《操作系统》实验教学指导书(V2)2.2

《操作系统》实验教学指导书(V2)2.2
《操作系统》实验教学指导书(V2)2.2

天津理工大学华信软件学院

《操作系统》实验教学指导书2.2

课程代码:1460350

课程名称:操作系统/ Operating System

开课院(系)、实验室:华信软件学院C408机房

适用专业:软件工程专业

实验指导书名称:《操作系统实验教程(Linux版)》第八章

指导教师:张一鸣

实验二进程的建立与调度(2.2 进程的调度)

1. 实验目的

(1)理解并比较处理机调度的常用策略。

(2)重点掌握优先权调度和时间片轮转两种调度算法的设计与实现。

(3)按优先权调度算法设计并实现一个处理机调度的程序。

2. 实验内容

本实验中,根据进程状态的转换图模拟多个进程在一个处理机上进行调度。本实验有两个题目,可任选其一。

(1)设计一个按动态优先权调度算法实现处理机调度的程序。

(2)设计一个按时间片轮转调度算法实现处理机调度的程序。

3. 准备知识

(1)理解操作系统中处理机调度的概念和调度算法。

(2)学习Linux下进程控制以及进程间通信的知识。

4. 实验原理

时间片轮转调度算法和优先权调度算法本质上是一直的,只是在调度时选择的策略不一样而已,故程序流程图是一致的,所以在本教程中仅给出一个流程图即可。具体算法流程图如1所示。

4.1. 时间片轮转调度算法

当系统按时间片轮转算法调度进程时,将所有的就绪进程按照一定的原则(如先来先服务原则)排列,形成一个就绪队列。每次调度为队首进程分配CPU 资源,令其执行一个时间片,该时间片的大小从几ms到几百ms。当时间片用

完时,由计时器发出中断信号,通知系统剥夺当前运行进程的CPU使用权,并将此进程送入就绪队列的末尾,等待下一次执行;然后,把处理机分配给就绪队列中新的队首进程,执行重复操作。在进程运行过程中,如果时间片未用完而等待时间发生,则该进程进入等待队列,系统将CPU重新分配给就绪队列的队首进程,一旦时间发生后,等待队列的队首进程进入就绪队列末尾。这样就可以保证就绪队列中的所有进程,在可接受的等待时间内,均能获得处理机并调度执行。

时间片轮转调度算法的进程状态转换图,如图2所示。

4.2. 优先权调度算法

优先权调度算法的进程状态转换图,如图3所示。

1)优先权调度算法的类型

(1)非抢占式优先权调度算法。在非抢占式优先权算法中,处理机一旦被分配给就绪队列中优先权最高的进程,则该进程会一直执行到完成,不会被抢占;只有当发生某一事件使该进程放弃处理机时,处理机才会被分配给就绪队列中优先权最高的另一进城。一般在批处理系统中会使用该调度算法,某些对实时性要求不严的实时系统也可以使用该调度算法。

(2)抢占式优先权调度算法。在抢占式调度算法中,处理机一开始也会被分配给就绪队列中优先权最高的进程,使之执行。但如果出现了一个优先权更高的进程时,进程调度程序就会剥夺原最高优先权进程的处理机使用权,而分配给新出的优先权更高的进程。

2)优先权的类型

对于优先权调度算法,其关键是看采用的是静态优先权,还是动态优先权。

(1)静态优先权时在进程创建的时候确定的,而且优先权在进程的运行期间保持不变。一般是用某一范围内的一个整数来表示优先权大小。确定进程优先权的依据是:

①进程类型;

②进程对资源的需求;

③进程的估计执行时间及内存占用量;

④用户的需求

(2)动态优先权是指在创建进程时会被赋予一个优先权,但该优先权可以在进程的等待过程中,随某些条件的变化而改变,以便获得更好的调度性能。

例如,在就绪队列中的进程,随着其等待时间的增长,优先权可以以某一速率提高。假设所有的进程在一开始都具有相同的优先权,则应将最先进入就绪队

列的进程(其等待时间最长)赋予最高优先权,从而优先获得处理机,这就是FCFS算法。

优先权的变化规律可描述为:

优先权=(等待时间+要求服务时间)/要求服务时间

而等待时间与要求服务时间之和就是系统对该作业的响应时间,故该优先权又相当于响应比。

5. 实验步骤

1.设计一个按动态优先权调度算法实现处理机调度的程序

(1)假定系统有4个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的结构如表8-1所示。

其中:

进程id:进程的标识。

进程名称:假设若干个进程的进程名称分别为P1,P2,P3,P4…。

进程状态:进程状态转换的标识(1-运行态、2-就绪态、3-等待态、0-完成态)。

进程类型:进程是系统进程还是用户进程(0-系统进程,1-用户进程)。

请求资源的时刻:请求资源的时刻。

总共需要CPU的时间:假设进程需要运行的时间数。

运行时间:当前进程已运行时间。

优先数:赋予进程的优先数,调度时总是选取优先数小(既优先级高的)的进程先执行。

指向下一个进程的指针:用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为NULL。

(2)在每次运行所涉及的处理器调度程序之前,为每个进程确定“进程名称”和“总共需要CPU的时间”。

(3)在调度过程中,设计4个队列:完成态队列,运行态队列,就绪态队列,等待态队列。

(4)根据“总共需要CPU的时间”确定请求资源的时刻,资源的数据结构可以如表8-2所示。

(5)处理器调度总是选就绪队列的首进程运行。采用动态改变优先数的方法,进程每运行一次优先数就减“1”,就绪队列中的进程加“2”。在运行过程中,改变进程的优先级,要求运行时间减“1”来模拟进程的一次运行。

(6)当运行进程的运行时间到达请求资源的时刻时,去占用资源,若资源现处于被占用状态就进入等待状态,若资源空闲,进入就绪状态。

2.设计一个按时间片轮转调度算法实现处理机调度的程序

(1)假定系统中有4个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的元素如表8-3所示。

其中:

进程id:进程的标识

进程名称:假设若干个进程的进程名称分别为P1,P2,P3,P4…。

进程状态:进程状态转换的标识(1-运行态、2-就绪态、3-等待态、0-完成态)。

进程类型:进程是系统进程还是用户进程(0-系统进程,1-用户进程)。

请求资源的时刻:请求资源的时刻。

总共需要CPU的时间:假设进程需要运行的时间数。

运行时间:当前进程已运行时间。

优先数:赋予进程的优先数,调度时总是选取优先数小(既优先级高的)的进程先执行。

指向下一个进程的指针:用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为NULL。

(2)在每次运行所涉及的处理器调度程序之前,为每个进程确定“进程名称”和“总共需要CPU的时间”。

(3)在调度过程中,设计4个队列:完成态队列,运行态队列,就绪态队列,等待态队列。

(4)根据“总共需要CPU的时间”确定请求资源的时刻,资源的数据结构可以如表8-2所示。

(5)处理器调度总是选就绪队列的首进程运行。采用时间片轮转的办法,进程没运行一个时间片当前运行进程进入就绪态,就绪队列中的首个进程进入运行态来模拟进程的一次运行。

(6)当运行进程的运行时间到达请求资源的时刻时,去占用资源,若资源现处于被占用状态就进入等待状态,若资源空闲,进入就绪状态。

6. 参考代码

1.按动态优先权调度算法实现处理器调度的程序

[源程序]

#include

#include

#include

#include

#include

#include

#include

typedef struct pcbStruct

{

int pid;

char name[10];

int status;

int type;

int res;

int totalTime;

int runTime;

int count;

int prio;

struct pcbStruct *next;

}PCB;

typedef struct resStruct

{

int pid;

int free;

}Resource;

Resource resource;

PCB *finish,*ready,*tail,*run,*wait,*head;

int N;

int timeSlice=2;

int hodeUpTime=5;

int changePrio=0;

void sort();

void changeRunPrio();

void changeReadyPrio();

int randomPrio(double from ,double to)

{

return 1+(int)((to)*rand()/(RAND_MAX+from));

}

runIn()

{

run=ready;

run->status=1;

} ready=ready->next;

readyIn()

{

wait->status=2;

tail->next=wait;

wait=wait->next;

}

void print1()

{

printf("-------------------------------------------\n");

printf("pid name status type prio res tatalTime count runTime\n");

}

void printf2(PCB *q)

{

printf("%d|%-4s|%-4d|%-6d|%-4d|%-4d|%-8d|%-5d|%-d\n",q->pid,q->na me,q->status,q->type,q->prio,q->res,q->totalTime,q->count,q->runTime);

}

void print()

{

PCB *p;

if(ready!=NULL)

sort();

if(run!=NULL)

{

printf("Running..........\n");

print2(run);

}

p=ready;

if(p!=NULL)

printf("Ready..........\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

p=wait;

if(p!NULL)

printf("Waiting..........\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

p=finish;

if(p!=NULL)

printf("Finished..........\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

print1();

}

insertReady(PCB *p2)

{

tail->next=p2;

tail=p2;

p2->next=NULL;

}

insertWait(PCB *p2)

{

head->next=p2;

head=p2;

p2->next=NULL;

}

void creat()

{

PCB *p;

int i,time;

char na[10];

ready=NULL;

finish=NULL;

run=NULL;

wait=NULL;

printf("Enter name and run time of each process:(eg.pid1[press ENTER]100)\n");

for(i=1;i<=N;i++)

{

p=malloc(sizeof(PCB));

p->pid=1000+i;

scanf("%s",na);

scanf("%d",&time);

strcpy(p->name,na);

p->status=2;

if(i%2==0)

{

p->type=0;

p->prio=randomPrio(1.0,9.0);

}

else

{

p->type=1;

p->prio=randomPrio(11.0,19.0);

}

p->res=time/2;

p->totalTime=time;

p->count=0;

p->runTime=0;

if(ready!=NULL)

insertReady(p);

else

{

p->next=ready;

ready=p;

tail=p;

}

}

printf("**********调度开始**********");

print1();

print();

run=ready;

ready=ready->next;

run->status=1;

}

prioChangerun()

{

while(run!=NULL)

{

if(run->res==run->runTime)

{

if(resource.free==1)

{

resource.pid=run->pid;

resource.free=0;

}

else

{

run->count=0;

run->status=3;

PCB *p=run;

if(wait!=NULL)

insertWait(p);

else

{

p->next=wait;

wait=p;

head=p;

}

runIn();

}

}

run->runTime=run->funTime+1;

run->count=run->count+1;

sleep(1);

changePrio++;

if(changePrio%2==0)

{

changeRunPrio();

changeReadyPrio();

}

if((run->runTime-run->res)>=hodeUpTime) resource.free=1;

if(run->runTime>=run->totalTime)

{

if(run->pid==resource.pid)

resource.free=1;

run->next=finish;

finish=run;

run->status=0;

run=NULL;

if(ready!=NULL)

runIn();

}

else if(run->count==timeSlice)

{

run->count=0;

if(ready!=NULL)

{

run->status=2;

insertReady(run);

runIn();

}

}

if(ready!=NULL)

{

if(run->prio>ready->prio)

{

run->count=0;

if(ready!=NULL)

{

run->status=2;

insertReady(run);

runIn();

}

}

}

if(resource.free==1)

{

if(wait!=NULL)

{

wait->status=2;

insertReady(wait);

wait=wait->next;

}

}

print();

}

}

void changeRunPrio()

{

if(run->prio<20)

run->prio+=1;

}

void changeReadyPrio()

{

PCB *p;

p=ready;

if(p!=NULL)

{

do

{

if(p->type==0)

{

if(p->prio>-20)

p->prio-=2;

}

else

{

if(p->prio>0)

p->prio-=2;

}

}while(p!=NULL);

}

}

void sort()

{

PCB *p,*min;

min=ready;

p=ready;

while(p->next!=NULL)

{

if(min->prio>p->next->prio)

{

min=p->next;

p->next=p->next->next;

min->next=ready;

ready=min;

}

else

{

if(p->next!=NULL)

p=p->next;

}

}

p=ready;

while(p->next!=NULL)

{

p=p->next;

}

tail=p;

}

int main()

{

}

2.时间片轮转调度算法实现处理器调度的程序[源程序]

#include

#include

#include

#include

#include

#include

#include

typedef struct pcbStruct

{

int pid;

char name[10];

int status;

int type;

int res;

int totalTime;

int runTime;

int count;

int prio;

struct pcbStruct *next;

}PCB;

typedef struct resStruct

{

int pid;

int free;

}Resource;

Resource resource;

PCB *finish,*ready,*tail,*run,*wait,*head;

int N;

int timeSlice=2;

int hodeUpTime=3;

int randomPrio(double from,double to)

{

return 1+(int)((to)*rand()/(RAND_MAX+from)); }

runIn()

{

run=ready;

run->status=1;

ready=ready->next;

}

void print1()

{

printf("---------------------\n");

printf("pid name status type prio res totalTime count runTime\n");

}

void print2(PCB *q)

{

printf("%d|&-4s|%-4d|%-6d|%-4d|%-4d|%-8d|%-5d|%-d\n",q->pid,q->name,q->status,q->type,q->prio,q->res,q->totalTime,q->count,q->runTime);

}

void print()

{

PCB *p;

if(run!=NULL)

{

printf("Running...............\n");

print2(run);

}

p=ready;

if(p!=NULL)printf("Ready............\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

p=wait;

if(p!=NULL)printf("Waiting.........................\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

p=finish;

if(p!=NULL)printf("Finished.............\n");

while(p!=NULL)

{

print2(p);

p=p->next;

}

print1();

}

insertReady(PCB *p2)

{

tail->next=p2;

tail=p2;

p2->next=NULL;

}

insertWait(PCB *p2)

{

head->next=p2;

head=p2;

p2->next=NULL;

}

void creat()

{

PCB *p;

int i,time;

char na[10];

ready=NULL;

finish=NULL;

run=NULL;

wait=NULL;

printf("enter name and run time of each process:(eg.pidl[press enter]100):\n");

for(i=1;i

{

p=malloc(sizeof(PCB));

p->pid=1000+i;

scanf("%s",na);

scanf("%d",&time);

strcpy(p->name,na);

p->status=2;

if(i%2==0)

{

p->type=0;

p->prio=randomPrio(1.0,9.0);

}

else

{

p->type=1;

p->prio=randomPrio(11.0,19.0);

}

p->res=time/2;

p->totalTime=time;

p->count=0;

p->runTime=0;

if(ready!=NULL)

insertReady(p);

else

{

p->next=ready;

ready=p;

tail=p;

}

}

printf("*******调度开始*********\n");

print1();

print();

run=ready;

ready=ready->next;

run->status=1;

}

timeRoundRun()

{

while(run!=NULL)

{

if(run->res==run->runTime)

{

if(resource.free==1)

{

resource.pid=run->pid;

resource.free=0;

}

else

{

run->count=0;

run->status=3;

PCB *p=run;

if(wait!=NULL)

insertWait(p);

else

{

p->next=wait;

wait=p;

head=p;

}

runIn();

}

}

run->runTime=run->runTime+1;

run->count=run->count+1;

sleep(1);

if((run->runTime-run->res)>=hodeUpTime) {

resource.free=1;

if(wait!=NULL)

{

PCB *p=wait;

wait=wait->next;

p->status=2;

insertReady(p);

}

}

if(run->runTime>=run->totalTime)

{

if(run->pid==resource.pid)

{

resource.free=1;

if(wait!=NULL)

{

PCB *p=wait;

wait=wait->next;

p->status=2;

insertReady(p);

}

}

run->next=finish;

finish=run;

run->status=0;

run=NULL;

if(ready!=NULL)

runIn();

}

else if(run->count==timeSlice)

{

run->count=0;

if(resource.free==1)

{

if(wait!=NULL)

{

PCB *p=wait;

wait=wait->next;

p->status=2;

insertReady(p);

}

}

if(ready!=NULL)

{

run->status=2;

insertReady(run);

runIn();

}

}

print();

}

}

int main()

自考02326《操作系统》串讲笔记1

第一部分课程概述 一、使用教材 《操作系统》,全国高等教育自学考试指导委员会组编,谭耀铭主编,中国人民大学出版社2007年版。 二、课程简介 随着计算机技术的迅速发展,计算机的硬、软件资源越来越丰富,用户也要求能更方便、更灵活地使用计算机系统。为了增强计算机系统的处理能力以及方便用户有效地使用计算机系统,操作系统已成为现代计算机系统中不可缺少的重要组成部分。因此,操作系统课程也就成为高等学校计算机专业的重要专业基础课程。 本课程从操作系统实现资源管理的观点出发,阐述如何对计算机系统中的硬、软件资源进行管理,使计算机系统协调一致地、有效地为用户服务,充分发挥资源的使用效率,提高计算机系统的可靠性和服务质量。 三、课程学习与考试要求 在自学过程中、考生应掌握操作系统对各种资源的管理方法和操作系统各部分之间的联系,这样才能真正掌握操作系统的工作原理以及了解操作系统在整个计算机系统中的作用。 为了能确切地学好本课程,要求考生具备:高级语言程序设计、数据结构、计算机系统结构等课程的知识。

在学任何一门课程时,要能做到真正学有所得,就必须:认真阅读教材,边读边做笔记;及时做习题,巩固所学内容;做好阶段总结,正确理解课程内容。 但每一门课程都有自身的特殊性,对于具体课程来说,应按照课程的特点具体探讨如何进行学习。要学好操作系统课程,关键在于弄清操作系统要做什么,怎么去做和为什么要这样去做。所以,如能注意如下几点,将会对操作系统课程的自学起到促进作用。 (1)在开始阅读某一章教材之前,先翻阅大纲中有关这一章的考核知识点、考核要求、自学要求、重点,以便在阅读教材时做到心中有数,有的放矢。 (2)阅读教材时要逐段细读,逐句推敲,集中精力,吃透每一个知识点,对基本概念必须深刻理解,对基本原理必须彻底弄清,对设计技巧要能灵活运用。 (3)根据操作系统在计算机系统中的应用,你在学习操作系统课程时应围绕如下四个中心问题: ①操作系统怎样管理计算机系统中的各种资源,以及保证资源的使用效率。 ②操作系统怎怎样为用户提高良好的运行环境,以方便用户使用计算机系统。 ③操作系统怎样按照用户的要求来控制程序的执行,以保证用户

计算机操作系统教学大纲

《计算机操作系统》课程教学大纲 一. 课程名称 操作系统原理 二. 学时与学分 学时共64学时(52+12+8) 其中,52为理论课学时,12为实验学时,8为课外实验学时 学分 4 三. 先修课程 《计算机组成原理》、《C语言程序设计》、 《IBM—PC宏汇编程序设计语言》、《数据结构》 四. 课程教学目标 通过本课程的学习,要达到如下目标: 1.掌握操作系统的基本原理与实现技术,包括现代操作系统对计算机系统资源的管理策略与方法、操作系统进程管理机制、现代操作系统的用户界面。 2.了解操作系统的结构与设计。 3.具备系统软件开发技能,为以后从事各种研究、开发工作(如:设计、分析或改进各种系统软件和应用软件) 提供必要的软件基础和基本技能。 4.为进一步学习数据库系统、计算机网络、分布式系统等课程打下基础。 五. 适用学科专业 信息大类各专业

六. 基本教学内容与学时安排 主要内容: 本课程全面系统地阐述计算机操作系统的基本原理、主要功能及实现技术,重点论述多用户、多任务操作系统的运行机制;系统资源管理的策略和方法;操作系统提供的用户界面。讨论现代操作系统采用的并行处理技术和虚拟技术。本书以Linux系统为实例,剖析了其特点和具体的实现技术。 理论课学时:52学时 (48学时,课堂讨论2学时,考试2学时) ?绪论4学时 ?操作系统的结构和硬件支持4学时 ?操作系统的用户界面4学时 ?进程及进程管理8学时 ?资源分配与调度4学时 ?存储管理6学时 ?设备管理4学时 ?文件系统6学时 ?Linux系统8学时 七、教材 《计算机操作系统》(第2版),庞丽萍阳富民人民邮电出版社,2014年2月 八、考核方式 闭卷考试

《操作系统》读书工程

操作系统课程设计 读书工程报告 学期 20013-2014学年第一学期 学院计算机科学技术学院 学号 姓名 2013年 12月 23日

一、基本理论阐述 1.进程 定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。 基本介绍:多道程序在执行时,需要共享系统资源,从而导致各程序在执行过程中出现相互制约的关系,程序的执行表现出间断性的特征。这些特征都是在程序的执行过程中发生的,是动态的过程,而传统的程序本身是一组指令的集合,是一个静态的概念,无法描述程序在内存中的执行情况,即我们无法从程序的字面上看出它何时执行,何时停顿,也无法看出它与其它执行程序的关系,因此,程序这个静态概念已不能如实反映程序并发执行过程的特征。为了深刻描述程序动态执行过程的性质,人们引入“进程(Process)”概念。 进程的概念:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体,我们称其为进程。 主要特征: 动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动态消亡的。 并发性:任何进程都可以同其他进程一起并发执行 独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位; 异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进 结构特征:进程由程序、数据和进程控制块三部分组成。 状态分类: 1)就绪状态(Ready):进程已获得除处理器外的所需资源,等待分配处理器资源;只要分配了处理器进程就可执行。就绪进程可以按多个优先级来划分队列。例如,当一个进程由于时间片用完而进入就绪状态时,排入低优先级队列;当进程由I/O操作完成而进入就绪状态时,排入高优先级队列。 2)运行状态(Running):进程占用处理器资源;处于此状态的进程的数目小于等于处理器的数目。在没有其他进程可以执行时(如所有进程都在阻塞状态),通常会自动执行系统的空闲进程。 3)阻塞状态(Blocked):由于进程等待某种条件(如I/O操作或进程同步),在条件满足之前无法继续执行。该事件发生前即使把处理机分配给该进程,也无法运行。 进程控制的基本事件: 进程的创建 1.引起创建进程的事件

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统实验报告一

重庆大学 学生实验报告 实验课程名称操作系统原理 开课实验室DS1501 学院软件学院年级2013专业班软件工程2 班学生姓名胡其友学号20131802 开课时间2015至2016学年第一学期 总成绩 教师签名洪明坚 软件学院制

《操作系统原理》实验报告 开课实验室:年月日学院软件学院年级、专业、班2013级软件工 程2班 姓名胡其友成绩 课程名称操作系统原理 实验项目 名称 指导教师洪明坚 教师 评语教师签名:洪明坚年月日 1.实验目的: ?进入实验环境 –双击expenv/setvars.bat ?检出(checkout)EPOS的源代码 –svn checkout https://www.360docs.net/doc/5c18385943.html,/svn/epos ?编译及运行 –cd epos/app –make run ?清除所有的临时文件 –make clean ?调试 –make debug ?在“Bochs Enhanced Debugger”中,输入“quit”退出调试 –调试指令,请看附录A 2.实验内容: ?编写系统调用“time_t time(time_t *loc)” –功能描述 ?返回从格林尼治时间1970年1月1日午夜起所经过的秒数。如果指针loc 非NULL,则返回值也被填到loc所指向的内存位置 –数据类型time_t其实就是long ?typedef long time_t; 3.实验步骤: ?Kernel space –K1、在machdep.c中,编写系统调用的实现函数“time_t sys_time()”,计算用户秒数。需要用到 ?变量g_startup_time,它记录了EPOS启动时,距离格林尼治时间1970年1午夜的秒数 ?变量g_timer_ticks

UbuntuLinux操作系统第2版(微课版)—教学大纲

《Ubuntu Linux操作系统》课程教学大纲 学分: 4 学时:48 适用专业: 高职高专类计算机专业 一、课程的性质与任务 课程的性质: 本课程是为计算机专业学生开设的课程。课程安排在第学期。 课程的任务: 通过本课程的学习,使学生熟悉Linux操作系统的基本操作,掌握Linux操作系统的配置管理、软件使用和编程环境部署。本课程将紧密结合实际,以首选的Linux桌面系统Ubuntu 为例讲解操作系统的使用和配置,为学生今后进行系统管理运维、软件开发和部署奠定基础。整个课程按照从基础到应用,从基本功能到高级功能的逻辑进行讲授,要求学生通过动手实践来掌握相关的技术操作技能。 前导课程: 《计算机原理》、《Windows操作系统》。 后续课程: 《Linux应用开发》 二、教学基本要求 理论上,要求学生掌握Ubuntu Linux操作系统的基础知识,包括配置管理、桌面应用、编程和软件开发环境。 技能上,要求学生能掌握Ubuntu Linux操作系统的配置方法和使用技能,涵盖系统安装和基本使用、图形界面与命令行、用户与组管理、文件与目录管理、磁盘存储管理、软件包管理、系统高级管理、桌面应用、Shell编程、C/C++编程、Java与Android应用开发、LAMP 平台与PHP、Python、Node.js开发环境部署,以及Ubuntu服务器安装与管理。 培养的IEET核心能力: ?具备系统管理方向的系统工程师的工程能力:掌握Linux配置管理和运维,包括用 户与组管理、文件与目录管理、磁盘存储管理、软件包管理、系统高级管理、服务器安装与管理。 ?具备应用开发工程师的开发环境部署能力,包括Shell编程、C/C++编程、Java与 Android应用开发、LAMP平台与PHP、Python、Node.js开发环境的部署和流程。 ?基本职业素养:具有良好的文化修养、职业道德、服务意识和敬业精神;接受企业 的文化;具有较强的语言文字表达、团结协作和社会活动等基本能力;具有基本的英语文档阅读能力,能较熟练地阅读理解Ubuntu Linux的相关英文资料。

《现代操作系统》读书笔记之——进程间通信

很多时候,进程需要和其他的进程进行通信。比如shell中的管道命令:ps -ef | grep nginx,一个命令的输出,作为另一个进程的输入,这就是进程间通信(Interprocess Communication)。 进程间通信主要需要解决三个问题: 1.一个进程如何给另一个进程传递信息 2.如何确保进程之间不互相干扰、妨碍 3.当进程间出现依赖关系时,该如何处理。 尽管这里讨论的是进程之间的通信,但其实对于线程来说,他们之间的通信需要解决后两个问题。由于多个线程处在相同的进程,因此也处在同一个地址空间中,所以第一个问题自然很好解决。但是第二个、第三个问题还是存在的,当然解决的方案其实与进程间通信在处理这两个问题上采取的方案也是类似的。下面的内容会涉及上面的三个问题。 1.竞争条件(Race Condition) 在一些操作系统中,多个进程会共享一部分内存,每个进程都可以对他们进行读写操作。共享的内存有可能再内存中,也可能是一个共享的文件。为了看看进程间通信之间的竞争条件,举个简单的例子加以说明:打印池。假如一个进程想打印一个文件,于是他将文件名输入打印池目录中。有一个负责打印的进程——打印机守护进程——每隔一段时间会查看一下打印池目录中有没有需要打印的文件。有的话就打印,没有拉到。 打印机目录的示意图如下: 图中的每个小格子可以存放一个待打印的文件名(实际上应该是需要打印的文件的指针,这里只是为了说明问题做的假设)。同样,还需要假设两个共享的变量:一个叫out存储下一个轮到打印的文件的文件名;另一个叫in存储上图中下一个可以存放待打印文件文件名的小空格。这两个变量可能被存储再一个文件中,而这个文件共享给了所有的进程。 上图所示的时刻,单元1、2、3已经空了,也就是说,之前存在里面的文件已经打印了。而5-9号空格还是空的,也就是说接下来需要打印的文件依次存放在下面的单元中。这一时刻,变量in存储的应该是5。假设这时候,进程A读取变量in,得到的值是5。于是,进程A将这个值存储到他的局部变量 next_free_slot中,这时候,恰好CPU时间片到了,进程A重新回到可运行状态,而此时进程B获得了时间片,开始运行,它也有文件需要打印,那么它读取in,获得的

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

操作系统实验报告

《操作系统原理》实验报告 实验项目名称:模拟使用银行家算法判断系统的状态 一、实验目的 银行家算法是操作系统中避免死锁的算法,本实验通过对银行家算法的模拟,加强对操作系统中死锁的认识,以及如何寻找到一个安全序列解除死锁。 二、实验环境 1、硬件:笔记本。 2、软件:Windows 7 , Eclipse。 三、实验内容 1.把输入资源初始化,形成资源分配表; 2.设计银行家算法,输入一个进程的资源请求,按银行家算法步骤进行检查; 3.设计安全性算法,检查某时刻系统是否安全; 4.设计显示函数,显示资源分配表,安全分配序列。 四、数据处理与实验结果 1.资源分配表由进程数组,Max,Allocation,Need,Available 5个数组组成; 实验采用数据为下表: 2.系统总体结构,即菜单选项,如下图

实验的流程图。如下图 3.实验过程及结果如下图所示

1.首先输入进程数和资源类型及各进程的最大需求量 2.输入各进程的占有量及目前系统的可用资源数量 3.初始化后,系统资源的需求和分配表 4.判断线程是否安全

5.对线程进行死锁判断 五、实验过程分析 在实验过程中,遇到了不少问题,比如算法无法回滚操作,程序一旦执行,必须直接运行到单个任务结束为止,即使产生了错误,也必须等到该项任务结束才可以去选择别的操作。但总之,实验还是完满的完成了。 六、实验总结 通过实验使我对以前所学过的基础知识加以巩固,也对操作系统中抽象理论知识加以理解,例如使用Java语言来实现银行家算法,在这个过程中更进一步了解了银行家算法,通过清晰字符界面能进行操作。不过不足之处就是界面略显简洁,对于一个没有操作过计算机的人来说,用起来可能还是有些难懂。所以,以后会对界面以及功能进行完善,做到人人都可以看懂的算法。

《计算机操作系统》教学大纲

《计算机操作系统》教学大纲 课程名称:计算机操作系统 总学时:68 理论学时:56 实验学时:12 一、课程性质及培养目标 《操作系统》是计算机科学与技术等专业的专业课之一。本课程将全面系统地介绍操作系统的基本理论与基本工作原理,包括操作系统内部工作过程与结构及相关概念、技术和理论,并作为实例介绍目前主流操作系统Windows的工作原理。在各章节中会介绍当前主流操作系统Windows的各部分功能及实现作为实例,以求学生对操作系统的基本理论和原理能够融会贯通。通过本课程的学习,要求学生理解操作系统在计算机系统中的作用、地位和特点,熟练掌握和运用操作系统在进行计算机软硬件资源管理和调度时常用的概念、方法、算法、策略等。 二、课程的教学原则与方法 在总结操作系统课程教学实践经验的基础上,结合课程自身的特点,制定本课程的教学原则为:理论讲解和实践相结合的教学原则。在教学过程中采用的教学方法主要有:以语言形式获得间接经验的方法(例如讲授法、讨论法、读书指导法等),以直观形式获得直接经验的方法(例如演示法),以实际训练形式形成技能、技巧的教学方法(例如讲练结合法、实验法等)。 三、教学内容与教学基本要求 第一单元操作系统引论 1、教学内容 任务1 操作系统概述 任务2 操作系统的发展历史 任务3 操作系统的分类 2、教学基本要求 让学生对操作系统形成初步的认识,对操作系统中的概念有整体的了解。了解操作系统的发展过程;掌握操作系统类型和功能、操作系统的基本特征;熟练掌握操作系统定义。 3、教学重点与难点 教学重点:操作系统的发展过程,操作系统的分类、基本特征和功能 教学难点:操作系统的基本特征,操作系统的结构设计 4、复习参考题 ⑴OS的作用可表现在哪几个方面? ⑵OS有哪几大特征?最基本得特征是什么? 第二单元操作系统原理基础 1、教学内容

操作系统实验报告_实验五

实验五:管道通信 实验内容: 1.阅读以下程序: #include #include #include main() { int filedes[2]; char buffer[80]; if(pipe(filedes)<0) //建立管道,filedes[0]为管道里的读取端,filedes[1]则为管道的写入端 //成功则返回零,否则返回-1,错误原因存于errno中 err_quit(“pipe error”); if(fork()>0){ char s[ ] = “hello!\n”; close(filedes[0]); //关闭filedes[0]文件 write(filedes[1],s,sizeof(s)); //s所指的内存写入到filedes[1]文件内 close(filedes[1]); //关闭filedes[0]文件 }else{ close(filedes[1]); read(filedes[0],buffer,80); //把filedes[0]文件传送80个字节到buffer缓冲区内 printf(“%s”,buffer); close(filedes[0]); } } 编译并运行程序,分析程序执行过程和结果,注释程序主要语句。

2.阅读以下程序: #include #include #include main() { char buffer[80]; int fd; unlink(FIFO); //删除FIFO文件 mkfifo(FIFO,0666); //FIFO是管道名,0666是权限 if(fork()>0){ char s[ ] = “hello!\n”;

操作系统课程教学大纲

GDOU-B-11-213 《操作系统》课程教学大纲 课程简介 课程简介: 本课程主要讲述操作系统的原理,使学生不仅能够从系统内部了解操作系统的工作原理,而且可以学到软件设计的思想方法和技术方法。主要内容 包括:操作系统的概论;操作系统的作业管理;操作系统的文件管理原理; 操作系统的进程概念、进程调度和控制、进程互斥和同步等;操作系统的各 种存储管理方式以及存储保护和共享;操作系统的设备管理一般原理。其次 在实验环节介绍实例操作系统的若干实现技术,如:Windows操作系统、Linux 操作系统等。 课程大纲 一、课程的性质与任务: 本课程计算机学科的软件工程专业中是一门专业方向课,也可以面向计算机类的其它专业。其任务是讲授操作系统的原理,从系统内部了解操作系统的工作原理以级软件设计的思想方法和技术方法;同时介绍实例操作系统的若干实现技术。 二、课程的目的与基本要求: 通过本课程的教学使学生能够从操作系统内部获知操作系统的工作原理,理解操作系统几大管理模块的分工和管理思想,学习设计系统软件的思想方法,通过实验环节掌握操作系统实例的若干实现技术,如:Windows操作系统、Linux操作系统等。 三、面向专业: 软件工程、计算机类 四、先修课程: 计算系统基础,C/C++语言程序设计,计算机组成结构,数据结构。 五、本课程与其它课程的联系:

本课程以计算系统基础,C/C++语言程序设计,计算机组成结构,数据结构等为先修课程,在学习本课程之前要求学生掌握先修课程的知识,在学习本课程的过程中能将数据结构、计算机组成结构等课程的知识融入到本课程之中。 六、教学内容安排、要求、学时分配及作业: 第一章:操作系统概论(2学时) 第一节:操作系统的地位及作用 操作系统的地位(A);操作系统的作用(A)。 第二节:操作系统的功能 单道系统与多道系统(B);操作系统的功能(A)。 第三节:操作系统的分类 批处理操作系统(B);分时操作系统(B);实时操作系统(B)。 第二章:作业管理(2学时) 第一节:作业的组织 作业与作业步(B);作业的分类(B);作业的状态(B);作业控制块(B)。 第二节:操作系统的用户接口 程序级接口(A);作业控制级接口(A)。 第三节:作业调度 作业调度程序的功能(B);作业调度策略(B);作业调度算法(B)。 第四节:作业控制 脱机控制方式(A);联机控制方式(A)。 第三章:文件管理(8学时) 第一节:文件与文件系统(1学时) 文件(B);文件的种类(B);文件系统及其功能(A)。 第二节:文件的组织结构(1学时) 文件的逻辑结构(A);文件的物理结构(A)。 第三节:文件目录结构(1学时) 文件说明(B);文件目录的结构(A);当前目录和目录文件(B)。 第四节:文件存取与操作(1学时) 文件的存取方法(A);文件存储设备(C);活动文件(B);文件操作(A)。 第五节:文件存储空间的管理(2学时) 空闲块表(A);空闲区表(A);空闲块链(A);位示图(A)。 第六节:文件的共享和保护(2学时)

操作系统课程设计报告读书工程方案

“操作系统课程设计”读书工程环节方案“操作系统”是计算机科学技术专业与软件工程专业的必修课程,也是该专业核心理论课程。为了更全面的理解理论知识,提高实践能力,计算机科学与技术专业以及软件工程专业开设了实践类必修课程-“操作系统课程设计”。将读书环节融入教学内容的设计中,做好理论教学、实践教学、读书环节三者有机结合,可使学生进一步了解课程理论知识,拓宽视野,加深对本专业相关课程的理解。 在读书工程环节,学生可以通过阅读相关的参考书目,对课程设计的五个部分(进程控制、进程调度、请求分页存储管理、设备管理、文件管理)中的任意一个题目进行深入的分析探讨和总结,并提交相应的读书工程报告。 考核方式:通过提交读书报告进行考核,该部分成绩要占课程总成绩的15%。该报告至少应包括基本理论阐述、当前理论或实践应用现状、本人对相关内容的体会、课程设计过程中对相应部分的设计与实现思路、读书工程心得总结等几个方面,字数不少于5000字。 参考书目: 现代操作系统(第2版、第3版,中文/英文原版) ●作者:(荷)AndrewS.Tanenbaum ●译者:陈向群,马洪兵 ●:机械工业 ●出版日期:2005年6月 本书是操作系统领域的经典之作,与第1版相比有较大的变化。书中集中讨论了操作系统的基本原理,除了重点放在单处理机操作系统之外,还包含了有关计算机安全、多媒体操

作系统、unix、windows 2000以及操作系统设计等方面的内容。书中涉及的主题包括图形用户界面、多处理机操作系统、笔记本电脑电源管理、可信系统、病毒、网络终端、cd-rom 文件系统、互斥信号量、raid、软定时器、稳定存储器以及新的页面置换算法等。此外,书中还增加了大量习题,方便教学。 本书适合作为高等院校计算机科学与技术专业操作系统课程教材,也是设计、开发操作系统的重要参考书。 Andrew S. Tanenbaum 是ACM和IEEE的资深会员,荷兰皇家艺术和科学学院院士,获得过1997年度ACM/SIGCSE计算机科学教育杰出贡献奖。当前,他的主要研究方向是设计规模达十亿级用户的广域分布式系统。在进行这些研究项目的基础上,他在各种学术杂志及会议上发表了70多篇论文,并出版了多本计算机专著。Tanenbaum还入选了《世界名人录》。Tanenbaum教授的个人主页是.cs.vu.nl/~ast。 操作系统设计与实现(第二版,有电子书,中文版) ●作者:(美)AndrewS.Tanenbaum,AlbertS.Woodhull ●译者:陈渝谌卫军 ●:电子工业 ●出版日期:2007年3月 本书是关于操作系统的权威教材,详细探讨了操作系统的基本原理,包括进程、进程间通信、信号量、管程、消息传递、调度算法、输入/输出、死锁、设备驱动程序、存储管理、调页算法、文件系统设计、安全和保护机制等。大多数关于操作系统的图书均重理论而轻实践,而本书则在这两者之间进行了较好的折中。本册给出了上册提到的minix3操作系统的安装方法以及详细的原代码,并附有光盘。 本书适用于高校计算机专业的学生,也可供程序设计人员、工程技术人员、系统架构师等相关人员参考。 操作系统—精髓与设计原理(第六版,有电子书) ●作者:(美)WilliamStallings ●译者:陈向群,陈渝 ●:电子工业 ●出版日期:2006年2月

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

操作系统实验报告

《计算机操作系统》实验报告 教师: 学号: 姓名: 2012年3月6日 计算机学院

实验题目:请求页式存储管理(三) ----------------------------------------------------------------------------- 实验环境:VC6.0++ 实验目的:学生应独立地用高级语言编写几个常用的存储分配算法,并设计一个存储管理的模拟程序,对各种算法进行分析比较,评测其性能优劣,从而加深对这些算法的了解。实验内容: (1)编制和调试示例给出的请求页式存储管理程序,并使其投入运行。 (2)增加1~2种已学过的淘汰算法,计算它们的页面访问命中率。试用各种算法的命中率加以比较分析。(增加了FIFO) 操作过程: (1)产生随机数 (2)输入PageSize(页面大小1 /2/4/8 K) (pageno[i]=int(a[i]/1024)+1) (3)菜单选择

(4)OPT/ LRU/FIFO演示(pagesize=1K)

(5) 过程说明(PAGESIZE = 4K ) OPT :最佳置换算法(淘汰的页面是以后永不使用,或许是在最长时间内不再被访问的页面) //在Table 表中如果未找到,记录每个元素需要找的长度 //全部table 中元素找完长度,然后进行比较,找出最大的,进行淘汰 int max=0; int out; for(k=0;kmax){ max = table_time[k]; out = k; } }//找出最长时间,进行替换 table[out]=pageno[i]; page_out++;

操作系统教学大纲

《操作系统》课程教学大纲 一、课程基本信息课程名称:《操作系统》总学时与学分:72学时 4学分 课程性质:专业必修课授课对象:计算机科学与技术专业 二、课程教学目标与任务 操作系统原理是一门专业基础课程,是涉及考研等进一步进修的重要课程,是计算机 体系中必不可少的组成部分。本课程的目的和任务是使学生通过本课程的学习,理解操作 系统的基本概念和主要功能,掌握操作系统的使用和一般的管理方法,从而为学生以后的 学习和工作打下基础。 三、学时安排 课程内容与学时分配表 章 节 内 容学 时 第一章 操作系统引论5第二章 进程管理12第三章 处理机调度与死锁12第四章 存储管理12第五章 设备管理10第六章 文件管理8第七章 操作系统接口4第八章 网络操作系统3第九章 系统安全性3第十章 UNIX 操作系统3四、课程教学内容与基本要求 第一章 操作系统引论 教学目标:通过本章的学习,使学生掌握操作系统的概念,操作系统的作用和发展过 程,知道操作系统是配置在计算机硬件上的第一层软件,是对计算机系统的首次扩充,是 现代计算机系统必须配置的软件。 基本要求:掌握操作系统的目标和作用、发展过程、基本特征及主要功能;了解操作 系统的结构设计 本章重点:操作系统的概念、作用,操作系统的基本特征以及操作系统的主要功能。 本章难点:操作系统基本特征的理解,操作系统主要功能的体现。 教学方法:讲授与演示相结合、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交、电气课件中调试试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试

《操作系统)(中国铁道)习题答案第四章

⒈计算机系统中存储器一般分为哪两级?各有什么特点? 答:计算机系统中存储器一般分为主存储器和辅助存储器两级。 主存储器简称主存,又称为内存,它由自然数顺序编址的单元(通常为字或字节)所组成,是处理机直接存取指令和数据的存储器,它速度快,但容量有限。辅助存储器简称辅存,又称为外存,它由顺序编址的“块”所组成,每块包含若干个单元,寻址与交换以块为单位进行,处理机不能直接访问它,它须经过专门的启动入出过程与内存交换信息,它存取速度较慢,但容量远大于内存,实际上,现代计算机系统中用户的数据(或信息)都是保存在外存中。 ⒉存储管理的目的是什么? 答:存储管理要实现的目的是:为用户提供方便、安全和充分大的存储空间。 所谓方便是指将逻辑地址和物理地址分开,用户只在各自逻辑地址空间编写程序,不必过问物理空间和物理地址的细节,地址的转换由操作系统自动完成;安全则是指同时驻留在内存的多道用户程序相互之间不会发生干扰,也不会访问操作系统所占有的空间。充分大的存储空间是指利用虚拟存储技术,从逻辑上对内存空间进行扩充,从而可以使用户在较小内存里运行较大程序。 ⒊存储管理的任务是什么? 答:存储管理是计算机操作系统软件的一部分,它负责完成对主存储器的地址转换,对主存储器进行分配与去配,解决多用户对主存储器的共享和保护,通过软件手段,实现对主存储器容量的扩充。 ⒋地址转换可分为哪三种方式?比较这三种方式的优缺点。 答:由逻辑地址转化为物理地址的地址转换过程,按照转换的时间不同,可以分为3种方式: ①绝对装入方式②静态重定位方式③动态重定位方式 (第二问略) ⒌可变分区常用的分区算法有哪几种?它们各自的特点是什么? 答:首次适应算法、循环首次适应算法、最佳适应算法、最差适应算法(第二问略) ⒍试用类C语言写首次适应算法的分配过程。 答:firstmatch(n) { p=Free; while(p!=NULL) { if(p->size>=n) { if(p->size-n>=size) p->size=p->size-n; a=p; p=p+n; else a=p; remove(Free,p); } else

操作系统实验报告

操作系统实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

许昌学院 《操作系统》实验报告书学号: 姓名:闫金科 班级:14物联网工程 成绩: 2016年02月

实验一Linux的安装与配置 一、实验目的 1.熟悉Linux系统的基本概念,比如Linux发行版、宏内核、微内核等。 2.掌握Linux系统的安装和配置过程,初步掌握Linux系统的启动和退出方 法。 3.熟悉Linux系统的文件系统结构,了解Linux常用文件夹的作用。 二、实验内容 1.从网络上下载VMware软件和两个不同Linux发行版镜像文件。 2.安装VMware虚拟机软件。 3.在VMware中利用第一个镜像文件完成第一个Linux的安装,期间完成网络 信息、用户信息、文件系统和硬盘分区等配置。 4.在VMware中利用第二个镜像文件完成第二个Linux的安装,并通过LILO或 者GRUB解决两个操作系统选择启动的问题。 5.启动Linux系统,打开文件浏览器查看Linux系统的文件结构,并列举出 Linux常用目录的作用。 三、实验过程及结果 1、启动VMware,点击新建Linux虚拟机,如图所示: 2、点击下一步,选择经典型,点击下一步在选择客户机页面选择 Linux,版本选择RedHatEnterpriseLinux5,如图所示: 3、点击下一步创建虚拟机名称以及所要安装的位置,如图所示: 4、点击下一步,磁盘容量填一个合适大小,此处选择默认值大小 10GB,如图所示: 5、点击完成,点击编辑虚拟机设置,选择硬件选项中的CD-ROM (IDE...)选项,在右侧连接中选择“使用ISO镜像(I)”选项,点 击“浏览”,找到Linux的镜像文件,如图所示:

操作系统课程设计2014教学大纲

《操作系统课程设计》大纲 一、设计目的和要求 目的:本课程设计是为配合计算机相关专业的重要专业课《操作系统》而开设的,其主要内容是让学生实际进行操作系统功能模块的设计和编程实现。通过本课程设计的实施,使学生能将操作系统的概念具体化,并从整体和动态的角度去理解和把握操作系统,以巩固和补充操作系统的原理教学,提高学生解决操作系统设计及实现过程中的具体问题的能力。 要求:通过本课程设计的实施,要求培养学生以下能力: (1)培养学生在模拟条件下与实际环境中实现功能模块和系统的能力:课程设计要求学生实际进行操作系统功能模块的设计和编程实现,具体包括:基于线程的多任务调度系统的设计与实现;一个简单文件系统的设计与实现。 (2)培养学生设计和实施工程实验的能力,合理分析试验结果的能力:学生在完成项目的过程中,需要进行实验设计、程序调试、错误分析,从而熟悉实验设计方法及实验结果的分析方法。 (3)培养学生综合运用理论和技术手段设计系统和过程的能力:学生需根据设计项目的功能要求及操作系统原理的相关理论提出自己的解决方案,需考虑项目实现的软硬件环境,设计相关数据结构及算法,在实现过程中发现解决方案的问题并进行分析改进。 (4)培养学生分析并清楚阐述设计合理性的能力:要求学生在项目上机验收和实验报告中分析阐述设计思路的合理性和正确性。 (5)培养学生的组织管理能力、人际交往能力、团队协作能力:课程设计分小组进行,每个小组有一个组长,负责组织本组成员的分工及合作。 二、设计学时和学分 学时:32 ;学分:1 三、设计的主要内容 以下三个题目中:1、2中选做一题,第3题必做。 1、基于线程的多任务调度系统的设计与实现 (1)线程的创建、撤消和CPU切换。 掌握线程的定义和特征,线程的基本状态,线程的私有堆栈,线程控制块TCB,理解线程与进程的区别,实现线程的创建、撤消和CPU切换。 (2)时间片轮转调度 理解各种调度算法、调度的原因,完成时钟中断的截取,具体实现调度程序。 (3)最高优先权优先调度 理解优先权的概念,并实现最高优先权优先调度策略。 (4)利用记录型信号量实现线程的同步

计算机操作系统读书笔记

操作系统读书报告 课题:<<解析Windows操作系统>>读书笔记 院系:__ _____ 班级:__ __ 姓名:__ _________________ 学号:___ ____________ 指导老师:___________________ 2011年10月18日

<<解析Windows操作系统>>读书笔记这段时间读了<<解析windows操作系统>>这本书。学到了很多知识。总结了如下笔记。 Windows NT系列和Windows 95系列的区别: ?Windows NT支持多处理器,Windows 95不支持。 ?Windows NT文件系统支持安全性(例如自主访问控制),Windows 95不支持。 ?Windows NT是完全32位,而Windows 95从Windows 3.1和MS-DOS 继承了大量的16位代码。 ?Windows NT是完全可重入的,Windows 95有一部分是不可重入的。 ?Windows NT可以让16位应用程序运行在它们自己的地址空间中,而Windows 95总是在一个共享的地址空间中运行16位Windows应用程序,在这个共享的地址空间中,这些程序相互影响,甚至一个程序破坏(或挂起)别的程序。 ?Windows NT进程共享的内存只对哪些影射了这一共享内存的进程才是可见的,在Windows 95上,所有的共享内存都是可见的,而且在任何一个进程内都可以写这些内存,因此任何一个进程都可以改写或者破坏其他协作进程所使用的共享内存。 ?在Windows 95中,有一些关键的操作系统页面在用户模式下是可写的,从而允许一个用户程序破坏系统,或者使系统崩溃。

相关文档
最新文档