A parametric study on probabilistic fracture of functionally

Probabilistic Engineering Mechanics24(2009)

438–451

Contents lists available at ScienceDirect Probabilistic Engineering Mechanics journal homepage:

https://www.360docs.net/doc/5f18151258.html,/locate/probengmech

A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method

Arindam Chakraborty,Sharif Rahman?

College of Engineering,The University of Iowa,Iowa City,IA52242,United States

a r t i c l e i n f o Article history:

Received31July2008 Received in revised form

26December2008

Accepted9January2009 Available online21January2009 Keywords:

Level-cut

Filtered Poisson field

Random microstructure Porosity

Stress intensity factors

Fracture toughness

Monte Carlo simulation Fracture reliability

Crack propagation a b s t r a c t

This article reports the results of a parametric study on the fracture behavior of a crack in functionally graded materials.The study involves stochastic descriptions of particle and void numbers;location,size, and orientation characteristics;and constituent elastic properties;a concurrent multiscale model for calculating crack-driving forces;and Monte Carlo simulation for fracture reliability analysis.A level-cut,inhomogeneous,filtered Poisson field describes the statistically inhomogeneous microstructures of graded composites.Numerical results for an edge-cracked,graded specimen show that the particle shape and orientation for the same phase volume fractions have negligible effects on fracture reliability,even for graded materials with a high modular ratio.However,voids and the particle gradation parameter,if they exist or increase,can significantly raise the probability of fracture initiation.Limited crack-propagation simulations in graded composites containing brittle particles reveal that the fracture toughness of the matrix material can significantly influence the likelihood or the extent of crack growth.

?2009Elsevier Ltd.All rights reserved.

1.Introduction

Assessing mechanical reliability of functionally graded materi-als(FGMs),which possess spatially varying material compositions and microstructures,mandates a fundamental understanding of their deformation and fracture behavior[1,2].Most existing stud-ies on FGM fracture[3–6]entail calculating crack-driving forces employing smoothly varying material properties that are derived from empirical rules of mixtures,classical bounds,or microme-chanical homogenization[7,8].However,an FGM is a multiphase, heterogeneous material with possibly distinct properties of indi-vidual phases.Depending on the crack-tip location and FGM mi-crostructure,the resulting crack-driving forces can be markedly different when a significant mismatch exists in the properties of constituent material phases.Therefore,using homogenized prop-erties in a macroscale analysis may lead to inaccurate or inad-equate measures of crack-driving forces and fracture behavior of FGMs.The calculation of crack-driving forces becomes further complicated when accounting for a random microstructure,in-cluding spatial and random distributions of sizes,shapes,and ori-entations of constituent phases[9–12].Therefore,in general,a ?

Corresponding address:Department of Mechanical and Industrial Engineering, The University of Iowa,Iowa City52242,IA,United States.Tel.:+13193355679; fax:+13193355669.

E-mail address:rahman@https://www.360docs.net/doc/5f18151258.html,(S.Rahman).stochastic fracture analysis incorporating random microstructural details,particularly in the crack-tip region,is required for high-fidelity reliability analysis[13].

A valuable insight can be gained by investigating how microme-chanical parameters,such as the phase volume fraction,location, size,shape,and orientation of particles;porosity;and the frac-ture toughness properties of constituents,influence the fracture behavior of a particle-matrix FGM.An elaborate computational model,e.g.,a microscale model that employs a discrete particle-matrix system in the entire domain of an FGM,can be invoked for such a parametric study.However,a microscale model,al-though capable of furnishing highly accurate solutions,constitutes a brute-force approach,and is therefore computationally expen-sive,if not prohibitive.An attractive alternative is multiscale anal-ysis,where effective material properties are employed whenever possible,thereby solving a fracture problem of interest not only accurately,but also economically.For example,a concurrent mul-tiscale model[13],recently developed by the authors,involves stochastic description of an FGM microstructure and constituent material properties,a two-scale algorithm including microscale and macroscale analyses for determining crack-driving forces,and the Monte Carlo simulation for fracture reliability analysis.Numer-ical results indicate that the concurrent multiscale model is suffi-ciently accurate,gives fracture probability solutions very close to those generated from the microscale model,and can reduce the computational effort of the latter model by more than a factor of

0266-8920/$–see front matter?2009Elsevier Ltd.All rights reserved. doi:10.1016/j.probengmech.2009.01.001

A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451439 two.Therefore,a detailed parametric study can be efficiently con-

ducted using the concurrent multiscale model–the principal fo-

cus of this work.In general,the crack-driving forces experienced

by an FGM can be very complex in practical scenarios involving

a variety of combinations of microstructural parameters and con-

stituent material properties.A clear understanding of the relation-

ship between the microstructure and fracture behavior is vital to

the successful application of FGM to the design of mechanical and

structural components.

This paper presents the results of a parametric study on fracture

behavior of two-dimensional,functionally graded composites.

The study involves:(1)stochastic descriptions of particle and

void numbers;location,size,and orientation characteristics;and

constituent elastic properties;(2)a concurrent multiscale model

for determining crack-driving forces under mixed-mode loading;

and(3)Monte Carlo simulation for uncertainty propagation and

fracture reliability analysis.Section2describes a generic fracture

problem and a concurrent multiscale model for calculating various

fracture response characteristics of interest,defines the random

input parameters,and discusses crack-driving forces and fracture

reliability.Section3describes the Monte Carlo simulation method

for calculating statistical moments and probability densities

of crack-driving forces,leading to the probability of fracture

initiation.A numerical example comprising eight cases of FGM

microstructure and three cases of fracture toughness of matrix,and

the resultant fracture response,is presented in Section4.Section5

provides conclusions from this work and discusses future work.

2.Stochastic fracture mechanics

Consider a three-phase,functionally graded,heterogeneous

solid with a rectilinear crack,domain D?R2,and a

schematic illustration of its microstructure,as shown in Fig.1.The

microstructure in general includes three distinct material phases:

one phase as particles,another phase as the matrix material,

and the remaining phase as voids.The particle,matrix,and void

subdomains are represented by D p,D m,and D v,respectively,

where D p∪D m∪D v=D and D p∩D m=D m∩D v=D p∩

D v=?.A three-phase FGM,henceforth described as a two-phase,

porous FGM or simply a porous FGM,can be reduced to a two-

phase,non-porous FGM by discarding the void constituent.The

particle and matrix represent isotropic and linear-elastic materials,

and the elasticity tensors of individual phases,denoted by C(i),are

expressed as[14]

C(i):=

νi E i

1i12i

1?1+

E i

1i

I;i=p,m,(1)

where the symbol?denotes the tensor product;E i andνi are the elastic modulus and Poisson’s ratio,respectively,of phase i;and1

and I are second-and fourth-rank identity tensors,respectively.

The superscripts or subscripts i=p and i=m refer to particle and matrix,respectively.At a spatial point x∈D in the macroscopic length scale,letφp(x),φm(x),andφv(x)denote the volume fractions of particle,matrix,and void,respectively.Each

volume fraction is bounded between0and1and satisfies the

constraint:φp(x)+φm(x)+φv(x)=1.The crack faces are traction-free,and there is perfect bonding between the material phases.

Consider a linear-elastic solid with small displacements and

strains.The equilibrium equation and boundary conditions for the

quasi-static problem are

?·σ+b=0in D p∪D m or D\D v and(2)σ·n=ˉt onΓt(natural boundary conditions)

u=ˉu onΓu(essential boundary conditions),(3)

respectively,where u:D→R2is the displacement vector;σ=C(x): is the Cauchy stress tensor with C(x)and

:=Fig.1.A crack in a three-phase functionally graded composite.(Note:D=domain of the entire solid,D p=particle subdomain,D m=matrix subdomain,D v=void subdomain.)

(1/2)

?+?T

u denoting the spatially variant elasticity tensor and strain tensor,respectively;n is a unit outward normal to the boundaryΓof the solid;Γt andΓu are two disjoint portions of the boundaryΓ,where the traction vectorˉt and displacementˉu are prescribed;?T:={?/?x1,?/?x2}is the vector of gradient operators;and symbols‘‘.’’and‘‘:’’denote dot product and tensor contraction,respectively.

The variational or weak form of Eqs.(2)and(3)is

D

(C(x): ):δ d D?

D

b·δu d D?

Γt

ˉt·δu dΓ

?

x K∈Γu

f(x K)·δu(x K)?

x K∈Γu

δf(x K)·[u(x K)?ˉu(x K)]=0,

(4) where f T(x K)is the vector of reaction forces at a constrained node K onΓu,andδdenotes the variation operator.The discretization of the weak form,Eq.(4),depends on how the elasticity tensor C(x)is defined,i.e.,how the elastic properties of constituent material phases and their gradation characteristics are described. In the following section,a concurrent multiscale model is described to approximate C(x).Nonetheless,a numerical method, e.g., the finite-element method(FEM),is generally required to solve the discretized weak form,providing various response fields of interest.

2.1.Concurrent multiscale model

The FGM microstructure in Fig.1contains discontinuities in material properties at the interfaces between the matrix and particles.There exist two approaches with respect to defining the material property for fracture analysis of an FGM cracked structure.One approach involves stress analysis using effective material properties,often smooth and continuous,in the entire domain of the solid.This approach is referred to as macroscale analysis.The other approach,referred to as microscale analysis, entails stress analysis that is solely based on the exact but discrete material property information derived from the knowledge of explicit particle locations and their geometry.The concurrent multiscale model employed in this work includes both continuous and discrete material representations and requires a combined micromechanical and macromechanical stress analysis.

440 A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)

438–451 Fig.2.Schematics of concurrent multiscale model.(Note:D=domain of the

entire solid,ˉD=subdomain with explicit particle and void information,D =

small subdomain surrounding crack tip.)

As depicted in Fig.2,consider an arbitrary bounded subdomain

D?D,which surrounds the crack tip and contains finite numbers

of particles and voids.Employing effective elastic properties

at the crack-tip region may yield inadequate estimates of the

resultant stress intensity factors(SIFs),particularly if there exists a

significant mismatch between the matrix and particle properties.

However,far from the crack tip,where the effect of crack-tip

singularity vanishes rapidly,individual constituent properties may

not be needed,and an appropriately derived effective material

property should suffice.In other words,the subdomain D is

filled with individual particles and voids,whereas the remaining

subdomain D\D is assigned a continuously varying effective

elasticity tensorˉC(x),derived from a suitable micromechanical

https://www.360docs.net/doc/5f18151258.html,ing classical micromechanics,e.g.,the self-

consistent model,the Mori–Tanaka model,and the mean-field

theory[7,8],ˉC(x)can be easily calculated from the known phase

volume fractions at x∈D\D.Therefore,according to the

concurrent model,Eq.(4)is discretized and solved using[13]

C(x)~=

C(p),if x∈D and x∈D p

C(m),if x∈D and x∈D m

ˉC(x),if x∈D\D,

(5)

where discontinuity in material properties exists at the interfaces between D and D\D and between D p and D m.

Since the material representation in D is discrete,the calculation of the resulting SIFs in the concurrent model is not straightforward.The interaction integral method,commonly employed for fracture analysis of homogeneous or smoothly inhomogeneous media[3],requires a constant or continuously varying material property inside the domain of a crack-tip contour. However,if a small,bounded,non-porous subdomain D ?D?D surrounding the crack tip is introduced in slightly modifying the elasticity tensor,for instance[13],

C(x)~=

C(p),if

x∈D and x tip∈D p

or if

x∈D\D and x∈D p

C(m),if

x∈D and x tip∈D m

or if

x∈D\D and x∈D m

ˉC(x),if x∈D\D,

(6)

the result is a material representation that is locally homogeneous, i.e.,C(x)is either C(p)or C(m),but constant for x∈D .Therefore, mixed-mode SIFs can be readily calculated from the interaction integrals applicable to homogeneous materials,provided the crack-tip contour lies inside D .Applying Eq.(6)in solving the discretized weak form yields the interaction integrals,M(1,2)

p

and

M(1,2)

m

,when C(x)=C(p);x∈D and C(x)=C(m);x∈D , respectively.The SIFs are subsequently calculated from

K i~=

1

2

M(1,i)

p

E?

p

,if x tip∈D p

1

2

M(1,i)

m

E?

m

,if x tip∈D m;

i=I,II,(7)

where E?

j

=E

j

for the plane stress,E?

j

=E

j/

1?ν2j

for the plane strain conditions,and j=p,m.

In calculating SIFs by the concurrent multiscale model,the size of D should be comparable to the microstructural length scale,but large enough for the SIFs to be calculated accurately.The effects of discrete particles or voids in D,if they exist,should be propagated to the SIFs.The magnitude of the effect,however,depends on the size of D relative to D.Further details of the concurrent model, including verification with a full microscale model,are available in the authors’previous work[13].

2.2.Stochastic input

Uncertainties in FGM fracture analysis leading to stochastic properties of SIFs can come from a variety of sources.Two important sources are:(1)microstructural uncertainty that includes randomness in phase volume fractions,numbers of particles and voids,spatial arrangements of particles and voids,and the size,shape,and orientation properties of particles and voids, and(2)constituent elastic material properties.

2.2.1.Random microstructure

Let(?,F,P)be a probability space,where?is the sample space,F is theσ-algebra of subsets of?,and P is the probability measure.Defined on the probability space and indexed by a spatial coordinate x∈D?R2,consider an inhomogeneous Poisson random field N(D )with an intensity measureμD :=

D

λ(x)d x, whereλ(x)≥0is a spatially variant intensity function associated with the particle or void phase and D ∈B(R2)is a bounded Borel set such that points of N falling in R2\D do not contribute to particles or voids in D.The Poisson point field has the following properties:(1)the number N(D )of points in a bounded subset D has the Poisson distribution with intensity measureμD ;and(2) random variables N(D 1),...,N(D K)for any integer K≥2and

disjoint sets D

1

,...,D

K

are statistically independent.The Poisson field N(D )gives the number of points in D and is characterized by the probability

P

N(D )=n

=

D

λ(x)d x

n

n!

exp

?

D

λ(x)d x

;

n=0,1,2, (8)

that n Poisson points exist in D .The mean E[N(D )]and variance Var[N(D )]of N(D )are both equal toμD :=

D

λ(x)d x. Filtered Poisson field:An inhomogeneous,filtered Poisson random field can be described as[9,10]

Z(x):=

0,N(D )=0

N(D )

i=1

Z iˉh(Ψi(x?Γi)),N(D )>0;

x∈D?D ?R2,(9) where{Γi}is a collection of Poisson points,ˉh:R2→R is a non-negative kernel function,{Z i}is a collection of independent

A.Chakraborty,S.Rahman /Probabilistic Engineering Mechanics 24(2009)438–451441

and identically distributed real-valued random variables,and {Ψi }is a collection of independent and identically distributed rotation matrices in R 2,for instance,Ψi =

cos Θi

sin Θi

?sin Θi

cos Θi

;

i =1,...,N ;

x ∈R 2,

(10)

with Θi representing deterministic or random orientation of the i th particle or void.In Eq.(9),both D and D are bounded subsets of R 2such that points of N falling in the set difference R 2\D do not contribute to the value of Z in D .Also,the subset D is bounded if,for example,ˉh has a compact support.The filtered Poisson field Z (x )can be viewed as the response of a filter with a transfer function at point x that is subjected to a collection of random pulses arriving at Poisson points {Γi }.

Level-cut,Filtered Poisson Field :For an increasing function g :R →R ,consider a real-valued translation random field Y (x ):=g (Z (x )),

(11)

which describes a memoryless,measurable,nonlinear function of a real-valued random field Z (x ).The translation field Y (x )is completely determined by mapping g and statistical properties of Z (x ).Consider a special form of g (z )=I (z ;a ):=

1,z >a 0,z ≤a ;

z ∈R ,

(12)

where a is a deterministic constant,known as level,and I (z ;a )denotes an indicator function.The translation field Y in Eq.(11)with g in Eq.(12)is referred to as a level-cut random field.By clipping the inhomogeneous,filtered Poisson field Z (x )defined in Eq.(9),the resulting translation field Y (x ):=I (Z (x );a )

(13)

then becomes a level-cut,inhomogeneous,filtered Poisson field,which provides a convenient model for a two-phase FGM microstructure in D .For example,the subsets {x ∈D :Y (x )=1}and {x ∈D :Y (x )=0}define particles (phase 1)and matrix (phase 2),respectively,which can be derived from the contour of Z (x )at level a .Fig.3depicts a schematic illustration of the two subsets,obtained from a cut (Fig.3(b))of a generic random field Z (x )(Fig.3(a)).The dark (charcoal)phase indicates particles embedded in the light (light blue)phase representing the matrix.The level-cut random field can also be employed for modeling porosity (void)in the matrix.

Approximate level-cut,filtered Poisson field :Let the kernel ˉh (χ)be a compactly supported,non-negative function,for example,

ˉh (χ)= exp (?χT γχ)=exp ?χ21σ21?χ2

2σ22

,for particles

χT γχ=χ2121+χ2

222

,for voids ,

(14)

where χ∈R 2,σk >0are some constants,and γ=diag [1/σ1,1/σ2]∈R 2×2is a diagonal matrix.Suppose that λ(x ),Z i ,and ˉh are such that the values of Z in a small vicinity D (Γi )of Γi can be approximated by

?Z (x )=Z i ˉh (Ψi (x ?Γi )),

x ∈D (Γi ),

(15)

leading to an approximate version

?Y (x )=I (?Z (x );a )=I (Z i ˉh (Ψi (x ?Γi ));a ),

x ∈D (Γi )

(16)

of the level-cut field Y (x )in Eq.(13).Therefore,the particles or voids in the microstructure of a two-phase FGM can be conveniently approximated by the subsets

(x ?Γi )T

ΨT i

γ(x ?Γi )≤?ln (a /Z i ),for particles (x ?Γi )

T ΨT i γ(x ?Γi )=1,

for voids ,

(17)

Fig.3.Schematic illustration of a generic level-cut random field in R 2;(a)a sample of Z (x 1,x 2)with a cut at level a ;(b)two subsets of Y (x 1,x 2)obtained from the contour of the sample of Z (x 1,x 2)at level a .

of D for Z i >a and x ∈R 2.The approximate level-cut field is

capable of generating particles and voids with regular geometric

shapes,e.g.,circular,elliptical.Note that ?Y

(x )is strictly applicable when λ(x )and σk are both small.While such smallness restriction

limits the usefulness of ?Y

(x )somewhat,Eqs.(16)and (17)can be conveniently employed for finite-element discretization of fully penetrable particles even when λ(x )and σk are not small.See Rahman [10]for further details.

Algorithm :The level-cut field ?Y

(x ),described by Eq.(16),can be obtained from ?Z

(x )using the level-cut parameter a .Once all the parameters of the level-cut field ?Y

(x )have been determined,samples of synthetic microstructures of two-phase FGMs can be generated based on the following algorithm:

?Step 1:Define bounded subsets D and D of R 2.The bounded subset D must be such that points of N falling in R 2\D do not

contribute to the value of ?Z

(x )in D .Specify the kernel function ˉh and define its parameters.

?Step 2:Generate a sample k ?of the homogeneous Poisson random variable N ?(D ),which has a constant intensity λ?=max x ∈R 2λ(x ),where λ(x )is a bounded intensity function in D .?Step 3:Generate k ?independent uniformly distributed points in D .Denote these points by x i ,i =1,...,k ?.

?Step 4:Perform thinning of the point set obtained in Step 3.

In so doing,each point x i ,independently of the other,is kept with probability λ(x i )/λ?,which is equivalent to discarding the point with probability 1?λ(x i )/λ?.The resulting point pattern

442 A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451 with the size k??≤k?follows the inhomogeneous Poisson

field N(D )with intensity functionλ(x).Denote these points

byΓi,i=1,...,k??.

?Step5:Generate k??independent samples of random rotation

matrices{Ψi}and random variables{Z i}from their relevant

distributions.

?Step6:Calculate the corresponding samples of the random

fields?Z(x)from Eq.(15)and?Y(x)from Eq.(16)for a specified

level a.The sample of?Y(x)yields a two-phase,statistically

inhomogeneous microstructure in D.

Independent samples of?Z(x)and?Y(x)are delivered by

repeated application of the above-stated algorithm.

Different functions and parameters involved in generating the

level-cut field?Y(x)are:(1)a Poisson field N(D )that gives the

number of points in D ,(2)a spatially variant intensity function

λ(x)that is related to particle or void volume fraction,(3)random

variables{Z i}that are related to random particle or void sizes,(4)a

non-negative kernel functionˉh,which determines particle or void

shape(e.g.,elliptical particles usingσ1=σ2),(5)random rotation

matrices{Ψi}that determine particle or void orientations,and(6)

a variable a denoting the level at which the cut is made,affecting

also the size of particle or void.In the present study,λ(x)as well as

the non-negative kernel functionˉh and the level-cut variable a are

deterministic.The use of deterministic intensity function makes

the phase volume fraction deterministic.

The level-cut,inhomogeneous,filtered Poisson random field

and the associated algorithm for microstructures described in the

preceding pertain to any two-phase FGM.Therefore microstruc-

tures of a non-porous,particle-matrix FGM can be readily gener-

ated.For a porous,particle-matrix FGM,the microstructures can be

delivered by a three-step serial process:(1)generate a two-phase,

non-porous,particle-matrix FGM microstructure;(2)generate a

two-phase,void-matrix FGM microstructure;and(3)superimpose

the microstructure from Step2over that from Step1,forming

a resultant microstructure of a porous,particle-matrix FGM.The

resultant microstructure includes particles,voids,and matrix as

constituents.

2.2.2.Random constituent elastic properties

In addition to a random microstructure,the constituent elastic

(isotropic)properties of material phases can be stochastic,as

assumed in the present study.Let E p andνp denote the elastic

modulus and Poisson’s ratio,respectively,of the particle,and E m

andνm denote the elastic modulus and Poisson’s ratio,respectively,

of the matrix.Therefore,the random vector{E p,E m,νp,νm}T∈R4

describes the stochastic elastic properties of both constituents.The

constituent properties are spatially invariant in the macroscopic

length scale.

2.2.

3.Input random vector

Letλp(x)orλv(x)denote intensity functions associated with

the particle or void,respectively,in https://www.360docs.net/doc/5f18151258.html,ing these intensity

functions,let the Poisson random variables N p and N v represent

the number of particles and voids,respectively,in D ,where D ?

R2is a bounded subset such that points of N p and N v falling in

R2\D do not contribute to particles and voids,respectively,in

D.Denote the coordinates of the centroids of particles and voids

by U p

i ,1,U p i,2;i=1,...,N p and U v i,1,U v i,2;i=1,...,N v

respectively.Correspondingly,the random scaling variables and

orientations are:Z p

i andΘp

i

;i=1,...,N p for particles;and Z v

i

andΘv

i

;i=1,...,N v for voids.Table1lists all stochastic input variables for both non-porous and porous FGMs.Let R∈R N denote an N-dimensional input random vector that contains uncertainties from all sources described in Sections2.2.1and2.2.2.Therefore,the total number(N)of random variables is4N p+5for non-porous FGM and4N p+4N v+6for porous FGM.The input random vector R characterizes uncertainties from all sources in an FGM and is completely described by its joint probability density function f R(r), where r is a realization of R.

2.3.Crack-driving forces and reliability

A major objective of stochastic fracture-mechanics analysis is to find probabilistic characteristics of crack-driving forces,such as SIFs K I(R)and K II(R)for modes I and II,respectively,and the J-integral and other fracture integrals,due to uncertain input R. For a given input,the standard FEM can be employed to solve the discretized weak form(Eq.(4)),leading to the calculation of SIFs and other crack-driving forces.

Suppose that failure is defined when the crack propagation is initiated at a crack tip,i.e.,when K eff(R)=h(K I(R),K II(R))>K Ic, where K eff is an effective SIF with h depending on a selected mixed-mode theory,and K Ic is a relevant mode-I fracture toughness of the material measured in terms of SIF.This requirement cannot be satisfied with certainty,since K I and K II are both dependent on R, which is random,and K Ic itself may be a random variable or field. Hence,the performance of a cracked FGM should be evaluated by the conditional reliability or its complement,the conditional probability of failure P F,defined as the multifold integral

P F(K Ic):=P[y(R)<0]:=

R N

I y(r)f R(r)d r,(18) where

y(R)=K Ic?h(K I(R),K II(R))(19) is a multivariate performance function that depends on the random input R and

I y(r)=

1,if y(r)<0

0,if y(r)>0(20) is another indicator function.In this work,the maximum circumferential stress theory was invoked to describe mixed-mode fracture initiation[15].

The evaluation of the multidimensional integral in Eq.(18), either analytically or numerically,is not possible because the total number of random variables N is large,f R(r)is generally non-Gaussian,and y(r)is a highly nonlinear function of r. Therefore,Monte Carlo simulation was employed for calculating the probabilistic characteristics of crack-driving forces and the probability of fracture initiation.

3.Monte Carlo simulation

Recall that K i(r)=K i(r1,...,r N);i=I,II and y(r)= y(r1,...,r N)represent crack-driving forces or a performance function that depends on crack-driving forces.The number of input random variables N,the dimension of the stochastic problem,and the input–output mapping K i:R N→R or y:R N→R depends on the concurrent multiscale model.The objective is to evaluate the probabilistic characteristics of generic output responses K i(R) or y(R),when the probability distribution of the random input R∈R N is prescribed.

Consider a generic N-dimensional random vector R=

{R

1,...,R N}T,which characterizes uncertainty in all input param-eters under consideration with its known joint PDF f R(r).Suppose that r(1),...,r(L)are L realizations of the input vector R,which can be generated independently.Let K i(r(1)),...,K i(r(L));i=I,II and y(r(1)),...,y(r(L))be the output samples of mixed-mode SIFs

A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451443 Table1

K i(R)and performance function y(R)that correspond to the in-put r(1),...,r(L),which can be obtained from repeated determin-istic fracture-mechanics evaluations of K i and y.The l th moment of K i(R

),estimated by Monte Carlo simulation[16]is

E[K l i(R)]=lim

L→∞1

L

L

j=1

[K l

i

(r(j))],i=I,II.(21)

By setting l=1and2,the mean and standard deviation of K I(R) and K II(R)can be obtained.

For reliability analysis,the direct Monte Carlo estimate P F,MCS of the conditional failure probability is

P F,MCS(K Ic)=lim

L→∞1

L

L

j=1

[I

y(r

(j))],(22)

where I y(r(j))denotes the j th realization of the indicator function defined in Eq.(20).

4.An edge-cracked FGM specimen

Consider a two-dimensional,square,FGM specimen with domain D=10cm×10cm,which contains randomly dispersed,fully penetrable,elliptical,silicon carbide(SiC)particles and circular voids in an aluminum(Al)matrix.Fig.4illustrates

a microstructural sample of the specimen,which was created by the level-cut,filtered,random field?Y(x)over D =10.5cm×

10.5cm and random orientations of the particles.The center of

D coincides with that of D.The specimen contains a horizontally placed,a c=5cm long edge crack with the crack-tip location x tip={x tip,1,x tip,2}T={5,5}T cm and is subjected to a far-field tensile stressσ∞and a far-field shear stressτ∞.For stationary crack:σ∞=τ∞=1kN/cm2,and for crack propagation:σ∞=τ∞=1.8kN/cm2.The subdomains D and D are5cm×5cm and 5.5cm×5.5cm squares with the center coinciding with the crack tip.The subdomain D is a circle with radius equal to half of the radius of a circle with an area equal to that of the average particle area in D.The center of D is located at the crack tip.The sizes of the subdomains D and D are deemed adequate based on the results of the authors’previous study[13].A plane strain condition was assumed.

4.1.Inputs

Particles and voids were generated using the level-cut,inho-mogeneous,filtered Poisson random field?Y(x)described in Sec-tion2.2.1.The aspect ratio,defining the length-to-width ratio of Fig. 4.A porous FGM specimen with an edge crack under a mixed-mode deformation.

each particle or void,and hence the shape,whether elliptical or circular,is deterministic and identical for all particles in a particu-lar sample.The particles and voids both follow horizontally varying Poisson intensity functions

λp(x)=c p ln1+

1+ ?

x1

10.5

n p(23) and

λv(x)=

c v ln

5.25(1+ )

5.25(1+ )?x1

,x1≤5.25

c v ln

5.25(1+ )

5.25(1+ )?(10.5?x1)

,x1>5.25,

(24)

respectively,where x={x1,x2}T∈R2,0≤x i≤10.5cm;i= 1,2; =10?6;n p is an exponent representing particle gradation;

c p=6cm?2is the intensity parameter for particles;an

d c v is th

e intensity parameter for voids.The intensity parameters and the corresponding volume fractions(φi(x),say)are related via

444 A.Chakraborty,S.Rahman /Probabilistic Engineering Mechanics 24(2009)438–451

Table 2

φi (x )~=E [?Y

i (x )]=P [?Z i (x )>a ][9,10];i =p ,v ,denoting particle and void phases,where the expectation of ?Y

i (x )and the probability of ?Z

i (x )both depend on the intensity functions expressed by Eqs.(23)and (24)and hence,on the intensity parameters.Three values of n p =0.5,1,and 2were examined.For voids,three values of c v were selected:(1)c v =0,representing non-porous FGM;(2)c v =2.52cm ?2,yielding a void volume fraction of nearly 0.1at the crack tip;and (3)c v =5.46cm ?2,leading to a void volume fraction of nearly 0.2at the crack tip.The exponential kernel function for particles is given by Eq.(14),where σ1=0.3cm ;σ2=0.1cm for elliptical particles and σ1=σ2=√0.3×0.1cm for circular particles.A cylindrical kernel function,also represented by Eq.(14),was used for voids,all of which are equal-size circles with σ1=σ2=√0.1×average particle area /πcm.The random variables Z p i =10|U i |;i =1,...,N p and Z v i =10|U i |;i =1,...,N v ,where {U i }is a collection of independent,standard Gaussian random variables.The orientation of the i th elliptical particle is either random (e.g.,Θp i =U (0,2π),i.e.,uniformly distributed between 0and 2π)or deterministic (e.g.,Θp i =0or π/2).

Finally,the material phases SiC and Al are both linear-elastic and isotropic.However,the elastic moduli E SiC and E Al and the Poisson’s ratios νSiC and νAl ,of SiC and Al,respectively,are random variables;their means,standard deviations,and probability distributions are listed in Table 2.The lognormal distribution of the elastic properties,although chosen arbitrarily in this work,was restricted to small coefficients of variation.Therefore,a lognormal or similar other distributions of the elastic properties should reveal the influence of microstructure,if any,on a fracture response of interest.The mode-I fracture toughnesses of SiC and Al,which are deterministic,are as follows:K Ic ,SiC =5MPa √m and K Ic ,Al =20,30,and 40MPa √

m.Therefore,the matrix is relatively more ductile than the particles.4.2.Parameters studied

Four microstructural features and the fracture toughness of Al were considered for a parametric study on fracture behavior of FGMs.They include:(1)particle shape parameters described by σ1and σ2in Eq.(14);(2)particle orientation represented by Θp i (i.e.,Θi for particles in Eq.(10));(3)porosity quantified by c v in Eq.(24);(4)particle gradation characterized by n p in Eq.(23)and (5)cporousfgm mode-I fracture toughness K Ic ,Al of Al (matrix).Table 3summarizes these five parameters,leading to eleven distinct cases for the parametric study.The cases 1–8account for the effect of FGM microstructural features on the mixed-mode SIFs,leading to fracture initiation.Therefore,they do not include K Ic ,Al as it relates to crack propagation,examined in cases 9–11.

Fig.5(a)–(c)present spatial distributions of particle and void volume fractions for both non-porous and porous FGMs.The

volume fractions,φi (x )~=E [?Y

i (x )

],were calculated from ten independent microstructural samples of ?Y

i (x ),generated using the algorithm in Section 2.2.1.Fig.5(a)comprises plots of particle volume fractions for four non-porous FGMs with n p =1:one with

Fig.5.Phase volume fractions of FGMs:(a)particle volume fractions of non-porous FGMs with different particle shapes and orientations;(b)particle and void volume fractions of porous FGMs;(c)particle volume fractions of non-porous FGMs with different gradations of intensity function.

circular (σ1=σ2=√

0.3×0.1cm)particles (case 1)and three with elliptical (σ1=0.3cm ,σ2=0.1cm)particles entailing Θp i =U (0,2π)(case 2),0(case 3),and π/2(case 4).All four distributions of particle volume fractions from Fig.5(a)are practically coincident.Therefore,the individual effects of particle shape and orientation on FGM fracture response can be evaluated.Similarly,Fig.5(b)shows distributions of particle and void volume fractions for two porous FGMs with n p =1,obtained by selecting c v =2.52cm ?2(case 5)and c v =5.46cm ?2(case 6)(cases 5and 6).From Fig.5(b),the maximum void volume fractions that occur at x 1=5cm are nearly 0.1and 0.2,respectively.Finally,Fig.5(c)depicts three markedly different distributions of particle volume fractions for non-porous FGMs,when the particle gradation parameters are n p =0.5(case 7),1(case 1),and 2(case 8).Therefore,n p controls the spatial distribution of particle volume fractions significantly.

A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451445 Table3

4.3.Finite element modeling

Fig.6(a)–(h)present eight finite-element discretizations of samples of non-porous and porous FGM specimens for the first eight cases listed in Table3,all employed in conjunction with the concurrent multiscale model.0The numbers and types of elements for these eight finite-element meshes are listed in Table4.All finite-element meshes are conforming and were developed using the commercial code ABAQUS[17].Full3×3and3-point Gauss quadrature rules were employed for the quadrilateral and triangular elements,respectively,for numerical integration.

For finite-element models of porosity,a void falling anywhere on the crack was redistributed in the x2direction by splitting the void into two equivalent parts and placing them just above and just below the crack line in such a way that the equivalent voids do not intersect with the crack.Also,since D is non-porous and voids are small compared with particle sizes,any portion of a void falling inside D was ignored and was replaced by the particle or the matrix phase depending on the crack-tip material of the underlying particle-matrix microstructure of the non-porous FGM.

The stochastic analysis was conducted by the Monte Carlo simulation with a sample size of10,000.Therefore,the smallest value of the failure probability calculated was limited to10?3.A failure probability of10?3,although not a very small number,was deemed adequate to conduct the parametric study.

4.4.Results and discussions

Fig.7(a)–(h)plot von Mises stress contours generated using the concurrent multiscale model for the six non-porous(cases1,2, 3,4,7,and8)and two porous(cases5and6)FGM samples in Fig.6(a)–(h).The effective elastic properties required by the con-current multiscale model were calculated using the Mori–Tanaka approximation[18],which incorporates orthotropic effective elas-tic properties due to the alignment of elliptical particles in a par-ticular direction and the aspect ratio.Voids are represented using degenerative material properties in the Mori–Tanaka approxima-tion.The overall stress responses for different FGM samples,indi-cated by the contour patterns,are similar.However,there are also differences in the local stress fields that may have significant impli-cations in determining crack-driving forces and eventually in sta-tistical and reliability predictions for different microstructures.The second-moment characteristics and fracture reliability results per-taining to parametric study are presented next.

0Finite element discretizations of FGM specimens for cases9,10,and11are same as that for case1.4.4.1.Second-moment statistics of SIFs

Table5lists the means and coefficients of variations of K I and K II for six non-porous FGMs(cases1,2,3,4,7,and8)and two porous FGMs(cases5and6)described in Fig.6(a)–(h).The results for the mean values of K I for cases2–4are comparable with that for case1,with a maximum of3.5%difference observed in case3. The variability in the K I values for cases1–4,expressed in terms of coefficient of variation,shows a similar trend.These results indicate that the statistical properties of mode I SIF do not alter appreciably due to particle shape or orientation.However,the amount of porosity(cases5and6)enhances mode I SIF,as Table5 shows an increase of17.6%in the mean value of K I from case1 to case6.However,an introduction of voids does not increase the coefficient of variation of K I values appreciably.This is because by increasing the void content(which replaces particles and matrix in the FGM microstructure),no substantial change is made in the total variability due to the location characteristics of the constituents (in terms of particle and void locations).Furthermore,the particle gradation parameter(cases7and8)also has a noticeable effect on the K I statistics.For case7,the mean value of K I increases from that for case1.This can be explained by the following facts.As the overall particle content for case7(n p=0.5)is much higher than that for case1(n p=1),it lowers the individual K I values for case 7.At the same time,due to the higher value ofφp at the crack-tip location for case7,more samples contain particle at the crack tip. The K I value for an FGM sample containing particle at the crack tip is much higher than that for a sample containing matrix at the crack tip.Therefore,the mean of K I for case7is higher than that for case1.A similar argument explains why the mean of K I for case8 (n p=2),which has a significantly lower value ofφp at the crack-tip location compared with case1,is lower than that for case1. Since case7contains a greater number of particles and particles are fully penetrable,individual particles coalesce to form larger particle clusters and in the process lose their individual location characteristics,thereby reducing the variability of K I.

Results for the means and coefficients of variation of K II for cases1–4shows a similar trend as that observed for K I.Therefore, from the results of both K I and K II,it can be concluded that statistical properties of SIFs do not alter appreciably due particle shape and orientation.By introducing porosity(cases5and6), the mean values of K II change appreciably,as can be observed by a29.7%increase in the value for case5compared with case1. Variability in the K II values also increases substantially due to the presence of voids.Although the total variability due to location characteristics of the constituents remains comparable even with an increase in the void content,K II is more dependent on the variability in void locations,which increases with the increase in porosity.Hence,results for both K I and K II indicate that the amount of porosity substantially enhances crack-driving forces.Results for

446 A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)

438–451

Fig.6.Finite-element discretizations for sample FGM specimens employing concurrent multiscale model:(a)case1;(b)case2;(c)case3;(d)case4;(e)case5;(f)case6;

(g)case7;(h)case8.

the means and coefficients of variation of K II for cases7and8 show a similar trend as that observed for K I,which indicates that particle gradation parameter also has a noticeable impact on the SIF statistics.

4.4.2.Fracture reliability

While the second moment statistics are useful,a more meaningful stochastic response is the conditional probability of fracture initiation,P F(K Ic):=P[y(R)<0],described in Sec-tion2.3.The failure probability P F(K Ic)derived from the maximum circumferential stress theory was calculated by the concurrent

multiscale model for different FGM microstructures.Fig.8(a)plots

how P F(K Ic)varies as a function of the fracture toughness K Ic for non-porous FGMs with different microstructures containing cir-

cular and elliptical particles with different orientations,all gener-

ated using n p=1(cases1,2,3,and4).The results indicate that the effects of particle shape and orientation on fracture reliabil-ity are small.This can be attributed to the following reason.Due to the fully penetrable particle model,particles of different shapes and orientations coalesce to achieve a target volume fraction and

A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451

447 Fig.7.von Mises stress contours for sample specimens of SiC–Al FGM employing concurrent multiscale model:(a)case1;(b)case2;(c)case3;(d)case4;(e)case5;

(f)case6;(g)case7;(h)case8.

therefore lose their geometric identities,except at very low vol-ume fractions.In the present study,φp is close to0.5near the crack tip.Therefore,close to the crack tip,overall particle domains are similar for different particle shapes and orientations.Since SIFs are strongly influenced by the particles near the crack tip,effects of particle shape and orientation on fracture reliability are negligible. Also,due to the bi-axial nature of stresses surrounding the crack tip,particle orientation has little or no contribution in shielding the crack tip from applied loads and therefore has negligible effect on SIFs,and hence on fracture reliability.

To further investigate the effect of particle orientation,an additional analysis was performed using a very high stiffness ratio between particle and matrix.For the SiC–Al FGM,the ratio of the mean value of elastic modulus of SiC to that of Al,defined as the modular ratio,is419.2/69.7 6.0.A new FGM,made of SiC as particles and Polyimide as the matrix,was considered,which has a modular ratio of40.Statistical properties of the elastic moduli E SiC and E Polyimide and the Poisson’s ratiosνSiC andνPolyimide,of SiC and Polyimide,respectively,are listed in Table6.The motivation for choosing samples of FGM with a very high modular ratio

448 A.Chakraborty,S.Rahman /Probabilistic Engineering Mechanics 24(2009)438–451

Table 4

Table 5

Table 6

is that the orientation of particles will strongly influence the effective orthotropic material properties of an FGM with high elastic mismatch.Therefore,the effect of particle orientation on FGM fracture,if any,can be enhanced.However,fracture reliability results of SiC–Polyimide FGM depicted in Fig.8(b)show no statistically significant differences among the failure probability curves with circular and elliptical particles entailing different orientations.Hence,it can be concluded that due to the fully penetrable particles and biaxial nature of stresses around the crack tip,particle shape and orientation have negligible effects on fracture reliability,even for FGMs with a very high modular ratio.Fig.9plots the variation of P F (K Ic )as a function of the fracture toughness K Ic for porous FGMs with different void contents (cases 5and 6).All porous microstructures contain circular particles generated using n p = 1.From Fig.9,porosity has a significant effect on fracture https://www.360docs.net/doc/5f18151258.html,pared with the non-porous FGM microstructure,the presence of voids increases the probability of fracture initiation.The greater the void content,the greater the probability of fracture initiation,as can be observed from the results of two types of porous FGMs.Since porosity decreases the load-carrying capacity of a structure,more load is transferred to the crack tip,which then becomes more likely to propagate.

Fig.10plots how P F (K Ic )varies as a function of the fracture toughness K Ic for non-porous FGMs with microstructures con-taining circular particles generated using three different values of the particle gradation parameter n p :0.5(case 7),1(case 1),and 2(case 8).From the comparison between Figs (c)and 10,the greater the volume fraction of particles close to the crack tip (obtained by decreasing n p ),the less the probability of failure.Since an increase in particle content close to the crack tip shields the crack from ap-plied external loads more effectively,the crack in an FGM with a higher particle volume fraction at the crack-tip region has a lower propensity to propagate.

4.4.3.Crack propagation

A limited crack-propagation simulation was conducted to evaluate the effect of material fracture toughness of a non-porous FGM.The microstructure contains circular particles (σ1=σ2=√

0.3×0.1cm)and the particle gradation parameter n p =1(cases 9,10,and 11).Crack trajectories were determined based on the maximum circumferential stress theory with an incremental crack length of a c =0.5cm.Since particles and matrix are perfectly bonded,a crack can propagate from matrix to particle without changing direction.The initial crack tip is located at x tip ={x tip ,1,x tip ,2}T ={5,5}T cm.The applied external loads were kept constant during the crack propagation,and crack propagation was stopped when K eff (R )

(case 9).Due to low toughness,cracks in all three samples of Fig.11(a)propagated all the way through the plate.When the toughness of Al was doubled,as in case 10(K Ic ,Al =40MPa √m)–the results of which are displayed in

A.Chakraborty,S.Rahman /Probabilistic Engineering Mechanics 24(2009)438–451

449

Fig.8.Probability of fracture initiations of non-porous FGMs with different particle shapes and orientations:(a)SiC–Al FGM;(b)SiC–Polyimide

FGM.

Fig.9.Probability of fracture initiations of SiC–Al FGMs with different porosities.

Fig.11(b)–cracks in two of the three samples did not propagate at all.For the remaining sample,the crack was arrested after a single increment.Finally,Fig.11(c)exhibits crack propagation paths when K Ic ,Al =30MPa √m (case 11).From Fig.11(c),a crack in only one sample propagated all the way through the plate,but for the remaining two samples,they were arrested after only a few increments.From the above simulation results,it appears that the fracture toughness of the crack-tip material can have a significant effect on the likelihood of crack-propagation or the extent to which a crack can propagate before being arrested by the crack-tip

material.

Fig.10.Probability of fracture initiations of SiC–Al non-porous FGMs with different gradations of intensity functions.

https://www.360docs.net/doc/5f18151258.html,putational cost

For a complete stochastic fracture analysis of a given random FGM microstructure,Monte Carlo simulation entailing 10,000samples were conducted.Therefore,10,000deterministic finite-element analyses were involved,leading to a conditional failure probability curve in Figs.8–10.The underlying deterministic analyses were performed using the concurrent multiscale model and an HP XW8400workstation.The absolute CPU time required by a single,deterministic multiscale analysis,including all pre-processing efforts,was 50s.This leads to a full stochastic analysis time of approximately 5.8days.Therefore,a more efficient but sufficiently accurate stochastic method,if it can be developed,will reduce the computational burden.The need for a computationally efficient stochastic method becomes critical when analyzing three-dimensional FGMs,which are not included in the present study.5.Conclusions and future work

A parametric study on fracture behavior of a crack in two-dimensional,functionally graded composites was conducted.The study involves stochastic descriptions of particle and void numbers;location,size,and orientation characteristics;and constituent elastic properties;a concurrent multiscale model for determining crack-driving forces under mixed-mode loading;and Monte Carlo simulation for uncertainty propagation and fracture reliability analysis.A level-cut,inhomogeneous,filtered Poisson field describes the statistically inhomogeneous random microstructure of a non-porous or porous,graded composite.The concurrent multiscale model involves simultaneously performed microscale and macroscale analyses.

A numerical problem involving an edge-cracked,functionally graded specimen under a mixed-mode deformation was analyzed to calculate the statistical moments of crack-driving forces,the conditional probability of fracture initiation,and sample properties of crack-propagation.Eight distinct varieties of graded microstructure encompassing circular and elliptical particles;deterministic and random particle orientations;low and high porosity contents;and low,medium,and high particle gradation parameters,were analyzed.In addition,three distinct values (low,medium,and high)of fracture toughness properties of the matrix material were examined.The results pertaining to a stationary crack demonstrates that (1)particle shape and orientation for the same phase volume fractions have negligible effects on fracture reliability,even for graded media with a high modular ratio;(2)voids strongly influence crack-driving forces by rendering the graded microstructure weaker,thereby significantly

450 A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)

438–451

Fig.11.Crack paths for SiC–Al FGM samples with different K Ic,Al:(a)K Ic,Al=20MPa √

m;(b)K Ic,Al=40MPa

m;(c)K Ic,Al=30MPa

m.

raising the probability of fracture initiation;and(3)increasing the particle gradation parameter,which is inversely related to particle volume fraction,significantly increases the probability of fracture initiation.The crack propagation results for perfectly bonded composites with brittle particles reveal that under a fixed external loading,the fracture toughness of the matrix material can

A.Chakraborty,S.Rahman/Probabilistic Engineering Mechanics24(2009)438–451451

have a significant effect on the likelihood or the extent of crack growth.

The stochastic analysis conducted using Monte Carlo simulation requires a large number of deterministic finite-element analyses. Further research is necessary to develop alternative stochastic methods that are sufficiently accurate but generate probabilistic solutions in a computationally efficient way.

Acknowledgments

The authors would like to acknowledge financial support from the US National Science Foundation under Grant No.CMS-0409463.

References

[1]Suresh S,Mortensen A.Fundamentals of functionally graded materials.

London:Institute of Materials;1998.

[2]Miyamoto Y,Kaysser WA,et al.Functionally graded materials:Design,

processing and applications.Boston:Kluwer Academic Publishers;1999. [3]Rao BN,Rahman S.Meshfree analysis of cracks in isotropic functionally graded

materials.Engineering Fracture Mechanics2003;70(1):1–27.

[4]Dolbow JE,Gosz M.On the computation of mixed-mode stress intensity factors

in functionally graded materials.International Journal of Solids and Structures 2002;39(9):2557–74.

[5]Kim JH,Paulino GH.Finite element evaluation of mixed-mode stress intensity

factors in functionally graded materials.International Journal for Numerical Methods in Engineering2002;53(8):1903–35.

[6]Rao BN,Rahman S.An interaction integral method for analysis of cracks in

orthotropic functionally graded https://www.360docs.net/doc/5f18151258.html,putational Mechanics2003;32: 40–51.

[7]Mura T.Micromechanics of defects in solids.2nd revised ed.Dordrecht(The

Netherlands):Kluwer Academic Publishers;1991.

[8]Nemat-Nasser S,Hori M.Micromechanics:Overall properties of heteroge-

neous materials.2nd ed.Amsterdam(The Netherlands):North-Holland;1999.

[9]Grigoriu M.Random field models for two-phase microstructures.Journal of

Applied Physics2003;94(6):3762–70.

[10]Rahman S.A random field model for generating synthetic microstructures of

functionally graded materials.International Journal for Numerical Methods in Engineering2008;76(7):972–93.

[11]Ferrante FJ,Graham-Brady LL.Stochastic simulation of non-gaussian/non-

stationary properties in a functionally graded https://www.360docs.net/doc/5f18151258.html,puter Methods in Applied Mechanics and Engineering2005;194:1675–92.

[12]Graham-Brady LL,Xu XF.Stochastic morphological modeling of random

multiphase materials.Journal of Applied Mechanics2008;75(6):061001. [13]Chakraborty A,Rahman S.Stochastic multiscale models for fracture analysis

of functionally graded materials.Engineering Fracture Mechanics2008;75: 2062–86.

[14]Rahman S,Chakraborty A.A stochastic micromechanical model for elastic

properties of functionally graded materials.Mechanics of Materials2007;39: 548–63.

[15]Anderson TL.Fracture mechanics—Fundamentals and applications.2nd ed.

Boca Raton(Florida):CRC Press;1995.

[16]Rubinstein RY.Simulation and the Monte Carlo method.New York(NY):John

Wiley&Sons;1981.

[17]https://www.360docs.net/doc/5f18151258.html,er’s guide and theoretical manual,version6.7.Providence(RI):

ABAQUS Inc;2007.

[18]Tandon GP,Weng GJ.The effect of aspect ratio of inclusions on the elastic

properties of unidirectionally aligned composites.Polymer Composites1984;

5(4):327–33.

幼儿园大班语言教学案例

幼儿园大班语言教学案例《好饿的毛毛虫》 永清县养马庄中心小学王艳苓 教学目标: 1、引导幼儿感悟故事创意,获得阅读快乐,产生持续阅读的愿望,培养自主阅读能力。 2、引导幼儿尝试用图表的方式表达、迁移自己对作品的理解和想象,建立初步的读和写的信心,培养幼儿的书面表达能力。 活动准备: 1、故事录音《好饿的毛毛虫》。 2、毛毛虫吃过的实物图片一套,色彩标志与数字卡片一套。 3、《幼儿习得手册》下学期2册2——3页》。 活动一:多重阅读,初步认识作品 活动过程: 一、引题 (出示小毛毛虫图片)小朋友看,这是谁?(毛毛虫) 这只毛毛虫又瘦又小,它是一直好饿好饿的毛毛虫。小毛毛虫饿了,它会自己找吃的吗?它会吃什么?吃多少呢?小朋友们想不想知道呀? 二、猜想故事内容 幼儿翻看《幼儿习得手册》,提醒幼儿从前往后仔细观察画面,猜猜故事内容。S三、幼儿讨论故事内容 幼儿自由结组,和同伴一起看图,讨论故事内容。 三、集体阅读 老师引导幼儿仔细观察画面,图上画了什么?会是什么意思呢?是这样吗? 四、听故事录音 小朋友听故事录音,提醒幼儿边听边指相应的画面。 五、找对应画面 幼儿听故事指相对应画面。 六、讲故事 和幼儿一起看书,完整的讲一遍故事。 活动二理解作品,感悟故事创意 一、幼儿讲故事 请两名幼儿边指点画面,边讲故事内容。 二、分组讨论 讨论:从这个故事中,你发现了什么,或者认识了什么,学到了什么。老师参与到幼儿的讨论中去,倾听、鼓励、启发、指导。提醒幼儿把大家的发现及时地用图片或符号的形式记录下来。 三、集体讨论 各组代表发言,其他幼儿补充。同时,老师将幼儿发现按不同的线索,同于表的形式加以概括:1、从时间上说,故事从一个星期开始,到下一个星期日,又过了些天。 老师将故事发生的时间按顺序从上到下排成一列。 2、小毛毛虫的成长过程:一个小小的“蛋”——又小又饿的毛毛虫_-------………又肥又大的毛毛虫——茧——一只漂亮的蝴蝶。 老师可让一名幼儿到前面来,把相关的小图片按毛毛虫从小到大的顺序,从上到下对应

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

幼儿园大班绘本教案:你是特别的 你是最好的

活动名称:诗歌:你是最好的活动目标: 1、欣赏诗歌,理解诗歌内容,学习用轻松和有力的语言有表情地朗读诗歌。 2、感知诗歌画面,结合自己的生活经验,尝试用“ⅹⅹⅹ没关系”的句型方便诗歌。 3、积极参与游戏,乐意在集体面前大胆地讲述自己的长处,增强自信心。活动准备: 1、幼儿用书人手一册,实物展示仪一台。 2、幼儿对自己有一定的认识,知道自己的长处。活动过程: 一、击鼓传花:我喜欢我自己,…… 1、教师:你喜欢你自己吗?你能用“我喜欢我自己,……”讲述喜欢自己的理由。 2、介绍游戏规则:大家击鼓传花,当鼓声停止时,红花就在谁的上,谁就在集体面前用“我喜欢我自己,……”的句型夸奖自己的长处,然后继续听鼓声传花。 3、游戏2~3遍。 二、欣赏诗歌,初步理解故事内容。 1、教师:我们每个小朋友都喜欢自己,因为我们每个小朋友都是最好的,虽然有一点小问题,但是没关系。下面。老师给小朋友念一首诗歌《你是最好的》 2、教师有感情地朗诵诗歌。 3、教师:你听见诗歌里说了什么? 三、展示诗歌画面,学习朗诵诗歌,并通过提问,感知理解诗歌。 1、引导幼儿观察幼儿用书诗歌画面,并请幼儿有表情地朗诵诗歌。 2、带领幼儿看图学习朗诵诗歌。 3、提问:为什么掉了一颗牙没关系?为什么个子太小了也没关系? 4、教师:在我们说没关系的时候,我们可以用怎样的声音朗诵? 5、教师带领幼儿有表情的朗诵诗歌。 四、采用多种方式念儿歌。 1、幼儿念诗歌的前四句,教师念最后一句。 2、请8为幼儿上台来,依次轮流念一句“没关系”全体幼儿念每段的最后一句。 五、启发幼儿想象并仿编诗歌。 1、教师:你觉得还有什么事没关系? 2、教师整理幼儿的讲述,并抓住诗歌里面的关键词,在黑板上画出简笔画。 3、引导幼儿看图标有表情的朗诵新的诗歌《你是最好的》。 活动反思:击鼓传花这个游戏很适合幼儿,活动中幼儿很积极、开心,特别是在说“我喜欢我自己,……”这句话,很多幼儿充满了自信。 “你是特别的,你是最好的”,这句话说起来很简单,但对于大班的孩子来说真的是那么自信,还是连他们自己都不知道呢?简单的几幅画面,孩子们解读出的却很多。每一幅让我们期待,而读完又若有所思。笑中思索,思索后讨论,不同于以前的画册。每个孩子都能用自己的方式认识自身、认识世界。缺少了自信和个性,都是很令人遗憾的事情,而读完这首诗歌,我觉得对于我来说也有一定的意义,真希望平时每个人(包括孩子、保育员、老师等)时刻都能充满自信。在提问“为什么掉了一颗牙没关系?为什么个子太小了也没关系?”等问题时,很多幼儿很不能理解,后来经过一番解释后幼儿方才有点懂。

《葛底斯堡演讲》三个中文译本的对比分析

《葛底斯堡演讲》三个中文译本的对比分析 葛底斯堡演讲是林肯于19世纪发表的一次演讲,该演讲总长度约3分钟。然而该演讲结构严谨,富有浓郁的感染力和号召力,即便历经两个世纪仍为人们津津乐道,成为美国历史上最有传奇色彩和最富有影响力的演讲之一。本文通过对《葛底斯堡演讲》的三个译本进行比较分析,从而更进一步加深对该演讲的理解。 标签:葛底斯堡演讲,翻译对比分析 葛底斯堡演讲是美国历史上最为人们所熟知的演讲之一。1863年11月19日下午,林肯在葛底斯堡国家烈士公墓的落成仪式上发表献词。该公墓是用以掩埋并缅怀4个半月前在葛底斯堡战役中牺牲的烈士。 林肯是当天的第二位演讲者,经过废寝忘食地精心准备,该演讲语言庄严凝练,内容激昂奋进。在不足三分钟的演讲里,林肯通过引用了美国独立宣言中所倡导的人权平等,赋予了美国内战全新的内涵,内战并不仅是为了盟军而战,更是为了“自由的新生(anewbirthoffreedom)”而战,并号召人们不要让鲜血白流,要继续逝者未竞的事业。林肯的《葛底斯堡演讲》成功地征服了人们,历经多年仍被推崇为举世闻名的演说典范。 一、葛底斯堡演说的创作背景 1.葛底斯堡演说的创作背景 1863年7月1日葛底斯堡战役打响了。战火持续了三天,战况无比惨烈,16万多名士兵在该战役中失去了生命。这场战役后来成为了美国南北战争的一个转折点。而对于这个位于宾夕法尼亚州,人口仅2400人的葛底斯堡小镇,这场战争也带来了巨大的影响——战争遗留下来的士兵尸体多达7500具,战马的尸体几千具,在7月闷热潮湿的空气里,腐化在迅速的蔓延。 能让逝者尽快入土为安,成为该小镇几千户居民的当务之急。小镇本打算购买一片土地用以兴建公墓掩埋战死的士兵,然后再向家属索要丧葬费。然而当地一位富有的律师威尔斯(DavidWills)提出了反对意见,并立即写信给宾夕法尼亚州的州长,提议由他本人出资资助该公墓的兴建,该请求获得了批准。 威尔斯本打算在10月23日邀请当时哈佛大学的校长爱德华(EdwardEverett)来发表献词。爱德华是当时一名享有盛誉的著名演讲者。爱德华回信告知威尔斯,说他无法在那么短的时间之内准备好演讲,并要求延期。因此,威尔斯便将公墓落成仪式延期至该年的11月19日。 相比较威尔斯对爱德华的盛情邀请,林肯接到的邀请显然就怠慢很多了。首先,林肯是在公墓落成仪式前17天才收到邀请。根据十九世纪的标准,仅提前17天才邀请总统参加某一项活动是极其仓促的。而威尔斯的邀请信也充满了怠慢,

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

幼儿园大班绘本教案

幼儿园大班绘本教案:你是特别的你是最好的 活动目标: 1、欣赏诗歌,理解诗歌内容,学习用轻松和有力的语言有表情地朗读诗歌。 2、感知诗歌画面,结合自己的生活经验,尝试用“ⅹⅹⅹ没关系”的句型方便诗歌。 3、积极参与游戏,乐意在集体面前大胆地讲述自己的长处,增强自信心。 活动准备: 1、幼儿用书人手一册,实物展示仪一台。 2、幼儿对自己有一定的认识,知道自己的长处。 活动过程: 一、击鼓传花:我喜欢我自己,…… 1、教师:你喜欢你自己吗?你能用“我喜欢我自己,……”讲述喜欢自己的理由。 2、介绍游戏规则:大家击鼓传花,当鼓声停止时,红花就在谁的上,谁就在集体面前用“我喜欢我自己,……”的句型夸奖自己的长处,然后继续听鼓声传花。 3、游戏2~3遍。 二、欣赏诗歌,初步理解故事内容。 1、教师:我们每个小朋友都喜欢自己,因为我们每个小朋友都是最好的,虽然有一点小问题,但是没关系。下面。老师给小朋友念一首诗歌《你是最好的》 2、教师有感情地朗诵诗歌。 3、教师:你听见诗歌里说了什么? 三、展示诗歌画面,学习朗诵诗歌,并通过提问,感知理解诗歌。 1、引导幼儿观察幼儿用书诗歌画面,并请幼儿有表情地朗诵诗歌。 2、带领幼儿看图学习朗诵诗歌。 3、提问:为什么掉了一颗牙没关系?为什么个子太小了也没关系? 4、教师:在我们说没关系的时候,我们可以用怎样的声音朗诵? 5、教师带领幼儿有表情的朗诵诗歌。 四、采用多种方式念儿歌。 1、幼儿念诗歌的前四句,教师念最后一句。

2、请8为幼儿上台来,依次轮流念一句“没关系”全体幼儿念每段的最后一句。 五、启发幼儿想象并仿编诗歌。 1、教师:你觉得还有什么事没关系? 引导幼儿把它画下来,并仿编一句诗句。 2、教师整理幼儿的讲述,并抓住诗歌里面的关键词,在黑板上画出简笔画。 3、引导幼儿看图标有表情的朗诵新的诗歌《你是最好的》。 活动反思: 击鼓传花这个游戏很适合幼儿,活动中幼儿很积极、开心,特别是在说“我喜欢我自己,……”这句话,很多幼儿充满了自信。 “你是特别的,你是最好的”,这句话说起来很简单,但对于大班的孩子来说真的是那么自信,还是连他们自己都不知道呢?简单的几幅画面,孩子们解读出的却很多。每一幅让我们期待,而读完又若有所思。笑中思索,思索后讨论,不同于以前的画册。每个孩子都能用自己的方式认识自身、认识世界。缺少了自信和个性,都是很令人遗憾的事情,而读完这首诗歌,我觉得对于我来说也有一定的意义,真希望平时每个人(包括孩子、保育员、老师等)时刻都能充满自信。在提问“为什么掉了一颗牙没关系?为什么个子太小了也没关系?”等问题时,很多幼儿很不能理解,后来经过一番解释后幼儿方才有点懂。 大班语言:你是特别的,你是最好的 活动目标: 1、感知诗歌画面内容,尝试用语言和图画大胆的表达表现。 2、用自我欣赏的眼光,发现自己与众不同,分享自己的特别之处。 活动准备: 1、自制《我的书》诗歌ppt 3、视频笔和纸音乐 设计思路: 《纲要》中指出:要建构后继学习及终身发展的基础,培养好奇探究,勇敢自信的面向21世纪的儿童。结合大班幼儿的年龄特点,我选择了《你是特别的,你是最好的》这个绘本,意在透过言简意赅的文字与生动的图画,让孩子学会用自

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

幼儿园大班绘本故事教案

幼儿园大班绘本故事教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

幼儿园大班绘本故事教案:老鼠娶新娘 活动目标: 1.理解故事内容,知道故事含义,明白任何事务、人物都不是完美的,是有缺点的。 2.喜欢自己的长处和别人的长处,承认自己的短处,学习取长补短。 3.体验婚嫁带来的喜悦气氛和抬轿子游戏带来的乐趣。 活动准备: 1.欢庆音乐一段。 2.《老鼠娶新娘》系列图画。 3.故事背景音乐一段。 4.汉字卡片:太阳------照;乌云------遮;风------吹;高墙------挡;老鼠--------打洞;猫-------抓; 取长补短 活动过程: 1、导入: (1)今天,我给大家带来了一段音乐,你来听听看在这段音乐里人们会在做些什么事? 幼儿讨论(高兴的事、结婚)都是高兴的事情,今天老鼠村也发生了一件高兴的事情! (2)_出示图片:花轿 提问:什么时候会坐轿子?今天老鼠美叮当也坐上欧陆花轿,当了新娘。 2、老鼠娶新娘 (1)美叮当要出嫁了,她要找一个世界上最强的新郎(出示循环图)她找到了太阳、云、风、高墙、老鼠小阿郎、猫。你们觉得他们中间谁是最强大的新郎呢为什么 (2)美叮当到底会嫁给谁呢?我们来听听故事。 讲故事(边讲边演示图片,故事背景音乐轻轻响起) 提问:你觉得在这个故事里谁是最强的新郎呢他有什么本领幼儿讲到谁就出示子卡。 小结:他们都有自己最强的地方,分别是……,但是没有人是最强的。

3.最强的你: 小朋友你们有最强的地方吗我们把最强的地方叫做长处,你知道自己的长处是什么吗每个人都有长处,有长处,可真好,因为长处会让我们很棒。 4.不强的你: 每个人都有自己最强的地方,但每个人也有不够强的地方,我们把不强的地方叫做短处,你知道你的短处是什么吗?请2—3个幼儿回答。你们能够知道自己的短处,真好,因为只有发现自己的不足,才能够进步! 5.朋友圈: 我们都有长处和短处,今天老师带你们来玩一个朋友圈的游戏(用你的长处去帮助别人,你的短处请别人来帮助你,这就是取长补短)出示子卡。 小结:每个人都有自己的长处和短处,当我们取长补短,互相帮助时,就会变得很强大。 6.美叮当的新郎。 世界上没有最强的人,那美叮当到底该找谁当新郎呢(可提示:找不到最强的,但可以找最喜欢的,谁最喜欢她呢)美叮当嫁给了老鼠小阿郎,他们结婚了!看图片(结婚音乐起) 7.游戏:《抬花轿》 美叮当坐着花轿结婚了,我们也来玩抬花轿的游戏。 游戏开始:选一个女孩子来当新娘,新娘抛绣球选新郎!请2个男生来抬花轿,迎亲队伍出发了! 推荐理由:我推荐此活动的理由是: 1、有效提问,让孩子正确的评价自己的能力和客观困难。 自信是确立自己能力,有把握去完成所承担的任务,敢于追求目标的情感体验。《老鼠娶新娘》,原本是一个带有浓浓气息的绘本故事,经过编者对教材的挖掘和设计,巧妙的寻找到了切入点,抓住绘本的中心思想及其精髓,通过几个有效提问,把“每个人都有自己的强项和弱项”的人性特点,通过这次教学活动让幼儿理解,让幼儿自豪的找出自己的强项。 2、积极合作,真诚欣赏他人的强项。 自信心强的孩子能在新的活动任务前不胆怯,能主动参加;讨论时能大胆发表意见,不轻易改变主意。活动中通过“抬花轿”这个游戏,让幼儿尝试与同伴积极合作,共同组队、讨论游戏的形式,提供了让幼儿理解人与人之间和谐共处的教育平台。

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

幼儿园大班绘本教案幼儿园绘本教案

幼儿园大班绘本教案幼儿园绘本教案 培养幼儿的观察能力和大胆的表现能力。在理解故事内容的基础上,大胆表现故事中的拟声词,感受故事的童真童趣。以下是精心的幼儿园绘本教案的相关资料,希望对你有帮助! 《好饿的小蛇》 活动名称:绘本《好饿的小蛇》 活动目标: 1.激发幼儿喜欢阅读的兴趣。 2.培养幼儿的观察能力和大胆的表现能力。 3.在理解故事内容的基础上,大胆表现故事中的拟声词,感受故事的童真童趣。 重难点分析: 重点:在理解故事内容的基础上,大胆表现故事对话。

难点:喜欢阅读,感受故事的童真童趣。 活动准备:《好饿的小蛇》绘本书、故事课件等 活动过程: 一、导入 教师出示绘本《好饿的小蛇》引导幼儿观察图书封面 提问:封面上有什么?小蛇饿了,它会找什么吃呢?会发生一件什么有意思的事情? @_@我是分割线@_@二、展开 1.出示小蛇吃东西的图片,引导幼儿进行猜测。 提问:请你猜一猜小蛇肚子里吃了什么?(引导幼儿发挥想象力大胆猜测) 2.教师根据课件生动的讲述故事

指导语:让我们一起完整的听一听故事,看看小蛇是究竟吃到了什么好东西。 提问:故事的名字叫什么?小蛇都找到了些什么好吃的东西? 总结:苹果是圆圆的、红色的;香蕉是长长的、黄色的;饭团是三角形的;葡萄是一串一串的、紫色的;菠萝是带刺的。 3.教师带领幼儿一起学小蛇吃东西的样子。 双手分开表示小蛇的嘴巴,生动的表情表现“啊呜”和“咕嘟”这两个拟声词。 4.教师第二遍完整的讲述故事 (1)教师和幼儿共同分享图画书《好饿的小蛇》 (2)教师讲故事,幼儿进行大胆表演。 三、结束

讨论:最后小蛇会怎样?会发生什么事情呢?引导幼儿进行观察后环衬和封底。 小结:小蛇吃饱了在呼呼呼的睡觉呢。 我的幸运一天 【设计意图】绘本讲述的是一个小猪误闯了狐狸家,小猪在危险时刻,沉着冷静,用自己的智慧逃离险境,使贪婪狐狸幸运的一天竟变成了小猪幸运的一天。大班幼儿具有初步的推理、表达能力,在活动中,运用启发式语言引导幼儿看看、想想、猜猜、说说,大胆推测故事情节,表达自己的想法,用动静结合来体验绘本学习的宽松氛围和乐趣,懂得在生活中提高安全意识,遇到危险和突发事件时,不要慌张害怕,要勇敢面对,用自己的智慧战胜敌人。 【活动目标】 1、通过猜猜、想想、说说等方式理解绘本内容,大胆表达自己的想法。 2、感受小猪如何使危险变为幸运的机智,知道在遇到危险时沉着、冷静,用智慧战胜敌人。

译文对比分析

话说宝玉在林黛玉房中说"耗子精",宝钗撞来,讽刺宝玉元宵不知"绿蜡"之典,三人正在房中互相讥刺取笑。 杨宪益:Pao-yu,as we saw, was in Tai-yu?s room telling her the story about the rat spirits when Pao-chai burst in and teased him for forgetting the “green wax” allusion on the night of the Feast of Lanterns. 霍克斯: We have shown how Bao-yu was in Dai-yu?s room telling her the story of the magic mice; how Bao-Chai burst in on them and twitted Bao-yu with his failure to remember the …green wax? allusion on the night of the Lantern Festival; and how the three of them sat teasing each other with good-humored banter. 对比分析:杨宪益和霍克斯在翻译“耗子精”采用来了不同的处理方法,前者使用了异化”rat spirits”,后者用的是归化法”magic mice”,使用归化法更受英美读者的亲乃。但是二者同时采用了增译法,增添了the story,原文并没有。在翻译“宝玉不知绿烛之典”的“不知”,英文1用的是“forgetting”,而译文2用的是“with failure to ”,显然译文2更符合英美的表达习惯。 那宝玉正恐黛玉饭后贪眠,一时存了食,或夜间走了困,皆非保养身体之法。幸而宝钗走来,大家谈笑,那林黛玉方不欲睡,自己才放了心。 杨宪益:Pao-yu felt relieved as they laughed and made fun of each other, for he had feared that sleeping after lunch might give Tai-yu indigestion or insomnia that night, and so injure her health. Luckily Pao-chai?s arrival and the lively conversation that followed it had woken Tai-yu up. 霍克斯: Bao-yu had been afraid that by sleeping after her meal Dai-yu would give herself indigestion or suffer from insomnia through being insufficiently tired when she went to bed at night, but Bao-chai?s arrival and the lively conversation that followed it banished all Dai-yu?s desire to sleep and enabled him to lay aside his anxiety on her behalf. 对比分析:译文一对原文语序进行了调整,先说了“放心”,再说“担心”,但并不如不调整顺序的逻辑强。译文二只是用了一个“but”就把原文意思分层了两层,逻辑更加清晰,符合西方人注重逻辑的习惯。原文中的“谈笑”是动词,而两个译文版本都是译的“the lively conversation”,是名词,体现了汉语重动态,英文重静态的特点。 忽听他房中嚷起来,大家侧耳听了一听,林黛玉先笑道:"这是你妈妈和袭人叫嚷呢。那袭人也罢了,你妈妈再要认真排场她,可见老背晦了。" 杨宪益:Just then, a commotion broke out in Pao-yu?s apartments and three of th em pricked up their ears. “It?s your nanny scolding Hai-jen,” announced Tai-yu. “There?s nothing wrong with Hai-jen, yet your nanny is for ever nagging at her. Old age has befuddled her.”

幼儿园大班绘本教案带反思——我爸爸

幼儿园大班绘本教案带反思:我爸爸 设计意图: 爸爸是幼儿非常熟悉和亲近的人。绘本《我爸爸》以孩子的口吻描写了一位高大、温柔的父亲形象,他样样事情都能干,温暖得像太阳。绘本中的爸爸开始被比喻成各种动物形象,最后作者突然笔锋一转,抒发了对爸爸的深深爱意。这是个幽默十足又感人至深的故事,让人久久不能忘怀。在本活动设计中,我首先让幼儿结合自己的生活经验谈论自己的爸爸,诸如他们的职业和爱好;再通过分段欣赏,引导幼儿理解绘本中布朗爸爸的高大形象,并尝试用“像……一样”的语句来赞美自己的爸爸;最后通过观看自己和爸爸的照片,让幼儿了解爸爸为自己做了很多事情,从而萌发对自己爸爸深深的爱。 目标: 1 理解故事内容,感受布朗爸爸真的很棒。 2 尝试用“像……一样”的句式夸夸自己的爸爸。 3 感受布朗父子间浓浓的情意,萌发爱自己爸爸的情感。 准备: 1 经验准备: 了解爸爸的职业、爱好。

2 材料准备: (1)幼儿收集爸爸带自己出去玩拍下的照片,教师将这些照片做成相册“大手牵小手,心会跟爱一起走”。 (2)完整的绘本《我爸爸》,以及从中节选9页编成的分段式绘本。 3 邀请幼儿的爸爸来参与活动。 过程: 一、谈谈自己爸爸的职业和爱好 师:每个人都有爸爸。谁愿意来介绍一下自己的爸爸是做什么工作的,有什么爱好? (幼儿自由介绍,教师加以提炼:威武勇敢的警察爸爸,享受美味的美食家爸爸,厨艺高超的厨师爸爸,喜欢爬山的爱运动爸爸,善于传授知识并且爱学习的教授爸爸,等等。) 师:你们的爸爸从事着不同的职业,都在努力工作,他们爱学习,爱运动,每个爸爸都与众不同。你们的爸爸真了不起! 二、分段欣赏绘本《我爸爸》 (一)欣赏绘本第一部分,认识布朗的爸爸。 师:今天,我请来了一位外国小朋友的爸爸,他是布朗的爸爸。我们一起来认识一下。 师(出示布朗爸爸的图画):你们看到的布朗爸爸是什

《傲慢与偏见》译文对比分析

《傲慢与偏见》(节选一) Pride and Prejudice by Jane Austen (An Except from Chapter One) 译文对比分析 节选文章背景:小乡绅贝内特有五个待字闺中的千金,贝内特太太整天操心着为女儿物色称心如意的丈夫。新来的邻居宾利(Bingley)是个有钱的单身汉,他立即成了贝内特太太追猎的目标。 1.It’s a truth u niversally acknowledged, that a single man in possession of a good fortune, must be in want of a wife. 译文一:凡是有钱的单身汉,总想娶位太太,这已经成了一条举世公认的道理。译文二:有钱的单身汉总要娶位太太,这是一条举世公认的真理。 2.However little known the feelings or views of such a man may be on his first entering a neighborhood, this truth is so well fixed in the minds of the surrounding families that he is considered as the rightful property of some one or other of their daughters. 译文一:这样的单身汉,每逢新搬到一个地方,四邻八舍虽然完全不了解他的性情如何,见解如何,可是,既然这样的一条真理早已在人们心中根深蒂固,因此人们总是把他看作是自己某一个女儿理所应得的一笔财产。 译文二:这条真理还真够深入人心的,每逢这样的单身汉新搬到一个地方,四邻八舍的人家尽管对他的性情见识一无所知,却把他视为某一个女儿的合法财产。 3.”My dear Mr. benne” said his lady to him one day ,”have you heard that nether field park is let at last?” 译文一:有一天班纳特太太对她的丈夫说:“我的好老爷,尼日斐花园终于租出去了,你听说过没有?” 译文二:“亲爱的贝特先生”一天,贝纳特太太对先生说:“你有没有听说内瑟费尔德庄园终于租出去了:” 4.Mr. Bennet replied that he had not. 译文一:纳特先生回答道,他没有听说过。 译文二:纳特先生回答道,没有听说过。 5.”But it is,” returned she:” for Mrs. long has just been here, and she t old me all about it.” 译文一:“的确租出去了,”她说,“朗格太太刚刚上这来过,她把这件事情的底细,一五一十地都告诉了我。” 译文二:“的确租出去了,”太太说道。“朗太太刚刚来过,她把这事一五一十地全告诉我了。”

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

幼儿园大班语言教案:小猫的故事

教学资料参考范本 幼儿园大班语言教案:小猫的故事 撰写人:__________________ 部门:__________________ 时间:__________________

活动目的 1.启发幼儿在观察小猫图片的基础上,大胆地进行想象,创编小 猫的故事,并运用粘、剪、画的技能绘制连环画。 2.幼儿根据自己所编的《小猫的故事》,设计制作成四幅连环画。画面要求色彩丰富、鲜艳,内容简单,有意义,并能讲出自己所画的 故事内容。 3.培养幼儿想象力、创造力,发展幼儿的口语表达能力。 活动准备 1.连环画纸若干 2.八个不同动态,不同表情的线描小猫图样。 3.水彩笔若干,各色电光纸若干,胶水、剪刀、订书机等。 4.木偶小猫一只,连环画范样两幅。 活动过程 一、用木偶小猫表演形式引出课题。 1.木偶小猫:小朋友们好!我是小猫咪咪。今天,我给小朋友带 来的礼物是两张画,一张画的是我的故事,一张画是用彩色电光纸剪 贴成的小猫妙妙的故事(教师从小猫手中接过两幅连环画,并向幼儿 展示)。我的许多好朋友小花猫、小白猫、小黑猫都想请小朋友把它 们的故事编到连环画里。 教师:咪咪,我们小朋友都非常愿意给你帮忙。等小朋友们画好后,我就给你送去,好不好? 木偶小猫:"好!谢谢小朋友们,再见!" 二、教师出示、讲解范画。

1.教师出示范画(一),是用水彩笔绘制成的四幅连环画,请幼儿观看。教师讲解连环画内容:(1)小猫咪咪是一只非常玩皮的猫。一天早上,它从窗户里往屋外跳。一不留神,将猫爸爸放在窗台上的一盆花碰倒在地。(2)猫爸爸看见了,非常生气,气得胡子都撅了起来。(3)调皮的咪咪跳到家门口的树上,冲着猫爸爸做鬼脸。(4)咪咪认识到了自己的错误,将碰翻在地的花盆重新放回到了窗台上。 2. 教师出示范画(二),是用彩色电光纸剪贴而成的四幅连环画,请幼儿观察看,讲出连环画的故事内容:(1)一天中午,小猫妙妙正坐在树下玩耍。(2)忽然她看到前面小桥对岸,山羊老公公拄着拐仗正要过桥去。 (3)妙妙赶忙跑过桥去,扶着山羊公公过了桥。(4)山羊公公过了桥,高兴地对小猫妙妙说:"你真是一个爱帮助别人的好孩子啊!" 三、教师给幼儿出示八只不同动态、不同表情的小猫范样,如图2,启发幼儿大胆想象,开启幼儿的思路,编出小猫的故事。 1.幼儿编故事时要有时间、地点、人物及发生的事情的内容。 2.教师请幼儿将自己编的故事,用四幅画面表现出来。 3.教师请几名幼儿将自己编的故事讲给大家听。故事讲完后,教师进行讲评,肯定最合理的故事情节,要求幼儿编的故事内容要有意义。 四、幼儿进行创作连环画练习,教师巡回指导。 1.教师将活动分成两组:一组用彩色水笔来绘制连环画;一组用彩色电光纸粘贴连环画。

《乡愁》两个英译本的对比分析

《乡愁》两个英译本的对比分析 曹菊玲 (川外2013级翻译硕士教学1班文学翻译批评与鉴赏学期课程论文) 摘要:余光中先生的《乡愁》是一首广为人知的诗歌,曾被众多学者翻译成英文,本文将对赵俊华译本和杨钟琰译本进行对比分析,主要从原作的分析、译文的准确性、译文风格以及对原文意象的把握入手进行赏析,指出两译本的不足和精彩之处。 关键词:《乡愁》;原诗的分析;准确性;风格;意象的把握 1.原诗的分析 作者余光中出生于大陆,抗战爆发后在多地颠沛流离,最后22岁时移居台湾。20多年都未回到大陆,作者思乡情切,于上世纪70年代创作了这首脍炙人口的诗歌,但是当时大陆与台湾关系正处于紧张时期,思而不得的痛苦与惆怅包含于整首诗中。 全诗为四节诗,节与节之间完全对称,四句一节,共十六句,节奏感、韵律感很强,读起来朗朗上口。而且这首诗语言简洁,朴实无华,但是却表达了深刻的内涵。从整体上看,作者采取层层递进的方式,以时空的隔离和变化来推进情感的表达,最后一句对大陆的思念,一下子由个人哀愁扩大到国家分裂之愁,因而带有历史的厚重感。 【原诗】 乡愁 余光中 小时候/乡愁是一枚小小的邮票/我在这头/母亲在那头 长大后/乡愁是一张窄窄的船票/我在这头/新娘在那头 后来啊/乡愁是一方矮矮的坟墓/我在外头/母亲在里头 而现在/乡愁是一湾浅浅的海峡/我在这头/大陆在那头 【译诗】 (1) 赵俊华译 Homesick As a boy, I was homesick for a tiny stamp, —I was here, Mom lived alone over there. When grow up, I was homesick for a small ship ticket. —I was here,

相关文档
最新文档