Modeling the spectral absorption of tripton using exponential and hyperbolic models

Modeling the spectral absorption of tripton using exponential and hyperbolic models
Modeling the spectral absorption of tripton using exponential and hyperbolic models

Modelling the spectral absorption of tripton using exponential and

hyperbolic models

YUNLIN ZHANG*,BOQIANG QIN,MINGLIANG LIU,GUANGWEI ZHU,

ZHIJUN GONG and YUNLIANG LI

Taihu Lake Laboratory Ecosystem Research Station,State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese

Academy of Sciences,73East Beijing Road,Nanjing 210008,PR China

(Received 16September 2008;in final form 29July 2009)

The optical properties of tripton,and the correlation between the absorption coeffi-cient and tripton concentration,were investigated based on a large dataset of 727samples,collected from different regions of shallow Lake Taihu,in China,from July 2004to April 2007.Four models describing tripton absorption spectra in the visible domain (400–700nm)were examined to find the optimal model.The conventional single exponential model performed the poorest.Statistically,the most ‘useful’model was the hyperbolic model;judged by the root mean square error (RMSE)and the magnitude of the F statistic from an analysis of variance,this was found to give a closer fit for the measured absorption (70.1%reduction in RMSE and 449.7%increase in F value)than did the simple exponential model method.The mean S d value derived for the hyperbolic model was 5.98?0.30nm –1,with a very small coefficient of variation of 5.0%.Significant linear correlations were found between a d (440)and total suspended matter,inorganic suspended matter and tripton con-centrations,but with the minimal RMSE of a d (440)estimation (0.815m –1)for tripton.The results demonstrate that it is possible to develop regional models for the estimation of tripton absorption coefficient from the concentration.

1.Introduction

Light attenuation is regulated by the composition and concentration of various attenuating constituents,including water itself,chromophoric dissolved organic mat-ter (CDOM),phytoplankton and tripton (Kirk 1994).Water and CDOM generally attenuate light through the process of absorption,while phytoplankton and tripton attenuate light through both absorption and scattering (Kirk 1994,Babin et al .2003).The absorption properties of CDOM and particulate matter (phytoplankton and tripton)constitute the inherent optical properties (IOPs)of a water body.These IOPs play an important role in determining the underwater light climate,phytoplankton primary production and remote sensing reflectance (Kirk 1994).Thus,the IOPs are key parameters in bio-optical algorithms for water quality assessment using remote sensing,radiative transfer models for water columns,and bio-optical models for estimation of primary production (Kutser et al .2001,Stro ¨mbeck and Pierson 2001,Albert and Mobley 2003,Magnuson et al .2004,Tilstone et al .2005,Kutser et al .2006,Gitelson et al .2008).

*Corresponding author.Email:ylzhang@https://www.360docs.net/doc/5517668879.html,

International Journal of Remote Sensing

ISSN 0143-1161print/ISSN 1366-5901online #2011Taylor &Francis

https://www.360docs.net/doc/5517668879.html,/journals DOI:10.1080/01431161003801310

International Journal of Remote Sensing Vol.32,No.14,20July 2011,3917–3933

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

During the last decade,there has been considerable attention given to the spectral absorption by CDOM and phytoplankton as important attenuating constituents,because this regulates the dynamics of these variables in many productive areas of the oceans and inland waters (Allali et al .1997,Laurion et al .2000,Stedmon et al .2000,Simis et al .2005,Va ¨ha ¨talo et al .2005,Giardino et al .2007).It is only in recent years that there has been increasing focus on the spectral absorption of tripton (Babin et al .2003,Stramski et al .2004,Binding et al .2008).However,our current under-standing of variations in tripton absorption is still very limited,especially for shallow lakes.This situation is rather surprising,because tripton absorption dominates the total absorption in some coastal waters and shallow lakes,due to input of suspended inorganic matter by surrounding rivers and frequent sediment resuspension (Phlips et al .1995,Christian and Sheng 2003,Doxaran et al .2005,Tyler et al .2006,Zhang et al .2007).

Cyanobacterial blooms are an increasingly common phenomenon in many eutrophic lakes and coastal waters,and are attracting the attention of environmental agencies,water authorities and the general public because of their potential threat to human health through the consumption of water contaminated by the toxic blooms.Remote sensing is an effective tool to monitor water quality and cyanobacterial blooms (Simis et al .2005,Kutser et al .2006,Ma et al .2006,Giardino et al .2007,Wang and Shi 2008).Retrieval of chlorophyll a (chl-a )concentration,primary production and cyanobacter-ial blooms from remote sensing data appear to be dependent on the ability of the chosen model to take tripton absorption into account (Kutser et al .2006,Giardino et al .2007).Therefore,it is vital to measure and model the spectral absorption coefficient of tripton with high precision for development of bio-optical algorithms of optically active sub-stances,estimating primary production,and improving measurements of the under-water light field for submerged aquatic vegetation growth.

The absorption coefficient of tripton is measured using the quantitative filter technique (QFT)(Mitchell 1990,Cleveland and Weidemann 1993,Ferrari and Tassan 1999,Oubelkheir et al .2007).Some studies show that the exponential func-tions used to describe the spectrum of CDOM typically also fit the spectrum of tripton a d (l )(Babin et al .2003,Giardino et al .2007,Binding et al .2008):

a d el T?a d el 0Texp ?S d el 0àl T ;

(1)

where a d (l )is the absorption coefficient at wavelength l ,a d (l 0)is the absorption coefficient at a reference wavelength l 0,which is generally chosen to be 440nm,and S d is the spectral slope as a measure of absorption decrease with increasing wave-length.However,other recent studies have demonstrated that such a simple exponen-tial model does not give the best fit to the spectra of CDOM.For example,Stedmon et al .(2000)and Kowalczuk et al .(2006)added a background constant at the right-hand side of equation (1).Twardowski et al .(2004)compared six different models,and found that a hyperbolic model was the most ‘useful’model for describing the spectral absorption of CDOM in the visible range.Considering the similar spectral shape of CDOM and tripton absorption,the use of a simple exponential model to fit tripton spectral absorption,combined in a bio-optical model,may cause a marked error in estimations of remote sensing reflectance and water quality parameters (Dall’Olmo and Gitelson 2006,Kutser et al .2006,Giardino et al .2007).

It is therefore timely to model the spectral absorption of tripton,and examine the correlation between tripton absorption and concentration.To address the need for accurate information on tripton,the aims of our present study were:(i)to compare

3918Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

four different tripton spectral absorption models to find the best fit,in order to improve tripton correction in water colour remote sensing applications;and (ii)to investigate the relationship between tripton absorption at a typical wavelength and the concentrations of tripton,and both total and inorganic suspended matter (ISM)in order to develop a robust model describing the relationship between tripton absorption and concentration due to the dominant role in light attenuation in turbid Case 2waters.2.Materials and methods 2.1

Study area

Lake Taihu is the third largest freshwater lake in China,with a water surface area of 2338km 2and a mean depth of 1.9m (Qin et al .2007).It is located between 30 560–31 330N and 119 5530–120 5360E.The lake is spatially heterogeneous,with macrophyte-dominated zones (East Lake Taihu,Xukou Bay)and algal-dominated zones (Meiliang Bay,Wuli Bay and Zhushan Bay)(figure 1).The rapid

economic

Figure https://www.360docs.net/doc/5517668879.html,ke Taihu showing the different regions sampled.The inflow rivers of Changzhou and Wuxi cities are the Liangxi,Taige and Zhihu;the major contributors of water to Lake Taihu are the Tiaoxi and Yili rivers;the only outflow is the Taipu.

Modelling the spectral absorption of tripton 3919

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

growth in the urban and rural areas around Lake Taihu in the last two decades has resulted in greatly increased wastewater,sewage and pollution discharge into the lake.Consequently the lake is becoming increasingly eutrophic,which presents serious problems in Meiliang Bay and Zhushan Bay in the northern part of the lake.The main inflowing rivers located in the northern and south-western regions,including Liangxi,Zhihu,Taige,Yili and Tiaoxi,brought high concentrations of particles and dissolved organic matter into the lake (figure 1)(Zhang et al .2004).In recent summers,the accumulation of surface blooms of the blue-green algae Microcystis spp.in Meiliang Bay has impeded the normal operation of the drinking water plants for Wuxi city.In 2007,serious contamination caused by algal blooms in Gonghu Bay interrupted the drinking water supply to Wuxi city for several days (Wang and Shi 2008).

Lake Taihu is located in the northern subtropical monsoon climate zone,and is affected by typhoons in summer.The wind velocity around the lake is high all year.Being a typical large shallow lake,Taihu is subject to severe sediment resuspension by wind-induced waves.This can cause a marked increase in the concentrations of total suspended matter (TSM),especially tripton,in the water column (Zhang et al .2004,2006).In Lake Taihu,tripton accounts for a high percentage of TSM,and dominates the light attenuation (Zhang et al .2007).2.2

Sample collection

Our sampling objective was to encompass a large range of variation in tripton absorption properties of Lake Taihu.Therefore field samples were collected on 26cruises between July 2004and April 2007,covering all 12months of the year,and 727samples in the lake (figure 1).Surface water samples (z ,0.5m)for the analysis of tripton absorption coefficients,phytoplankton pigments and suspended particles were collected in 1500ml bottles.2.3

Absorption measurements

The absorption coefficients of tripton a d (l )were determined by the QFT (Mitchell 1990).Water samples (50–400ml)were collected and filtered onto a 47mm diameter Whatman fibreglass GF/F filter (England)under low vacuum pressure in order to ensure that the measured optical density of particulate matter was less than 0.4.Absorption spectra were recorded every 1nm from 350to 800nm using a Shimadzu UV–2401PC UV–Vis spectrophotometer (Japan).A blank filter,wetted with filtered water,was used as a reference.All spectra were set to zero at 750nm to minimize differences between sample and reference filter.Theoretically,the QFT method requires that all light scattered by the filter should be received by the spectro-photometer detector,but in practice the detector has a limited aperture so that some of the scattered light will be lost.In order to minimize the loss of the scattered light,we placed the filter as close as possible to the detector.Measured D f (l )values were corrected for the increase in path length caused by multiple scattering in the fibreglass filter using the equation of Cleveland and Weidemann (1993):

D s ?0:378D f t0:523D 2f ;D f 0:4;

(2)

where D s and D f are the corrected and measured optical densities of the particulate

matter respectively.

3920Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

The absorption coefficients of particulate matter a p (l )were calculated as follows (Cleveland and Weidemann 1993):

a p el T?2:303D s el T?S =V ;

(3)

where 2.303is the factor used to convert base 10to a natural logarithm,S is the filter clearance area and V is the filtered volume.

After each measurement of the optical densities of the total particles,the filter was soaked in methanol for 4hours to dissolve phytoplankton,and rinsed with filtered water;the particles remaining on the filter were non-phytoplankton particles.The absorption spectra of the soaked filter were then measured again to obtain the optical densities of the non-phytoplankton particles.The absorption coefficient of non-phytoplankton particles a d (l )was determined similarly using equations (2)and (3).2.4

Measurement of other parameters

Samples for chl-a and phaeophytin a (p-a )were filtered on Whatman GF/C fibreglass filters.The chl-a and p-a were extracted with ethanol (90%)at 80 C and analysed spectrophotometrically at 750and 665nm with correction for p-a .

To obtain TSM,water samples were filtered through pre-combusted Whatman GF/C fibreglass filters (450 C for 4h)to remove suspended organic matter,dried (105 C for 4h)and weighed.The filters were recombusted at 450 C for 4h,and weighed again to obtain ISM.By subtracting ISM from TSM,organic suspended matter (OSM)was obtained.

In order to separate the dry weight of tripton from the dry weight of total particles,the dominant species of Microcystis and Scenedesmus in Lake Taihu were cultured in the laboratory to measure dry weight,chl-a and p-a concentrations in different growth periods.Surface algal bloom samples were collected during calm weather conditions and cleared using distilled water to obtain the relative pure phytoplankton (excluding tripton).Then the sample was put under dark conditions.Every three days,the sample was collected to measure the dry weight,chl-a and p-a concentrations.We found that a simple linear equation could describe the relation between the dry weight of phytoplankton and the sum of chl-a and p-a concentrations.

C phytoplankton ?0:09C chl -a tp -a

eR 2?0:98;N ?31;p <0:001T;

(4)

where C phytoplankton is the dry weight of phytoplankton (mg l -1),and C chl-a tp-a is the sum of chl-a and p-a concentrations (m g l -1).The concentration of tripton (C tripton )(mg l -1)is obtained as the difference of TSM (C TSM )(mg l -1)and phytoplankton dry weight (C phytoplankton )(mg l -1).2.5

Spectral absorption models

We modelled the tripton absorption spectra using four different models,by applying the linear or nonlinear fitting methods in the visible spectral range of 400–700nm.The description of four ((a )–(d ))models is shown in table 1.2.6

Fitting the algorithm and testing the model

Model fits were applied by using the lsqcurvefit function in Optimization Toolbox in MATLAB.The lsqcurvefit solves nonlinear curve-fitting (data-fitting)problems by using the least-squares approach.The MATLAB optimization parameters

Modelling the spectral absorption of tripton 3921

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

MaxFunEval (maximum number of function evaluations allowed),MaxIter (maximum number of iterations allowed),Tolx (termination tolerance on the minimized function)and TolFun (termination tolerance on the function value)were set at 1010,1010,10-6and 10-6,respectively.The fitting determination coefficient (R 2),the root mean square error (RMSE),relative error (RE)and the F statistic from an analysis of variance were used to assess the usefulness of all four models.

The RMSE and the RE of a regression can be derived with equations as follows:

RMSE ????????????????????????????????????????????????P n i ?1ex mod ;i àx mea ;i T2

n

s (5)

RE ?

ex mod ;i àx mea ;i T

x mea ;i

?100%;

(6)

where x mod,i and x mea,i are the modelled and observed values,respectively;n is the number of data points.

The similarity coefficient (SC)was used to assess the similarity of the measured and modelled tripton absorption spectra.SC can be derived with the following equation:

SC ?P 700

l ?400a d el Tmea a d el Tmod

???????????????????????????????????????????????????????????????????P 700l ?400a d el T2mea P 700l ?400a d el T2

mod q ;(7)

where SC is the similarity coefficient of two spectra,i.e.the cosine value of the angle

between two vectors.a d (l )mea and a d (l )mod are the measured and numerically fitting tripton absorption spectra.SC ?1represents the parallel of two spectra,in other words their complete similarity.SC ?–1represents their complete dissimilarity.The F parameter is computed as

F ?R 2=D m

e1àR 2T=D e

;

(8)

where R 2is the determination coefficient for the regression from a least-squares fit,D m is the degrees of freedom of the model and D e is the degrees of freedom of the error

Table 1.The four models used as descriptors of tripton absorption spectra.

Model description

Function Modelled parameters Fitting method 1.Single exponential:a linear regression of the natural logarithm of the absorption coefficient versus wavelength

ln a el T?a 1àS 1l a 1,S 1Linear 2.Single exponential:a nonlinear regression of the absorption coefficient versus wavelength

a el T?a 2e S 2e440àl T

a 2,S 2

Nonlinear 3.Single exponential:as model 2but with background parameter

a el T?a 3e S 3e440àl TtK a 3,S 3,K Nonlinear 4.Hyperbolic function:a nonlinear

regression of the absorption coefficient versus wavelength

a el T?a 4el =440TS 4

a 4,S 4

Nonlinear

3922Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

or unexplained variability.If the number of model parameters is p ,and the number of data points used in the fit is n ,D m is (p –1)and D e is (n –p ).

While R 2is an indicator of how well the model fits the data,the RMSE and F parameters provide a better test of the usefulness of the model based on the number of data points used in the fit and the number of model parameters.A good model should have as few parameters as possible,while exhibiting a high correlation coefficient and small RMSE.3.Results and discussion 3.1

Model performance

Although no single model was consistently the best,overall the hyperbolic model (model 4)was the top performer.Models 3and 4were better than models 1and 2for describing the tripton absorption spectrum.Our data supporting this is presented as follows:means,standard deviations and medians of five statistical parameters (R 2,mean RE,RMSE,SC,F )for each model are provided in table 2;comparisons of R 2,mean RE,RMSE,F of each models for all samples are provided in figure 2;compar-isons of measured and modelled a d (l )spectra using four different models are provided in figure 3;and the spectral RE of four models for four representative samples in different seasons is shown in figure 4.

Model 1consistently ranked last or next to last for the five statistical parameters (table 2);this is consistent with a previous CDOM study showing that a linear fit on

Table https://www.360docs.net/doc/5517668879.html,parison of statistical parameters and the value S d of four models.

Model 1

Model 2

Model 3Model 4R 2

Range 0.9433–0.99890.9787–0.99970.9929–0.99970.9899–0.9996Mean ?Std 0.9889?0.00890.9967?0.00200.9986?0.0008

0.9982?0.0014

Median 0.99150.9971

0.99880.9987Mean RE (%)Range

2.8–24.3

3.3–22.1 2.4–16.2 2.5–25.7Mean ?Std 7.7?2.610.4?3.0

4.9?1.6 6.4?3.1Median 7.310.1 4.6

5.6RMSE (m –1)

Range

0.008–0.7880.004–0.3650.003–0.3000.006–0.281Mean ?Std 0.217?0.139

0.091?0.060

0.060?0.044

0.064?0.041

Median

0.190

0.075

0.0480.054SC

Range 0.9880–0.99990.9953–0.99990.9983–0.99990.0076–0.9999Mean ?Std 0.9972?0.00180.9992?0.00050.9997?0.0002

0.9996?0.0003

Median 0.99750.9993

0.9997

0.9997

F

Range 3023–26842013761–104260020840–54443029262–804690Mean ?Std 43160?31212127076?93886140392?73991237258?120500Median 35025101680122050228800S d

Range

8.61–13.959.40–14.6010.04–16.82 4.57–6.76Mean ?Std 11.22?0.75

12.69?0.71

13.87?0.96

5.98?0.30

Median 11.2212.7113.92 5.99CV(%)

6.7

5.6

6.9

5.0

Mean RE is the mean of the absolute value of RE,CV is a coefficient of variation and Std is standard deviation.The unit of S d is m m –1for models 1–3,and nm –1for model 4.

Modelling the spectral absorption of tripton 3923

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

log-transformed data to determine spectral slope was the worst model (Stedmon et al .2000,Twardowski et al .2004,Kowalczuk et al .2006).The mean RMSE decreased 58.1%for the simple exponential model using the linear fittings (model 1)and non-linear fittings (model 2),thus care should be exercised when undertaking an expo-nential fitting algorithm in Microsoft Excel and SPSS.Model 1did not perform well in the shortwave range when compared to model 2(figure 3(a )and (b )).

The R 2,SC and F values of models 3and 4were significantly higher than those of models 1and 2,and the mean RE and RMSE of models 3and 4were significantly lower than those of models 1and 2(ANOVA,p ,0.001)(table 2and figure 2),which indicated that models 3and 4were better than models 1and 2.Furthermore,the fitness and the variation of RE of models 3and 4were also better than those of models 1and 2(figures 3and 4).

When comparing the measured and modelled values for a d (412)derived from each of the four models (figure 5),it is evident that the scatter distributions of models 3and 4are very close to the line of 1:1and overlap each other.In contrast,the scatter distributions of models 1and 2depart markedly from the line of 1:1,and the higher the value of a d (412),the larger is the deviation,especially in model 1.Because log transformation puts more weight on samples with low absorption values at high wavelength,which are less precisely determined than at low wavelength,the traditional single exponential model methods (models 1and 2)fail to model spectral absorption at shorter wavelengths,leading to a marked decrease in these wavelength ranges.

No model was consistently better than the others,but overall the hyperbolic model (model 4)was the best.The R 2,mean RE,RMSE,SC values of models 3and 4were better than those of models 1and 2,and for these parameters model 3was better than

700(a )

(b )

(c )

(d )

5004003002001000

0–55–10

RE (%)

RMSE (m –1

)

10–1515–20

20–25

Model 1Model 2Model 3Model 4

600500400300200100S a m p l i n g n u m b e r S a m p l i n g n u m b e r 0

700600

500400300200100S a m p l i n g n u m b e r

700600500400300200100

S a m p l i n g n u m b e r 0

0.94–0.950–0.15

0.15–0.30.3–0.450.45–0.60.6–0.750.75–0.9

0–2×10

5

0–2×1050–2×105

F

0–2×1050–2×105

0.95–0.960.96–0.970.97–0.980.98–0.990.99–1

R 2

Figure https://www.360docs.net/doc/5517668879.html,parison of sampling number of (a )determination coefficients (R 2);(b )relative error (RE);(c )root mean square error (RMSE);and (d )F values of four models.

3924

Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

model 4.However,the F statistic of model 4was significantly improved compared to model 3(ANOVA,p ,0.001).When considering the mean F value,that of model 4was 1.69times that of model 3,however because the means can be strongly affected by a few spectra with high or low values,this parameter may not be the most useful.In contrast,the medians can be used as a better measure of model usefulness.The median F value of model 4was 1.87times that of model 3,the higher value being better.A coefficient of variation estimated S d of model 3was 6.9%,as opposed to 5.0%for model 4(table 2).More importantly,like models 1and 2,model 4also has the convenience of describing the shape of the tripton spectrum with only one parameter.

Therefore,we conclude that the hyperbolic model (model 4)is preferred to the three other models for describing tripton spectra in the visible range.The hyperbolic model results in a 70.1%reduction in RMSE,and a 553.2%increase in the median F value when compared to the simple exponential model method.Furthermore,the hyper-bolic model is considered less dependent on the spectral range used in the fit than the exponential model (Twardowski et al .2004).Although the performance of the hyper-bolic model is better than the other three models,the large literature base and historical precedence for using exponential models will provide momentum for their continued use.Indeed,consistently using the correct exponential model with a back-ground constant remains an effective method to model the spectral absorption of tripton (D’alimonte et al .

2004).

Figure https://www.360docs.net/doc/5517668879.html,parison of measured and modelled tripton spectral absorption of ((a )–(d ))four models for a typical sample.

Modelling the spectral absorption of tripton 3925

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

3.2Variation in spectral slope

The three different methods for estimating S d using an exponential model (models 1–3)have a systematic effect on its value (table 2).We note that the common use of a linear fit on log-transformed a d (l )data to determine S d (model 1),gave the lowest mean value of S d .This finding,consistent with a previous study of CDOM (Stedmon et al .2000,Kowalczuk et al .2006),is mainly due to the fact that a log transformation puts more weight on samples with low absorption values at high wavelength than at short wavelength,which was less precisely determined (Stedmon et al .2000).

Because we recommend the hyperbolic model for estimation of the spectral absorp-tion of tripton,the variation of S d estimated using the hyperbolic model is discussed in detail.The spectral slope for the wavelength range of 400–700nm ranges from 4.57to 6.76nm –1,with a mean value of 5.98?0.30nm –1using the hyperbolic model (model 4).The R 2for the fit of S d is usually higher than 0.99,with a mean value of 0.9982(of 727samples only two had R 2lower than 0.99).

The overall variations in spectral slope using the hyperbolic model are shown in figure 6.The frequency distribution of the S d values basically follows a normal (Gaussian)distribution (skewness ?–0.542,the absolute of skewness ,1.0),with a skewness to the left.The percentages of the S d values less than 5.5nm –1and larger than 6.5nm –1are only 5.2%and 3.3%respectively.

The overall variability observed in S d was rather small in the present study (given the large diversity of the waters examined),with a coefficient of variation of

5.0%,

Figure https://www.360docs.net/doc/5517668879.html,parison of spectral relative error of four models for four different seasons:(a )spring;(b )summer;(c )autumn and (d )winter.

3926Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

thus a constant for S d can be used in remote sensing semi-analytical,models of Lake Taihu.A coefficient of variation of 10.3%was found for 348samples taken from various coastal waters around Europe,including the English Channel,Adriatic Sea,Baltic Sea,Mediterranean Sea and North Sea using an exponential model (model

2)

Figure https://www.360docs.net/doc/5517668879.html,parison of (a )measured and (b )modelled a d (412)using four

models.

Figure 6.Frequency distribution of spectral slope S d of tripton using hyperbolic model (model 4).

Modelling the spectral absorption of tripton 3927

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

(Babin et al .2003).In the present study,the dataset is larger (727samples)and the coefficient of variation is smaller than in the study of Babin et al .The difference is attributed to two reasons:(i)the hyperbolic model we used (model 4)can give a more accurate estimation of spectral absorption of tripton than does the exponential model (model 2);and (ii)all the measurement and analyses in the present study were done using exactly the same procedures for all samples.

The spectral shape of CDOM is often used as a proxy for CDOM composition and source,and is usually negatively correlated to CDOM absorption and to the specific absorption coefficients (Yacobi et al .2003,Magnuson et al .2004,Kowalczuk et al .2006).For tripton,no significant correlations were found between S d and tripton absorption a d (440),and specific absorption coefficient.The same results were observed for the S d of models 1–3.This demonstrates that the composition and source of tripton have no effect on the spectral shape,although there was a wide range of particles and relative proportions of mineral and organic matter found in the Lake Taihu samples.The percentage of OSM accounting for TSM indicating the composition of particles ranged from 8.3%to 87.0%in this study.Twardowski et al .(2004),when reviewing the literature,considered that about three-quarters of the variability in the spectral shape of CDOM could be explained by the different spectral ranges and methods,and not by the difference of CDOM composition and source.It was concluded that the variation of tripton spectral slope was attributed to the fitting method not the composition.3.3

Spectral absorption model of tripton in Lake Taihu

The water samples contained very variable amounts of TSM (mean:67.5?45.6mg l –1,range:6.6–285.6mg l –1)and tripton (mean:61.9?45.1mg l –1,range:4.4–281.7mg l –1).The a d (440)ranged from 0.35to 12.93m –1with a mean value of 3.75?2.19m –1,covering nearly three orders of magnitude of absorption,with a maximal value being 36.9times the minimal value.The peak of the a d (440)frequency distribution was located at around 2.0m –1,and decreased to about 13m –1(figure 7).

The statistical parameters between tripton absorption a d (440)and the concentra-tions of TSM,ISM and tripton are shown in table 3.The correlation between a d (440)and tripton concentration has the lowest RSME (0.815m –1:21.8%from the mean measured a d (440)),the maximal R 2and the second rank in mean RE.

Therefore,

Figure 7.Frequency distribution of tripton absorption coefficient a d (440).

3928Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

tripton concentration is the best parameter for estimating the absorption coefficient a d (440).The scatterplot of tripton concentration and a d (440)is shown in figure 8.Although the calculation of tripton concentration is based on an empirical correla-tion,our results show that tripton concentration is still a better predictor of the absorption coefficient than TSM and ISM.Because TSM includes tripton and phy-toplankton particles but ISM does not include the organic particles of tripton,the correlation between a d (440)and the concentrations of TSM,ISM are lower than that of tripton.The significant difference in ratios of tripton absorption to TSM and ISM (0.040and 0.137m 2g –1for a d (440)/TSM and a d (440)/ISM,respectively)observed in Lake Erie demonstrated that previous studies actually have not given the accurate estimation of tripton absorption coefficient using TSM or ISM concentration (Babin et al .2003,Binding et al .2008).Of course,the regional correlation to calculate the concentration of tripton from the concentrations of TSM and phytoplankton pigment in Lake Taihu may give a slight difference when used in other waters.For example,a different coefficient (0.07)was used to calculate the dry weight of tripton from phytoplankton pigment concentration in some other lakes (Kutser et al .2001,Giardino et al .2007).

For various coastal waters around Europe,the linear slope was 0.031between a d (443)and the concentration of TSM,when applying a linear regression with a null intercept.The overall average a d (443)/C TSM ratio was 0.041m 2g –1with a 56%coefficient of variation (Babin et al .2003),and the a d (440)/C TSM ratio was 0.040m 2g –1with a 76%coefficient of variation (Binding et al .2008).In the present

study,

Figure 8.Correlation between tripton absorption coefficient a d (440)and tripton concentration.

Table https://www.360docs.net/doc/5517668879.html,parison of statistical parameters between a d (440)and C TSM ,C ISM ,C tripton .

Slope

Intercept R 2Range of RE (%)Mean RE*(%)RMSE (m –1)a d (440)and C TSM 0.04480.72570.8639-52.8to 297.221.00.833a d (440)and C ISM 0.0484 1.16480.8466-66.4to 361.924.00.884a d (440)and C tripton

0.0453

0.9398

0.8689

-49.3to 333.8

23.0

0.815

*C TSM ,C ISM ,C tripton are the concentrations of TSM,ISM and tripton,respectively.Mean RE is the mean of the absolute value of RE.

Modelling the spectral absorption of tripton 3929

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

the linear slope was 0.0522,0.0619and 0.0552m 2g –1between a d (440)and the concentrations of TSM,ISM and tripton respectively,with a null intercept,which is markedly higher than those in coastal waters around Europe (Babin et al .2003),and those in a relatively clear,large,deep lake (Lake Erie)(Binding et al .2008).In our dataset,the mean values and coefficients of variation of a d (440)/C TSM ,a d (440)/C ISM and a d (440)/C tripton are 0.060m 2g –1,28.4%;0.085m 2g –1,43.6%;and 0.069m 2g –1,37.8%respectively over nearly three orders of absorption magnitude at any wave-length,values which are also higher than those observed in the coastal and clear lake waters (Babin et al .2003,Binding et al .2008).However,we also note that our mean a d (440)/C tripton is lower than the value reported in Lake Garda (0.069versus .0.080m 2g –1)(Giardino et al .2007),mean a d (550)/C tripton is lower than the value reported in Moreton Bay (0.0176versus 0.0187m 2g –1)(Brando and Dekker 2003),and a d (665)/C ISM is slightly lower than that observed in the Irish Sea (0.0080versus 0.0090m 2g –1)(Binding et al .2005).The differences of the a d (440)/C TSM ,a d (440)/C ISM and a d (440)/C tripton ratios in different waters are attributed to differences in the composition and size of particles (Stramski et al .2004),and the calculation of tripton concentration.For example,the percentage of OSM accounting for TSM is 24.6%,which is sig-nificantly lower than the 47.5%observed in Lake Erie (Binding et al .2008).Furthermore,particles in a shallow lake such as Lake Taihu are generally larger than those in coastal waters and large deep lakes.For the separation of the dry weight of tripton from the dry weight of total particles,an approximate coefficient of 0.07reported in Dutch inland waters was used in Lake Garda and Moreton Bay (Brando and Dekker 2003,Giardino et al .2007)but the value of 0.09measured in Lake Taihu was used in this study.

The spectral absorption of tripton is the key input parameter in the semi-analytical and analytical models of water colour remote sensing.Many such models require that tripton absorption can be extrapolated to the visible range from the measurement of absorption at a typical wavelength,or tripton concentration,in order to estimate chl-a concentration and potential productivity using derived phytoplankton absorption spectra (Lee and Carder 2003,Magnuson et al .2004,Ciotti and Bricaud 2006,Giardino et al .2007).

The previous discussion in this study has shown that the hyperbolic model allowing a constant for S d of 5.98nm –1can be used to model the spectral absorption of tripton in Lake Taihu.Spectral absorption therefore can also be obtained through the measurement of tripton concentration in a remote sensing model using the following equation:

a d el T?e0:0453C tripton t0:9398Tel =440Tà5:98

(9)

4.

Conclusions

Models 3and 4give the most appropriate estimation of tripton spectral absorption (judged by RMSE).However,model 4has few model parameters and a marked increase in F value.Therefore,model 4is recommended to model the spectral absorption of tripton in this study.The mean S d value derived for Lake Taihu was 5.98?0.30nm –1for the range of 400–700nm,with relatively little variability for a large dataset of 727samples.Significant linear correlations were found between the tripton absorption coefficient a d (440)and TSM,ISM and tripton concentrations,but with the minimal RMSE of a d (440)estimation (0.815m –1:21.8%from the mean

3930Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

measured a d (440))using tripton concentration.The results demonstrate that it is possible to develop a regional model a d (l )?(0.0453C tripton t0.9398)(l /440)-5.98,for the optical properties of tripton which will then allow higher precision in remote sensing applications and underwater irradiance transmission models.The approach developed in Lake Taihu from knowing the tripton concentration to model the whole tripton absorption spectrum using a hyperbolic model could be applied elsewhere.Acknowledgements

This study was jointly supported by the Knowledge Innovation Project of CAS (KZCX1-YW-14-6),and the National Natural Science Foundation of China (Grant No.40601099,40730529,40971252,40825004).We would like to thank Sheng Feng,Jiang Ji,Rongshu Qian,Junsheng Li and Qiaohua Zhao for their help with sample collection in the field.References

A LBERT ,A.and M OBLEY ,C.D.,2003,An analytical model for subsurface irradiance and remote

sensing reflectance in deep and shallow case–2waters.Optics Express ,11,pp.2873–2890.

A LLALI ,K.,

B RICAUD ,A.and

C LAUSTRE ,H.,1997,Spatial variations in the chlorophyll-specific

absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial pacific.Journal of Geophysical Research ,102,pp.12413–12423.

B ABIN ,M.,S TRAMSKI ,D.,F ERRARI ,G.M.,

C LAUSTRE ,H.,B RICAU

D ,A.,O BOLENSKY ,G.and

H OEPFFNER ,N.,2003,Variations in the light absorption coefficients of phytoplankton,nonalgal particles,and dissolved organic matter in coastal waters around Europe.Journal of Geophysical Research ,108,pp.1–20.

B INDING ,C.E.,B OWERS ,D.G.and M ITCHELSON -J ACOB ,E.G.,2005,Estimating suspended sedi-ment concentrations from ocean colour measurements in moderately turbid waters;the impact of variable particle scattering properties.Remote Sensing of Environment ,94,pp.373–383.

B INDING ,C.E.,J EROME ,J.H.,B UKATA ,R.P.and B OOTY ,W.G.,2008,Spectral absorption

properties of dissolved and particulate matter in Lake Erie.Remote Sensing of Environment ,112,pp.1702–1711.

B RANDO ,V.E.and D EKKER ,A.G.,2003,Satellite hyperspectral remote sensing for estimating

estuarine and coastal water quality.IEEE Transactions on Geoscience and Remote Sensing ,41,pp.1378–1387.

C HRISTIAN ,D.and S HENG ,Y.P.,2003,Relative influence of various water quality parameters on

light attenuation in Indian River Lagoon.Estuarine,Coastal and Shelf Science ,57,pp.961–971.

C IOTTI ,A.M.and B RICAU

D ,A.,2006,Retrievals of a size parameter for phytoplankton and

spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil.Limnology and Oceanography:Methods ,4,pp.237–253.

C LEVELAN

D ,J.S.and W EIDEMANN ,A.D.,1993,Quantifying absorption by aquatic particles:a

multiple scattering correction for glass–fiber filter.Limnology and Oceanography ,38,pp.1321–1327.

D’ALIMONTE ,D.,Z IBORDI ,G.and B ERTHON ,J.F.,2004,Determination of CDOM and NPPM

absorption coefficient spectra from coastal water remote sensing reflectance.IEEE Transactions on Geoscience and Remote Sensing ,42,pp.1770–1777.

D ALL ’O LMO ,G.and G ITELSON ,A.A.,2006,Effect of bio-optical parameter variability and

uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters:modeling results.Applied Optics ,45,pp.3577–3592.

Modelling the spectral absorption of tripton 3931

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

D OXARAN ,D.P.,C HERUKURU ,R.C.N.and L AVENDER ,S.J.,2005,Use of reflectance band ratios

to estimate suspended and dissolved matter concentrations in estuarine waters.International Journal of Remote Sensing ,26,pp.1763–1769.

F ERRARI ,G.M.and T ASSAN ,S.A.,1999,A method using chemical oxidation to remove light

absorption by phytoplankton pigments.Journal of Phycology ,35,pp.1090–1098.

G IARDINO , C.,B RANDO ,V.E.,D EKKER , A.G.,S TRO

¨MBECK ,N.and C ANDIANI ,G.,2007,Assessment of water quality in Lake Garda (Italy)using Hyperion.Remote Sensing of Environment ,109,pp.183–195.

G ITELSON ,A.A.,D ALL ’O LMO ,G.,M OSES ,W.,R UNDQUIST ,D.C.,B ARROW ,T.,F ISHER ,T.R.,

G URLIN ,D.and H OLZ ,J.,2008,A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters:Validation.Remote Sensing of Environment ,112,pp.3582–3593.

K IRK ,J.T.O.,1994,Light and Photosynthesis in Aquatic Ecosystems (Cambridge,UK:

Cambridge University Press).

K OWALCZUK ,P.,S TEDMON ,C.A.and M ARKAGER ,S.,2006,Modeling absorption by CDOM in

the Baltic Sea from salinity and chlorophyll.Marine Chemistry ,101,pp.1–11.

K UTSER ,T.,H ERLEVI ,A.,K ALLIO ,K.and A RST ,H.,2001,A hyperspectral model for interpreta-tion of passive optical remote sensing data from turbid lakes.Science of the Total Environment ,268,pp.47–58.

K UTSER ,T.,M ETSAMAA ,L.,S TRO

¨MBECK ,N.and V AHTMA ¨E ,E.,2006,Monitoring cyanobacterial blooms by satellite remote sensing.Estuarine,Coastal and Shelf Science ,67,pp.303–312.

L AURION ,I.,V ENTURA ,M.,C ATALAN ,J.,P SENNER ,R.and S OMMARUGA ,R.,2000,Attenuation of

ultraviolet radiation in mountain lakes:Factors controlling the among-and within-lake variability.Limnology and Oceanography ,45,pp.1274–1288.

L EE ,Z.P.and C ARDER ,K.L.,2003,Absorption spectrum of phytoplankton pigments derived

from hyperspectral remote sensing reflectance.Remote Sensing of Environment ,89,pp.361–368.

M A ,R.H.,T ANG ,J.W.and D AI ,J.F.,2006,Bio-optical model with optimal parameter suitable

for Taihu Lake in water colour remote sensing.International Journal of Remote Sensing ,27,pp.4305–4328.

M AGNUSON ,A.,H ARDING J R ,L.W.,M ALLONEE ,M.E.and A DOLF ,J.E.,2004,Bio-optical model

for Chesapeake Bay and the Middle Atlantic Bight.Estuarine,Coastal and Shelf Science ,61,pp.403–424.

M ITCHELL ,B.G.,1990,Algorithms for determining the absorption coefficient of aquatic parti-culates using the quantitative filter technique (QFT).SPIE ,1302,pp.137–148.

O UBELKHEIR ,K.,C LAUSTRE ,H.,B RICAUD ,A.and B ABIN ,M.,2007,Partitioning total spectral

absorption in phytoplankton and colored detrital material contributions.Limnology and Oceanography:Methods ,5,pp.384–395.

P HLIPS ,E.J.,A LDRIDGE ,F.J.and S CHELSKE ,C.L.,1995,Relationships between light availability,

chlorophyll a,and tripton in a large,shallow subtropical lake.Limnology and Oceanography ,40,pp.416–421.

Q IN ,B.Q.,X U ,P.Z.,W U ,Q.L.,L UO ,L.C.and Z HANG ,Y.L.,2007,Environmental issues of Lake

Taihu,China.Hydrobiologia ,581,pp.3–14.

S IMIS ,S.G.H.,P ETERS ,S.W.M.and G ONS ,H.J.,2005,Remote sensing of the cyanobacterial

pigment phycocyanin in turbid water.Limnology and Oceanography ,50,pp.237–245.

S TEDMON ,C.A.,M ARKAGER ,S.and K AAS ,H.,2000,Optical properties and signatures of

chromophoric dissolved organic matter (CDOM)in Danish coastal waters.Estuarine,Coastal and Shelf Science ,51,pp.267–278.

S TRAMSKI ,D.,W OZNIAK ,S.B.and F LATAU ,P.J.,2004,Optical properties of Asian mineral dust

suspended in seawater.Limnology and Oceanography ,49,pp.749–755.

3932Y.Zhang et al.

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

S TRO

¨MBECK ,N.and P IERSON ,D.C.,2001,The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters.Science of the Total Environment ,268,pp.123–137.

T ILSTONE ,G.H.,S MYTH ,T.J.,G OWEN ,R.J.,M ARTINEZ -V ICENTE ,V.and G ROOM ,S.B.,2005,

Inherent optical properties of the Irish Sea and their effect on satellite primary produc-tion algorithms.Journal of Plankton Research ,27,pp.1–22.

T WARDOWSKI ,M.S.,B OSS ,E.,S ULLIVAN ,J.M.and D ONAGHAY ,P.L.,2004,Modeling the spectral

shape of absorption by chromophoric dissolved organic matter.Marine Chemistry ,89,pp.69–88.

T YLER ,A.N.,S VAB ,E.,P RESTON ,T.,P RE

′SING ,M.and K OVA ′CS ,W.A.,2006,Remote sensing of the water quality of shallow lakes:A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment.International Journal of Remote Sensing ,27,pp.1521–1537.V A ¨HA ¨TALO ,A.V.,W ETZEL ,R.G.and P AERL ,H.W.,2005,Light absorption by phytoplankton

and chromophoric dissolved organic matter in the drainage basin and estuary of the Neuse River,North Carolina (U.S.A.).Freshwater Biology ,50,pp.477–493.

W ANG ,M.H.and S HI ,W.,2008,Satellite-observed algae blooms in China’s Lake Taihu.Eos,

Transactions,American Geophysical Union ,89,pp.201–202.

Y ACOBI ,Y.Z.,A LBERTS ,J.J.,T AKA

′CS ,M.and M CELVAINE ,M.,2003,Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA)rivers:the impact of molecular size distribution.Journal of Limnology ,62,pp.41–46.

Z HANG ,Y.L.,Q IN ,B.Q.,C HEN ,W.M.and L UO ,L.C.,2004,A study on total suspended matter

in Lake Taihu.Resources and Environment in the Yangtze Basin ,13,pp.266–271(in Chinese with English abstract).

Z HANG ,Y.L.,Q IN ,B.Q.,Z HU ,G.W.,G AO ,G.,L UO ,L.C.and C HEN ,W.M.,2006,Effect of

sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River:A case study in Longgan Lake and Taihu Lake.Science in China Series D–Earth Sciences ,49(Suppl.I),pp.114–125.

Z HANG ,Y.L.,Z HANG ,B.,M A ,R.H.,F ENG ,S.and L E ,C.F.,2007,Optically active substances

and their contributions to the underwater light climate in Lake Taihu,a large shallow lake in China.Fundamental and Applied Limnology ,170,pp.11–19.

Modelling the spectral absorption of tripton 3933

D o w n l o a d e d b y [U n i v e r s i t y o f N e w H a m p s h i r e ] a t 06:14 17 N o v e m b e r 2011

高二《甜美纯净的女声独唱》教案

高二《甜美纯净的女声独唱》教案 一、基本说明 教学内容 1)教学内容所属模块:歌唱 2)年级:高二 3)所用教材出版单位:湖南文艺出版社 4)所属的章节:第三单元第一节 5)学时数: 45 分钟 二、教学设计 1、教学目标: ①、在欣赏互动中感受女声的音域及演唱风格,体验女声的音色特点。 ②、在欣赏互动中,掌握美声、民族、通俗三种唱法的特点,体验其魅力。 ③、让学生能够尝试用不同演唱风格表现同一首歌。 ④、通过学唱歌曲培养学生热爱祖国、热爱生活的激情。 2、教学重点: ①、掌握女高音、女中音的音域和演唱特点。 ②、掌握美声、民族、通俗三种方法演唱风格。 3、教学难点: ①、学生归纳不同唱法的特点与风格。

②、学生尝试用不同演唱风格表现同一首歌。 3、设计思路 《普通高中音乐课程标准》指出:“音乐课的教学过程就是音乐的艺术实践过程。”《甜美纯净的女声独唱》作为《魅力四射的独唱舞台》单元的第一课,是让学生在丰富多彩的歌唱艺术形式中感受出女声独唱以其优美纯净的声音特点而散发出独特的魅力。为此,本课从身边熟悉的人物和情景入手,激发学生学习兴趣,把教学重心放在艺术实践中,让学生在欣赏、学习不同的歌唱风格中,培养自己的综合欣赏能力及歌唱水平。在教学过程中让学生体会不同风格的甜美纯净女声的内涵,感知优美纯净的声音特点而散发出的独特魅力,学会多听、多唱,掌握一定的歌唱技巧,提高自己的演唱水平。为实现以上目标,本人将新课标“过程与方法”中的“体验、比较、探究、合作”四个具体目标贯穿全课,注重学生的个人感受和独特见解,鼓励学生的自我意识与创新精神,强调探究、强调实践,将教学过程变为整合、转化间接经验为学生直接经验的过程,让学生亲身去感悟、去演唱,并力求改变现在高中学生普遍只关注流行歌曲的现状,让学生自己确定最适合自己演唱的方法,自我发现、自我欣赏,充分展示自己的的声音魅力。 三、教学过程 教学环节及时间教师活动学生活动设计意图

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

适合女生KTV唱的100首好听的歌

适合女生KTV唱的100首好听的歌别吝色你的嗓音很好学 1、偏爱----张芸京 2、阴天----莫文蔚 3、眼泪----范晓萱 4、我要我们在一起---=范晓萱 5、无底洞----蔡健雅 6、呼吸----蔡健雅 7、原点----蔡健雅&孙燕姿 8、我怀念的----孙燕姿 9、不是真的爱我----孙燕姿 10、我也很想他----孙燕姿 11、一直很安静----阿桑 12、让我爱----阿桑 13、错过----梁咏琪 14、爱得起----梁咏琪 15、蓝天----张惠妹 16、记得----张惠妹 17、简爱----张惠妹 18、趁早----张惠妹 19、一念之间----戴佩妮 20、两难----戴佩妮 21、怎样----戴佩妮 22、一颗心的距离----范玮琪 23、我们的纪念日----范玮琪 24、启程----范玮琪 25、最初的梦想----范玮琪 26、是非题----范玮琪 27、你是答案----范玮琪 28、没那么爱他----范玮琪 29、可不可以不勇敢----范玮琪 30、一个像夏天一个像秋天----范玮琪 31、听,是谁在唱歌----刘若英 32、城里的月光----许美静 33、女人何苦为难女人----辛晓琪 34、他不爱我----莫文蔚 35、你是爱我的----张惠妹 36、同类----孙燕姿 37、漩涡----孙燕姿 38、爱上你等于爱上寂寞----那英 39、梦醒了----那英 40、出卖----那英 41、梦一场----那英 42、愿赌服输----那英

43、蔷薇----萧亚轩 44、你是我心中一句惊叹----萧亚轩 45、突然想起你----萧亚轩 46、类似爱情----萧亚轩 47、Honey----萧亚轩 48、他和他的故事----萧亚轩 49、一个人的精彩----萧亚轩 50、最熟悉的陌生人----萧亚轩 51、想你零点零一分----张靓颖 52、如果爱下去----张靓颖 53、我想我是你的女人----尚雯婕 54、爱恨恢恢----周迅 55、不在乎他----张惠妹 56、雪地----张惠妹 57、喜欢两个人----彭佳慧 58、相见恨晚----彭佳慧 59、囚鸟----彭羚 60、听说爱情回来过----彭佳慧 61、我也不想这样----王菲 62、打错了----王菲 63、催眠----王菲 64、执迷不悔----王菲 65、阳宝----王菲 66、我爱你----王菲 67、闷----王菲 68、蝴蝶----王菲 69、其实很爱你----张韶涵 70、爱情旅程----张韶涵 71、舍得----郑秀文 72、值得----郑秀文 73、如果云知道----许茹芸 74、爱我的人和我爱的人----裘海正 75、谢谢你让我这么爱你----柯以敏 76、陪我看日出----蔡淳佳 77、那年夏天----许飞 78、我真的受伤了----王菀之 79、值得一辈子去爱----纪如璟 80、太委屈----陶晶莹 81、那年的情书----江美琪 82、梦醒时分----陈淑桦 83、我很快乐----刘惜君 84、留爱给最相爱的人----倪睿思 85、下一个天亮----郭静 86、心墙----郭静

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

2019-2020年高一音乐 甜美纯净的女声独唱教案

2019-2020年高一音乐甜美纯净的女声独唱教案 一、教学目标 1、认知目标:初步了解民族唱法、美声唱法、通俗唱法三种唱法的风格。 2、能力目标:通过欣赏部分女声独唱作品,学生能归纳总结出她们的演唱 风格和特点,并同时用三种不同风格演唱同一首歌曲。 3、情感目标:通过欣赏比较,对独唱舞台有更多元化的审美意识。 二、教学重点:学生能用三种不同风格演唱形式演唱同一首歌。 三、教学难点:通过欣赏部分女声独唱作品,学生能归纳总结出她们的演唱 风格和特点。 四、教学过程: (一)导入 1、播放第十三界全国青年歌手大奖赛预告片 (师)问:同学们对预告片中的歌手认识吗 (生)答: (师)问:在预告片中提出了几种唱法? (生)答:有民族、美声、通俗以及原生态四种唱法,今天以女声独唱歌曲重点欣赏民族、美声、通俗唱法,希望通过欣赏同学们能总结出三种唱法的风格和特点。 (二)、音乐欣赏

1、通俗唱法 ①(师)问:同学们平常最喜欢唱那些女歌手的歌呢?能唱唱吗? (可让学生演唱几句喜欢的歌,并鼓励) ②欣赏几首通俗音乐 视频一:毛阿敏《绿叶对根的情谊》片段、谭晶《在那东山顶上》片段、韩红《天路》片段、刘若英《后来》片段 视频二:超女《想唱就唱唱得响亮》 ①由学生总结出通俗音乐的特点 ②师总结并板书通俗音乐的特点:通俗唱法是在演唱通俗歌曲的基础上发展起来的,又称“流行唱法”。通俗歌曲是以通俗易懂、易唱易记、娱乐性强、便于流行而见长,它没有统一的规格和演唱技法的要求,比较强调歌唱者本人的自然嗓音和情绪的渲染,重视歌曲感情的表达。演唱上要求吐字清晰,音调流畅,表情真挚,带有口语化。 ③指出通俗音乐尚未形成系统的发声训练体系。其中用沙哑、干枯的音色“狂唱”和用娇柔、做作的姿态“嗲唱”,不属于声乐艺术的正道之物,应予以摒弃。 2、民族唱法 ①俗话说民族的才是世界的那么民族唱法的特点是什么呢? ②欣赏彭丽媛《万里春色满人间》片段 鉴赏提示:这首歌是剧种女主角田玉梅即将走上刑场时的一段难度较大的咏叹调。

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

短歌行赏析介绍

短歌行赏析介绍 说道曹操, 大家一定就联想到三国那些烽火狼烟岁月吧。 但是曹操其实也是 一位文学 大家,今天就来分享《短歌行 》赏析。 《短歌行》短歌行》是汉乐府旧题,属于《相和歌辞·平调曲》。这就是说 它本来是一个乐曲名称。最初古辞已经失传。乐府里收集同名诗有 24 首,最早 是曹操这首。 这种乐曲怎么唱法, 现在当然是不知道。 但乐府 《相和歌·平调曲》 中除《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗 “长歌正激烈”, 魏文帝曹丕 《燕歌行》 “短歌微吟不能长”和晋代傅玄 《艳 歌行》 “咄来长歌续短歌”等句, 认为“长歌”、 “短歌”是指“歌声有长短”。 我们现在也就只能根据这一点点材料来理解《短歌行》音乐特点。《短歌行》这 个乐曲,原来当然也有相应歌辞,就是“乐府古辞”,但这古辞已经失传。现在 所能见到最早《短歌行》就是曹操所作拟乐府《短歌行》。所谓“拟乐府”就是 运用乐府旧曲来补作新词,曹操传世《短歌行》共有两首,这里要介绍是其中第 一首。 这首《短歌行》主题非常明确,就是作者希望有大量人才来为自己所用。曹 操在其政治活动中,为扩大他在庶族地主中统治基础,打击反动世袭豪强势力, 曾大力强调“唯才是举”,为此而先后发布“求贤令”、“举士令”、“求逸才 令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用诗歌 形式,含有丰富抒情成分,所以就能起到独特感染作用,有力地宣传他所坚 持主张,配合他所颁发政令。 《短歌行》原来有“六解”(即六个乐段),按照诗意分为四节来读。 “对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,忧思难忘。何以 解忧,唯有杜康。” 在这八句中,作者强调他非常发愁,愁得不得。那么愁是什么呢?原来他是 苦于得不到众多“贤才”来同他合作, 一道抓紧时间建功立业。 试想连曹操这样 位高权重人居然在那里为“求贤”而发愁, 那该有多大宣传作用。 假如庶族地主 中真有“贤才”话, 看这些话就不能不大受感动和鼓舞。 他们正苦于找不到出路

感受幸福作文(15篇)

感受幸福作文(15篇) 感受幸福作文第1篇: 幸福是什么?这是许多同学要问的问题。 很小的时候,我就明白钱能够买来一大盒巧克力;钱能够买来玩具汽车;钱能够买许多的美丽的洋娃娃;钱能够买来一个大楼…… 我以为有钱就是幸福。 倡我错了,钱虽然能够买来一屋子巧克力,但买了甜蜜,钱虽然能买到房子,可是却买来家庭幸福;钱虽然能买来药,可是却买来健康,钱虽然能买来闹钟,可是买来时间……那时,我又明白了有钱必须幸福。 以前,我总是为了一条连衣裙而朝思暮想,盼望有一天能够穿上裙子,去放风筝。那时候,我以为拥有就是幸福。 最终有一天,妈妈给我买了这条连衣裙,我高兴的一宿都没有睡觉。可是几天的新鲜劲没有了,穿上裙子后,我并没有什么改变,依然是一个黄毛丫头。于是把它扔到箱子里。几个月后,我又把它翻出来,可是已经小了,穿下了。我又明白了,虽然裙子很美,但都是暂时的,完美的时光总是转瞬消失。 “幸福是什么?”我依然没有感受到。 几年后,我在街上看到了一对耄耋老人,他们虽然履蹒跚,可是互相搀扶,有时抬头看看天上的云卷云舒,有时望望西天如血的残阳,她们脸上洋溢着的是满足和幸福。 噢,我明白幸福就是真情。虽然他们很穷,可是他们很

相爱。他们彼此珍惜,从感叹世界对他们的公平。往往有的有钱人,他们虽然很有钱,可是他们并幸福,因为他们的心总是被金钱和权势所占据了,根本享受了这天伦之乐。 幸福其实很简单,就是和爸爸、妈妈吃一顿饭,和他在一齐聊聊天。 感受幸福作文第2篇: 夜,悄悄地打开了黑暗,散布着一如既往的宁静,天上的繁星披上了闪装,正对着我的眼,似乎害怕我听到它们之间的悄悄话。 知何时,甘寂寞的虫儿起劲地奏起了动听的乐曲,清凉的微风夹杂着泥土的芳香悄悄地将白天的烦闷与喧嚣赶跑。夜,显得更加宁静而诗意了。 静静的,左思,右想,就这样静静地坐在楼顶上,感受着夜馈赠我的美妙。就连天上偶尔飘过的云朵,也像是怕惊动了夜的宁静,如绒毛在平静水面滑过般,显得那么轻柔而迷人。 今夜独处在空旷的夜空下,感受着夜带给我的美妙,幸福惬意溢满于心。原先自我一向以来苦苦追寻的幸福其实就在自我的身边。 以往,有人努力打拼,渴望生活富裕来获得幸福,可一辈子的艰辛拼搏使自我逐渐沦为金钱的奴隶,苦苦追寻的幸福也越寻越远,最终留给自我的是岁月无情地染白的头发。其实,幸福并非是追寻能得到的,幸福是一种感受,仅有用心感受身边的一切,你就能发现,幸福无处在,譬如,管贫

短歌行赏析

短歌行赏析 《短歌行》 对酒当歌,人生几何?譬如朝露,去日苦多。 概当以慷,忧思难忘。何以解忧?唯有杜康。 青青子衿,悠悠我心。但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇?忧从中来,不可断绝。 越陌度阡,枉用相存。契阔谈咽,心念旧恩。 月明星稀,乌鹊南飞。绕树三匝,何枝可依。 山不厌高,海不厌深,周公吐哺,天下归心。 “短歌行”是汉乐府一个曲调的名称,是用于宴会场合的歌辞。曹操集子里现存《短歌行》两首,课文选的是第一首。作为一位政治家兼军事家的诗人曹操,十分重视人才,这首诗抒发了他渴望招纳贤才、建功立业的宏图大愿。 全诗三十二句,分四节,每八句一节。 第一节抒写诗人人生苦短的忧叹。“对酒当歌,人生几何?譬如朝露,去日苦多。”“当”,对着。“去日”,指逝去的岁月。这四句意思是:在边喝着酒,边唱着歌时,忽然感叹道:人生能有多久呢?人生啊,就好比早晨的露水,一会儿就干了,又苦于过去的日子太多了。“慨当以慷,忧思难忘。何以解忧?唯有杜康。”“慨当以慷”是“慷慨”的间隔用法,“当以”,没有实在意义,即指宴会上歌声慷慨激昂。“杜康”相传是发明酿酒的人,这里作酒的代称。这四句意思是:即使宴会上歌声慷慨激昂,诗人内心的忧愁还是难以消除。用什么来消除胸中的忧愁呢?只有借酒浇愁。我们如何理解诗人这种人生苦短的忧叹呢?诗人生逢乱世,

目睹百姓颠沛流离,肝肠寸断,渴望建功立业而不得,因而发出人生苦短的忧叹。这个点我们可从他的另一首诗《蒿里行》中得到佐证:“白骨露于野,千里无鸡鸣。生民百遗一,念之断人肠。” 第二节抒写诗人对贤才的渴求。“青青子衿,悠悠我心”,是引用《诗经?郑风?子衿》中的成句。“青衿”,周代读书人的服装,这里指代有学问的人。“悠悠”,长久的样子,形容思念之情。这两句意思是:你的衣领青青啊,总是让我如此挂念。原诗后两句是:“纵我不往,子宁不嗣音?”意思是:虽然我不能去找你,你为什么不主动给我音信?曹操因为事实上不可能一个一个地去找那些贤才,所以他使用这种含蓄的话来提醒他们,希望贤才主动来归。“但为君故,沉吟至今。”“沉吟”,低声叨念,表示渴念。这两句意思是:只因为你的缘故,让我渴念到如今。“青青子衿,悠悠我心。但为君故,沉吟至今。”四句以女子对心爱的男子的思念比喻自己对贤才的渴求。“呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。”这四句引自《诗经?小雅?鹿鸣》,《鹿鸣》是一首描写贵族盛宴热情款待尊贵客人的的诗歌。前两句起兴,意思是:野鹿呦呦呦呦地叫,欢快地吃着野地里的艾蒿。以下各句描写宾客欢宴的场面,这里引用的两句意思是:我有很多尊贵的客人,席间弹起琴瑟,吹起笙乐。诗人引用这几句诗,表示自己对贤才的热情。 第三节抒写诗人对贤才难得的忧思和既得贤才的欣喜。“明明如月,何时可掇?”“明月”,比喻人才。“掇”,拾取,摘取。意思是:贤才有如天上的明月,我什么时候才能摘取呢?“忧从中来,不可断绝。”因为求才不得,内心不禁产生忧愁,这种忧愁无法排解。“越陌度阡,枉用相存。契阔谈讌,心念旧 恩。”“陌”、“阡”,都是指田间小路,东西向叫“陌”,南北向叫“阡”。“枉”,枉驾,屈驾。“用”,以。“存”,探问,问候。“契阔”,久别重逢。

女生唱的歌曲欢快甜美

女生唱的歌曲欢快甜美 美妙的歌曲能令我们陶醉其中而无法自拨,最激烈的歌曲能令我们的身体不由自主的跟着手舞足蹈起来,下面是小编整理的欢快甜美的歌曲的内容,希望能够帮到您。 欢快甜美的歌曲 1. Talking - 2. 羽毛- 劲歌金曲 3. 为你- 黑龙 4. 我的小时候- 罗艺达 5. 听说爱情回来过 6. 那个男人 7. 夫妻观灯_韩再芬、李迎春- 中国民歌宝典二 8. 往生- 镀飞爱在阳光空气中- 区瑞强- 音乐合辑 9. 说中国- 班- 华语群星 10. 第十八封信- Kent王健 11. 那一夜你喝了酒- 傅薇 12. 最近比较烦- 周华健/李宗盛/品冠- 滚石群星 13. 告白- 张娜拉 14. Talking VIII - 15. my love - 网友精选曲 16. 音乐人民- 音乐合辑 17. 深深深深- 徐誉滕 18. Honkytonk U - Toby Keith 19. 征服- 阿强 20. 我总会感动你- 沙宝亮欢快甜美的歌曲 1. 一千步的距离- 高桐 2. fleeing star - 音乐合辑 3. My Life - 李威杰 4. 小妹听我说- 金久哲 5. 上海滩- 梁玉嵘- 华语群星 6. 爱我多爱一些- 黎姿 7. 恋人未满- 8. 玛奇朵飘浮- 音乐听吧 9. 風- 音乐听吧 10. 七月- 小鸣 11. 滚滚红尘- 罗大佑 12. 张震岳—想要- 华语群星 13. 有梦有朋友- 14. 童年- 拜尔娜 15. 洪湖水,浪打浪- 宋祖英 16. 只爱到一半- 魏晨 17. 风雨人生路- 何静 18. 居家男人- 回音哥如果当时- 许嵩 19. 那个男人的谎言Tae In - 非主流音乐

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

相关文档
最新文档