可得中点的轨迹方程为:22162532250x y x y +--=. 练习:

已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.设1()2 OR OP OQ =+(O 为原点),求点R 的轨迹方程 答案:2220x y x +-= 类型:动点型 在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P 向y 轴作垂线段PP ′,P ′为垂足.求线段PP ′中点M 的轨迹C 的方程。 解:设M (x ,y ),P (x 1,y 1),则).,0(1y P ' 则有:44,2,222211111=+???==???????+==y x y y x x y y y x x 代入即 得轨迹C 的方程为.1422=+y x 练习 设12,F F 分别是椭圆C :22 143 x y +=的左右焦点,K 是椭圆C 上的动点,求线段1 KF 的中点B 的轨迹方程。 解: 2 21()1324y x ++= 练习: 已知)0,3(-P ,点R 在y 轴上,点Q 在x 的正半轴上,点M 在直线RQ 上,且 0=?2 3,-=.当R 在y 轴上移动时,求M 点轨迹C 答案:x y 42 =

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高考专题-:圆锥曲线题型方法归纳

高考二轮小专题:圆锥曲线题型归纳 1基础知识: 1.直线与圆的方程; 2.椭圆、双曲线、抛物线的定义与标准方程公式; 3.椭圆、双曲线、抛物线的几何性质等相关知识:、、、、、渐近线。 4. 常用结论,特征三角形性质。 2基本方法: 1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等; 2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4.点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 3基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 4.专题知识特点 ⑴用代数的方法研究解决几何问题,重点是用数形结合的思想把几何问题转化为代数问题. ⑵解题思路比较简单,概念公式较多,规律性较强,但运算过程往往比较复杂,对运算能力、恒等变形 能力及综合运用各种数学知识和方法的能力要求较高. 5.专题高考地位 本专题是高中数学的核心内容之一,在历年高考试题中均占有举足轻重的地位,问题总量除包括倒数第1(2)题的压轴题外,还至少包括2~3道小题. 本专题内容在高考题中所占的分值是20多分,占总分值的15%左右. ⑴圆锥曲线中的定义、离心率、焦点三角形、焦半径、通径等知识点是填空题和选择题中的高档试题,难度不高,但方法比较灵活. ⑵直线与圆锥曲线的位置关系容易和平面向量、数列、不等式综合,涉及存在性问题、定值问题、定点问题、求参数问题. ⑶求曲线的轨迹方程是解析几何一个基本问题,是历年来高考的一大热点. ⑷圆锥曲线(包括直线与圆)和函数、数列、不等式、三角、平面向量等知识联系密切.直线与圆锥曲线中的存在性问题、定值问题渐成考试定势. ⑸数形结合思想本身就是解析几何的灵魂,在高考解析几何题中的运用更为常见;分类讨论思想主要体现在解答

高中数学 圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ±≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2) 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在, 求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

直线与圆锥曲线题型总结

直线与圆锥曲线题型总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

直线和圆锥曲线基本题型 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范 围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆 22 :14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22 :14x y C m +=始 终有交点,则 14m ≥≠,且,即14m m ≤≠且。 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =?消y 整理,得 2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。则线段 AB 的中点为 22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得021122 x k = -,则211( ,0)22 E k -

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结 知识点精讲 一、直线l 与圆锥曲线C 的位置关系的判断 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的 一元二次方程,,即()0,0 Ax By c F x y ++=??? =?? ,消去y 后得2 0ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行 (2) 当0a ≠时,0?> ,直线l 与曲线C 有两个不同的交点; 0?=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0?< ,直线l 与曲线C 二、圆锥曲线的弦 连接圆锥曲线上两点的线段称为圆锥曲线的弦 直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为 ()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()( ),0 ,0f x y F x y =??? =?? 的两组解, 方程组消元后化为关于x 或y 的一元二次方程2 0Ax Bx c ++=(0A ≠) ,判别式 24B AC ?=- ,应有0?> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关 系(韦达定理)求出1212,B C x x x x A A +=- = , 所以,A B 两点间的距离为 12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式 )120AB y y k =-=≠ 三, 已知弦AB 的中点,研究AB 的斜率和方程 (1) AB 是椭圆()22 221.0x y a b a b +=>的一条弦,中点()00,M x y ,则AB 的斜率为 20 20b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22 112 222 2222 11 x y a b x y a b ?+=????+=?? ,两式相减得22221212220x x y y a b --+=

圆锥曲线十大题型全归纳

目录 圆锥曲线十大题型全归纳 题型一弦的垂直平分线问题 (2) 题型二动弦过定点的问题 (3) 题型三过已知曲线上定点的弦的问题 (4) 题型四共线向量问题 (5) 题型五面积问题 (7) 题型六弦或弦长为定值、最值问题 (10) 题型七直线问题 (14) 题型八轨迹问题 (16) 题型九对称问题 (19) 题型十存在性问题 (21)

圆锥曲线题型全归纳 题型一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0), 使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。

题型二:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>的离心率为3,且在x 轴上的顶点分别为 A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

题型三:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22 221x y a b += (0)a b >>上的三点,其中点A (23,0)是 椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3 x =对称,求直线PQ 的斜率。

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

圆锥曲线基本题型总结

圆锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )

A .椭圆 B .直线 C .圆 D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】 2.设B -4,0),C 4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为 ) A.x 225+y 29 =1 y ≠0) B.y 225+x 29=1 y ≠0) C.x 216+y 216=1 y ≠0) D.y 216+x 2 9=1 y ≠0) 【注:检验去点】 3.已知A 0,-5)、B 0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】 4.已知两定点F 1-3,0),F 23,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是 ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7 D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】 5.平面内有两个定点F 1-5,0)和F 25,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是 ) A.x 216-y 29=1x ≤-4) B.x 29-y 216=1x ≤-3) C.x 216-y 29=1x ≥4) D.x 29-y 2 16=1x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :x +2)2+y 2=36上一动点,点A 坐标为2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程. 7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.

相关文档
最新文档