烟粉虱介绍

F

o

r R e v

i e

w

O n l y

Assessment of the Bemisia tabaci CYP6CM1vQ transcript

and protein levels in laboratory and field-derived imidacloprid resistant insects, and cross–metabolism

potential of the recombinant enzyme

Journal: Insect Science

Manuscript ID: INS-2010-06-160.R1

Wiley - Manuscript type: Special Issue Date Submitted by the

Author:

16-Sep-2010

Complete List of Authors: Roditakis, Emmanouil; National Agricultural Research Foundation,

Heraklion (N.AG.RE.F.), Plant Protection Institute of Heraklion, Morou, Evangelia; University of Crete,, Biology

Tsagkarakou, Anastasia; National Agricultural Research Foundation, Heraklion (N.AG.RE.F.), Plant Protection Institute of Heraklion, Riga, Maria; University of Crete,, Biology Nauen, Ralf; Bayer, CropScience

Paine, Mark; Liverpool School Tropical Medicine, Vector Group Morin, Shai; Hebrew University of Jerusalem, Entomology Vontas, John; University of Crete, Biology

Keywords:

recombinant P450, diagnostics, neonicotinoids, peptide antibodies, detoxification

Abstract:

Overexpression of the cytochrome P450 CYP6CM1 gene has been associated with Imidacloprid resistance in a number of Q and B

biotype Bemisia tabaci laboratory strains from distinct geographical origin worldwide. We recently demonstrated that the Q biotype version of the CYP6CM1 protein (CYP6CM1vQ) is capable of metabolizing imidacloprid. Here, we showed that the levels of

BtCYP6CM1vQ were also elevated in laboratory resistant strains and field-derived populations, with variable imidacloprid resistance levels, collected in Crete. High levels of CYP6CM1vQ transcripts

were also determined in survivors of a heterogeneous field

population, after exposure to discriminating imidacloprid dosage. Using peptide antibody-based detection assays, we demonstrated that in line with transcriptional data, the CYP6CM1vQ protein levels were higher in imidacloprid resistant insects, which further implicates the gene as the causal factor of resistance. Finally, assessment of the cross–metabolism potential of CYP6CM1vQ

against additional neonicotinoid molecules used for B. tabaci control revealed that clothianidin and thiacloprid, but not acetamiprid or

Insect Science

F o

r R e v i e w

O n l y

thiamethoxam, are metabolised by the recombinant enzyme in

vitro.

Page 1 of 17Insect Science

F o

r R

e v i e w

O

n l

y

1

2 Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein

3 levels in laboratory and field-derived imidacloprid resistant insects,

4 and cross–metabolism potential of the recombinant enzyme

5

6 Emmanouil Roditakis a*, Evangelia Morou b,c*, Anastasia Tsagkarakou a , Maria

7 Riga b , Ralf Nauen d , Mark Paine c , Shai Morin e and John Vontas b¥

8 9 a

Laboratory of Entomology and Agricultural Zoology, Plant Protection Institute of

10 Heraklion, National Agricultural Research Foundation, Heraklion (N.AG.RE.F.), 11 Kastorias 32A Katsampas, 71003 Heraklio, Greece

12 b

Faculty of Applied Biology and Biotechnology, Department of Biology, University of

13 Crete, 71409 Heraklion, Greece

14 c

Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3

15 5QA

16 d

Bayer CropScience AG Research Insecticides Insect Toxicology and Resistance

17 Building 6220 Alfred Nobel Str. 50 D-40789 Monheim Germany

18 e

Department of Entomology, Faculty of Agricultural, Food and Environmental Quality

19 Sciences, Hebrew University of Jerusalem, P.O.Box 12, Rehovot 76100, Israel

20 21

22 * equal authors

23 ¥

Address for correspondence: e-mail: vontas@imbb.forth.gr, Fax:2810394408,

24 Tel:302810394077 25

26 Running title: P450- neonicotinoid resistance in Bemisia tabaci

27

Page 2 of 17

Insect Science

F o

r R

e v i e w

O n l y

28 Abstract

29 Over-expression of the cytochrome P450 CYP6CM1 gene has been associated with 30 Imidacloprid resistance in a number of Q and B biotype Bemisia tabaci laboratory 31 strains from distinct geographical origin worldwide. We recently demonstrated that the 32 Q biotype version of the CYP6CM1 protein (CYP6CM1vQ) is capable of metabolizing 33 imidacloprid. Here, we showed that the levels of BtCYP6CM1vQ were also elevated in 34 laboratory resistant strains and field-derived populations, with variable imidacloprid 35 resistance levels, collected in Crete. High levels of CYP6CM1vQ transcripts were also 36 determined in survivors of a heterogeneous field population, after exposure to 37 discriminating imidacloprid dosage. Using peptide antibody-based detection assays, we 38 demonstrated that in line with transcriptional data, the CYP6CM1vQ protein levels were 39 higher in imidacloprid resistant insects, which further implicates the gene as the causal 40 factor of resistance. Finally, assessment of the cross–metabolism potential of 41 CYP6CM1vQ against additional neonicotinoid molecules used for B. tabaci control 42 revealed that clothianidin and thiacloprid, but not acetamiprid or thiamethoxam, are 43 metabolised by the recombinant enzyme in vitro . 44 45 46

47 Keywords: neonicotinoids, peptide antibodies, detoxification, P450

48

Page 3 of 17Insect Science

F o

r R

e v i e w

O

n l

y

Introduction

49 The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most damaging 50 pests of numerous crops world-wide. It has recently become a major pest in Crete (50% 51 of total greenhouse area of Greece) being responsible for significant yield losses in 52 protected and field crops (Roditakis et al., 2009). As a result of intensive use of 53 chemical insecticides, such as organophosphates and pyrethroids, many of those no 54 longer effectively control B. tabaci , due to the appearance of insecticide-resistant 55 populations (Roditakis et al., 2005).

56 Neonicotinoids, such as imidacloprid, acetamiprid, thiamethoxam, thiacloprid and 57 clothianidin (Elbert et al., 2008) have been more recently introduced for the control of 58 B. tabaci and several other major agricultural pests. Neonicotinoids are nicotinic 59 acetylcholine receptor (nAChR) agonist, that combine high potency with low 60 mammalian toxicity (Tomizawa and Casida, 2005) and are generally resilient to 61 insecticide resistance selection. Imidacloprid has a crucial role in the control of B. 62 tabaci in Crete and many other regions worldwide. However, resistance against this 63 molecule has been recently identified as an emerging problem. It was first detected in 64 southern Spain (Cahill et al., 1996) and it is now widely spread worldwide in both B 65 and Q B. tabaci biotypes (Nauen and Denholm, 2005). We recently monitored variable 66 levels of imidacloprid resistance in a number of field populations collected from 67 greenhouses and outdoor crops in Crete, during a large scale survey (Roditakis et al., 68 2009).

69 Biochemical examinations revealed that imidacloprid resistance in B. tabaci is 70 associated

with

enhanced

oxidative

detoxification

by cytochrome

P450

71 monooxygenases (Rauch and Nauen, 2003). The constitutive over-expression of the 72 cytochrome P450 CYP6CM1vQ , was strongly correlated with the phenotype in several 73 laboratory selected strains of both B and Q B. tabaci biotypes (Karunker et al., 2008). In 74 a more recent study, we reconstituted a functional monooxygenase complex and showed 75 that the recombinant CYP6CM1vQ enzyme has the potential to metabolize imidacloprid 76 to its 5-hydroxy form with a relatively high conversion rate (Karunker et al., 2009) and 77 thus probably cause the resistance phenotype, assuming that increased transcripts levels 78 indicates also increment in enzyme production.

79

Page 4 of 17

Insect Science

F o

r R

e v i e w

O

n l y

The cross resistance potential of imidacloprid resistance has been investigated in several 80 laboratory strains (Prabhaker et al., 2005; Wang et al., 2009). Imidacloprid-resistant Q-81 type B. tabaci strains collected from Spain, Italy, Germany and Greece have been 82 reported to show high cross-resistance to other neonicotinoids including thiamethoxam 83 and acetamiprid (Nauen et al., 2002). B-type strain (ISR-02) collected from greenhouse 84 roses in Israel in 2002 had high levels of resistance to imidacloprid and thiamethoxam 85 (874-, >900- fold respectively), but moderate resistance levels against acetamiprid (78-86 fold). However, a strain with 120-fold resistance collected from California (IM-R) did 87 not show cross-resistance to acetamiprid, dinotefuran or thiamethoxam, and a B-type 88 strain from Guatemala with 109-fold resistance to imidacloprid (GU-R) showed low 89 levels of cross resistance when bioassayed with acetamiprid and thiamethoxam 90 (Prabhaker et al., 2005). Although elevated P450s activities has been associated with 91 imidacloprid resistance in most cases analyzed to-date, the exact contribution of 92 CYP6CM1vQ to the resistant phenotype and its association with the relatively variable 93 cross resistance pattern reported remains unknown. Many P450s catalyze a highly 94 restricted set of reactions, but some are capable of metabolizing a very wide range of 95 compounds. In addition, cytochrome P450 that are very similar in sequence can have 96 dramatically different insecticide-metabolism profiles (Chiu et al., 2008). 97 In this paper, we have determined the CYP6CM1vQ transcripts and protein levels in 98 laboratory and field-derived imidacloprid resistant B. tabaci from Crete, and assessed 99 the cross–metabolism potential of recombinant BtCYP6CM1vQ against additional 100 neonicotinoid molecules. 101

102 Materials and Methods

103 Insects

104 The B. tabaci strain SUD-S (Sudan, 1978) was obtained by IACR Rothamsted, UK and 105 used as a reference susceptible strain. GR-IMI was isolated from Malades (Crete, 2005) 106 and selected with imidacoprid for six generations at approximately LD70 (gradually 107 elevating imidacloprid concentrations ranging from 100 to 600ppm). Field populations 108 used in this study (codes: “146”, “151”, “153”, “176”, “164”) are described in detail 109 (collection site/date and crop, insecticide spraying history, resistance status, levels of 110 biochemical resistance markers) in Roditakis et al (2009). Insects were maintained on

111

Page 5 of 17Insect Science

F o

r R

e v i e w

O

n l

y

cotton plants in an insect proof cage in a growth chamber at 25 (±1)?C, 50–60% RH and 112 a photoperiod 16:8 h light: dark. 113 114 Bioassays

115 A previously described procedure was used for the bioassays (Roditakis et al., 2005). 116 Briefly, a cotton leaf disc was immersed for 5 sec in aqueous solution of insecticide 117 containing 0.2 g litre -1 Triton X-100 (Merck, Germany), allowed to dry and placed on a 118 Petri dish embedded with thin sterile water agar. Twenty females were placed on each 119 leaf disc and the dishes were inverted for the insects to orientate normally and placed in 120 a large controlled environment room. Mortality data were recorder 72 hours later and 121 analyzed by probit (Probit software 3.3, Praxeme, by Raymond et al., 1993). Two 122 synergists, piperonyl butoxide (PB, Sigma, UK) and S,S,S-tributyl phosphorotrithioate 123 (DEF, Sigma, UK), applied via a tarsal contact method were included in the bioassay 124 experiment. Briefly, inner surfaces of 30 ml glass scintillation vials were coated by 125 rolling with 0.1 % PB or 2% DEF (v/v) in acetone and batches of 35 insects were pre-126 exposed to synergists for 4 h. After one hour interval insecticides were applied.

127

128 Cytochrome P450-activity assay

129 Approximately 400 adults were homogenized in 1 ml of sodium/potassium phosphate 130 buffer, pH 7.6 containing 1 mM EDTA, 1 mM dithiothreitol and 200 mM sucrose. The 131 homogenates were centrifuged at 5,000 g for 10 min at 4o C, the resulting supernatant at 132 15,000 g for 15 min and then again at 100,000 g for 1 h at 4o C, to obtain the 133 microsomal pellet, which was re-suspended in the same buffer and used to determine 134 Ethoxycoumarin O-deethylase (ECOD) activity, as previously described (Roditakis et 135 al., 2006). A unit correspond to the formation of 1 pmol 7-hydroxycoumarin per 136 minute/μg microsomal protein. 137

138 RNA isolation and cDNA synthesis

139 Total RNA was isolated using TRI reagent (Sigma) according to manufacturer’s 140 instructions. The RNA was treated with DNase RQ1 (Promega) to remove any 141 contaminating genomic DNA. First-strand cDNA was synthesized from total RNA

142

Page 6 of 17

Insect Science

F o

r R

e v i e w

O

n l

y

using SuperScript II RNase H reverse transcriptase (Invitrogen) and an oligo(dT) 143 adaptor primer [5’-GACTCGAGTCGATCGA (-dT)17-30] as described in the 144 manufacturer’s protocol. 145 146

147 Real time PCR

148 Gene-specific primers were designed to amplify ~200 bp fragments of CYP6CM1vQ 149 (qCYP6A14F:

5’TCCAGCTTCTCTGGCAGATT3’,

qCYP6A14R:

150 5’TATCACCGATGGCTCTCTCC3’, and

actin

(qactinF: 151 5’TCAGGGTGTAATGGTCGGTA3’,

qactinR:

152 5’TGATGATACCGTGCTCGATGG3’) for the real-time PCR experiments. 153 Incorporation of the fluorescent dye SYBR Green (Quantitect SYBR Green qPCR mix, 154 Qiagen) into double-stranded PCR products was used to determine mRNA copy 155 number. Standard plasmids were constructed by inserting fragments from the coding 156 region of each gene amplified from cDNA, into the pGEM T-easy vector (Promega 157 UK). These plasmids were utilized as template DNA at concentrations ranging from 1 158 ng to 10 fg to produce standard curves on an Opticon Lightcycler (Bio-Rad, UK) in 159 accordance with the manufacturer’s recommended protocols. A portion of the cDNA 160 (~1%) obtained from fifty insects was used as a template for each quantification. Thirty-161 five rounds of amplification were performed using 1 × Quantitect SYBR Green PCR 162 mix (Qiagen) and 5 pmol of each primer. The amplification cycle was 95 °C for 10 s, 57 163 °C for 15 s and 72 °C for 15 s. Each sample was analysed in duplicate for each 164 experiment and the means of two biological replicates calculated. The data were 165 quantified with Opticon Monitor Analysis software (MJ Research), and results were 166 expressed as a proportion of analysed gene transcripts to that of the actin internal 167 control. 168

169 Analysis of CYP6CM1vQ structure, selection of antigenic sequence and antibody 170 production

171 In order to design a peptide antibody which corresponds to a surface loop of CYP6CM1 172 (both B and Q versions) we used as a model the structure of human microsomal 173 cytocrome P450 3A4 determined by X-ray crystallography to 2.05A resolution. The

174

Page 7 of 17Insect Science

F o

r R

e v i e w

O

n l

y

structure of CYP3A4 was obtained from the Protein Data Bank (PDB ID:1TQN) and 175 analysed with Swiss PdbViewer 4.0.1. The chosen 15 aa synthetic peptide 176 (KSEKASKTDAGNDTC) had good hydrophilicity and low homology with other 177 members of the P450 family and is located close to the C terminus of CYP6CM1 both B 178 and Q versions). The peptide was synthesised using a semi-automated peptide 179 synthesiser (NovaBiochem). Antibodies were raised against peptide conjugates in New 180 Zealand White rabbits. The purification of the crude antibody was carried out with the 181 following procedure: The 15aa peptide was initially treated with Immobilised TCEP 182 disulfide reducing gel (PIERCE) in order to reduce peptide’s disulfide bonds and then it 183 was coupled with the Sulfolink coupling gel (PIERCE). The crude antibody (0.3ml) was 184 loaded on the column and incubated with the coupling gel for 1hour at RT. The column 185 was washed with 12ml PBS and the purified antibody was eluted with 4 ml elution 186 buffer (0.1M glycine HCL, pH 2.5-3.0). The eluted antibody was neutralised with 1M 187 sodium phosphate buffer, pH 8.8. 188

189 Immunoblotting

190 Immunoblotting was performed using 0.05 mg of microsomal protein. Briefly, the 191 proteins were prepared for SDS-polyacrylamide gel electrophoresis (10% acrylamide 192 running gel and 4% acrylamide stacking gel) and electroblotted onto PVDF 193 (polyvinylidene difluoride) membrane. After blocking the PVDF membrane with 5% 194 skimmed milk in PBS-Tween buffer, it was developed for immunoreactivity by 195 overnight exposure at 4o C to the purified polyclonal anti Btcyp6 antibody (1:250 196 dilutions in 3% skimmed milk in PBS-Tween buffer). Antibody binding was detected 197 using goat antirabbit IgG coupled to horseradish peroxidase (diluted 1:10.000 in 3% 198 skimmed milk in PBS-Tween buffer) and visualised using a horseradish peroxidase 199 sensitive ECL chemiluminescent Western blotting kit (GE Healthcare) and the result 200 was recorded on Hyperfilm. 201

202 Functional expression of CYP6CM1vQ

203 Competent E. coli DH5a cells were co-transformed with pCW_CYP6CM1vQ and an 204 expression vector (pACYC-AgCPR) containing cytochrome P450 reductase from 205 Anopheles gambiae (AgCPR, GenBank AY183375) and peIB signal sequence

206

Page 8 of 17

Insect Science

F o

r R

e v i e w

O

n l

y

(Mclaughlin et al., 2008), as previously described (Karunker et al., 2009). Cultures were 207 grown until the appearance of P450 in the CO-reduced spectra of whole cells (w24 h), a 208 point at which the cells were harvested. Spheroplasts were prepared as previously 209 described (Karunker et al., 2009), and the resulting membranes were diluted in TSE 210 buffer and stored at -70o C until required. P450 content was measured in reduced 211 samples by CO-difference spectra – (Omura and Sato, 1964). The activity of CPR was 212 estimated by measurements of NADPH-dependent reduction of cytochrome c at 550 nm 213 (Pritchard et al., 2006). Purified recombinant A. gambiae cytochrome b5 (AgCytb5, GB 214 AY183376) was prepared as previously described and was included in all reactions 215 (Karunker et al., 2009). Total protein concentration was determined by Bradford assay 216 (Bradford, 1976) using bovine serum albumin standards. 217

218 Insecticide metabolism assays

219 Neonicotinoids (>98% technical, Bayer Cropscience) were incubated with bacterial 220 membranes containing 0.5 mM of CYP6CM1vQ and approximately 3 mM b5 in 100 ml 221 Tris–HCl buffer (0.2 M, pH 7.4) containing 0.25 mM MgCl 2. The incubation was 222 performed in the presence or absence of NADPH generating system: 1 mM glucose-6-223 phosphate (Melford), 0.1 mM NADP (Melford), 1 unit ml -1 glucose-6-phosphate 224 dehydrogenase (G6PDH). Reactions were carried out at 30 o C with 1200 rpm shaking. 225 Samples were pre-warmed for 5 min before reactions were initiated by the addition of 226 membrane preparations. Reactions were stopped at 60 min with 100 ml of acetonitrile 227 and incubated for further 20 min to ensure that all insecticide was dissolved. The 228 quenched reactions were centrifuged at 20,000 g for 5 min before transferring the 229 supernatant to glass HPLC vials. 100 ml of the supernatant was injected at a flow rate of 230 1 ml min -1 at 23 o C. Neonicotinoids and their metabolites were separated on a 250 mm 231 C18 column (Acclaim 120, Dionex), as previously described (Karunker et al., 2009). 232

233 Results and discussion

234 CYP6CM1vQ -based imidacloprid resistance in laboratory selected strain and field 235 caught Q Biotype Bemisia tabaci populations from Crete

236

Page 9 of 17Insect Science

F o

r R

e v i e w

O

n l

y

In line with previous reports (Roditakis et al., 2009), relatively high levels of 237 imidacloprid resistance were identified in Q Biotype B. tabaci whiteflies from Crete. 238 Resistance ratio scaled up to 958-fold in the GR-IMI strain, derived from a field 239 population and subjected to mild laboratory selection with imidacloprid. Cytochrome 240 P450 activity, with the substrate ethoxycoumarin was significantly elevated (from 0.12 241 to 0.89 units) in the GR-IMI strain, while imidacloprid toxicity was increased more than 242 19-fold (LC 50 reduced from 345 to 17.8 mg/l) by pre-exposure to PB (Table 1), 243 suggesting that cytochrome P450(s) are mainly responsible for the reduced 244 susceptibility against imidacloprid. The expression of CYP6CM1vQ , previously 245 associated with imidacloprid resistance in laboratory selected populations from distinct 246 geographical regions, was analysed using real-time quantitative RT-PCR in the GR-IMI 247 strain, as well as in previously bio-assayed field populations from Crete with variable 248 resistance levels. The constitutive expression of CYP6CM1vQ was highly correlated 249 with resistance to imidacloprid in the GR-IMI and the field populations analysed 250 (Figure 1). In addition, CYP6CM1vQ mRNA accumulation was higher in the survivors 251 of a heterogeneous population (“164”, Roditakis et al 2009), two days after exposure to 252 a discriminative dosage of imidacloprid (Figure 1), which further indicates the 253 association of gene with the resistance phenotype. 254

255 Accumulated levels of CYP6CM1vQ transcripts lead to increased enzyme production in

256 imidacloprid resistant whiteflies

257 In order to test this assumption, that accumulated levels of CYP6CM1vQ transcripts lead 258 to increased enzyme production in imidacloprid resistant whiteflies, we performed 259 Western blot analysis, using microsomal preparations probed with anti-CYP6CM1 260 antiserum. The antiserum was raised against the peptide KSEKASKTDAGNDTC, 261 which was designed on antigenic and non conserved sequence C terminus of the 262 CYP6CM1vQ protein. Α single band of approximately 60 kDa was detected in all 263 strains, with intensity levels highly correlated with the levels of CYP6CM1vQ 264 transcripts and imidacloprid resistance. This finding indicates that elevated 265 CYP6CM1vQ transcripts lead to increased enzyme levels in imidacloprid resistant 266 strains and further emphasizes the likely involvement of the gene in resistance.

267

Page 10 of 17

Insect Science

F o

r R

e v i e w

O

n l

y

In addition, we explored the potential of the peptide antibody based assay, to diagnose 268 elevated levels of the CYP6CM1vQ protein in crude whitefly homogenates, and 269 possibly ELISA diagnostics. However, detection of the protein was hardly visible in any 270 of the crude homogenates tested (data not shown). 271

272 Cross–metabolism potential of recombinant CYP6CM1vQ

273 The isolated bacterial membranes of the functional monooxygenase contained 0.3 nmol 274 P450/mg CYP6CM1vQ protein, 5μM b5, and P450 reductase activity in the range of 275 200 nmol cytochrome c reduced/min/mg protein. NADPH-dependent depletion of 276 imidacloprid and paralleled formation of the 5-hydroxy imidacloprid, was observed 277 after incubating the compound with the P450 complex. Imidacloprid depletion and 278 metabolite peak formation were time-dependent, and approximately 40% of the total 279 compound was metabolized within 60 min. Incubations carried out in the absence of a 280 NADPH regenerating system showed no change in the control chromatogram of the 281 parental imidacloprid molecule. We subsequently examined the metabolic efficiency of 282 CYP6CM1vQ against a number of neonicotinoids, that have been used for the control of 283 B. tabaci . Clothianidin and thiacloprid were also metabolized by CYP6CM1vQ in an 284 NADPH and time dependent manner and approximately 70% of the total clothianidin 285 and 50% of the total thiacloprid included in the assay was metabolized within 60 min, 286 respectively. These findings were in line with previous bioassay studies which showed 287 cross resistance potential of imidacloprid resistance with these neonicotinoids ((Nauen 288 et al., 2002). However, no metabolic activity was observed against acetamiprid or 289 thiamethoxam, after 60 min incubation with 0.4 nmol P450/mg recombinant enzyme 290 CYP6CM1vQ, under assay conditions, although cross resistance to these compounds 291 was also reported in imidacloprid resistant strains (Nauen et al., 2002). The operation 292 of additional neonicotinoid resistance mechanisms cannot be excluded. 293

294 Concluding remarks

295 In line to previous studies, we showed that high levels of imidacloprid resistance were 296 associated with over-expression of CYP6CM1vQ in Q biotype B. tabaci laboratory 297 strains and field populations from Crete. High levels of CYP6CM1vQ transcripts were 298 also determined in survivors of a heterogeneous field population, after exposure to

299

Page 11 of 17Insect Science

F o

r R

e v i e w

O n l y

discriminating imidacloprid dosage, indicating a possible operating impact of the 300 CYP6CM1vQ-based resistance mechanism on B. tabaci control in the field.

301 Using specific peptide antibodies successfully produced against the CYP6CM1 (both Q 302 and B biotypes), and immunoblotting of the microsomal fraction, we demonstrated that 303 in line to transcriptional data, the CYP6CM1vQ protein levels were higher in the 304 imidacloprid resistant insects, which further emphasizes the role of the accumulated 305 transcripts of CYP6CM1vQ in imidacloprid resistance in B. tabaci . Aiming to develop a 306 specific ELISA test for detecting CYP6CM1vQ-based resistance, we also tested the 307 specific antibodies against crude homogenates of B. tabaci . However, the signal (band 308 intensity) was hardly visible by eye and didn’t allow protein quantification, using 309 standard protein detection techniques (data not shown).

310 Finally, assessment of the cross–metabolism potential of CYP6CM1vQ against 311 additional neonicotinoid molecules showed that clothianidin and thiacloprid, but not 312 acetamiprid or thiamethoxam, are metabolised by the recombinant enzyme in vitro . This 313 finding is in agreement with some previous studies that showed low levels of cross 314 resistance among neonicotinoids (Prabhaker et al., 2005), but not with others that 315 demonstrated high cross-resistance levels (Nauen et al., 2002).

316 317

318 Acknowledgements

319 This research was supported by grants from Bayer Crop Science and Hellenic 320 Secretariat General for Research and Technology (Vioalevrioi, to J.V.) and The Royal 321 Society to MP and JV. We thank Dimitra Tsakireli (University of Crete) for her help in 322 the functional expression of the CYP6CM1vQ. 323

324

Page 12 of 17

Insect Science

F o

r R

e v i e w

O

n l

y

References

325

326 Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of

327 microgram quantities of protein utilizing the principle of protein dye binding . 328 Analytical Biochemistry , 72, 248-254.

329 Cahill, M., Gorman, K., Day, S., Denholm, I., Elbert, A. and Nauen, R. (1996)

330 Baseline determination and detection of resistance to imidacloprid in Bemisia 331 tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research , 86, 332 343-349.

333 Chiu, T.-L., Wen, Z., Rupasinghe, S.G. and Schuler, M.A. (2008) Comparative

334 molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable 335 of metabolizing DDT . Proceedings of the National Academy of Sciences , 105, 336 8855-8860.

337 Elbert, A., Haas, M., Springer, B., Thielert, W. and Nauen, R. (2008) Applied aspects

338 of neonicotinoid uses in crop protection . Pest Management Science , 64, 1099-339 1105.

340 Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J.,

341 Gorman, K., Denholm, I. and Morin, S. (2008) Over-expression of

342 cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid 343 in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect 344 Biochemistry and Molecular Biology , 38, 634-644.

345 Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B.J., Paine,

346 M.J.I., Morin, S. and Vontas, J. (2009) Structural model and functional 347 characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450

348 associated with high levels of imidacloprid resistance . Insect Biochemistry and 349 Molecular Biology , 39, 697-706.

350 Mclaughlin, L.A., Niazi, U., Bibby, J., David, J.-P., Vontas, J., Hemingway, J.,

351 Ranson, H., Sutcliffe, M.J. and Paine, M.J.I. (2008) Characterization of 352 inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Molecular 353 Biology , 17, 125-135.

354 Nauen, R. and Denholm, I. (2005) Resistance of insect pests to neonicotinoid

355 insecticides: Current status and future prospects . Archives of Insect 356 Biochemistry and Physiology , 58, 200-215.

357 Nauen, R., Stumpf, N. and Elbert, A. (2002) Toxicological and mechanistic studies on

358 neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera : 359 Aleyrodidae). Pest Management Science , 58, 868-875.

360 Omura, T. and Sato, R. (1964) The Carbon Monoxide-binding Pigment of Liver

361 Microsomes . Journal of Biological Chemistry , 239, 2370-2378.

362 Prabhaker, N., Castle, S., Henneberry, T.J. and Toscano, N.C. (2005) Assessment of

363 cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci 364 (Hemiptera: Aleyrodidae). Bulletin of Entomological Research , 95, 535-543. 365 Pritchard, M.P., Mclaughlin, L.A. and Friedberg, T. (2006) Establishment of

366 Functional Human Cytochrome P450 Monooxygenase Systems in Escherichia 367 coli . Methods in Molecular Biology, vol 320 - Cytochrome P450 Protocols, 368 Second Edition (eds I.R. Phillips & E.A. Shephard), pp. 19-29. Humana Press 369 Inc, Totowa, NJ

370 Rauch, N. and Nauen, R. (2003) Identification of biochemical markers linked to

371 neonicotinoid cross resistance in Bemisia tabaci (Hemiptera : Aleyrodidae). 372 Archives of Insect Biochemistry and Physiology , 54, 165-176.

373

Page 13 of 17Insect Science

F o

r R

e v i e w O n l y

Raymond, M., Prato, G. and Ratsira, D. (1993) Probit analysis of mortality assays

374 displaying quantal response . Version 3.3 License 193019.

375 Roditakis, E., Grispou, M., Morou, E., Kristoffersen, J.B., Roditakis, N.E., Nauen, R.,

376 Vontas, J. and Tsagkarakou, A. (2009) Current status of insecticide resistance 377 in Q biotype Bemisia tabaci populations from Crete . Pest Management 378 Science , 65, 313-322.

379 Roditakis, E., Roditakis, N.E. and Tsagkarakou, A. (2005) Insecticide resistance in

380 Bemisia tabaci (Homoptera : Aleyrodidae) populations from Crete . Pest 381 Management Science , 61, 577-582.

382 Roditakis, E., Tsagkarakou, A. and Vontas, J. (2006) Identification of mutations in the

383 para sodium channel of Bemisia tabaci from Crete, associated with resistance 384 to pyrethroids . Pesticide Biochemistry and Physiology , 85, 161-166. 385 Tomizawa, M. and Casida, J.E. (2005) Neonicotinoid insecticide toxicology:

386 Mechanisms of selective action . Annual Review of Pharmacology and 387 Toxicology , 45, 247-268.

388 Vontas, J.G., Enayati, A.A., Small, G.J. and Hemingway, J. (2000) A simple

389 biochemical assay for glutathione S-transferase activity and its possible field 390 application for screening glutathione S-transferase-based insecticide 391 resistance . Pesticide Biochemistry and Physiology , 68, 184-192.

392 Wang, Z., Yao, M. and Wu, Y. (2009) Cross-resistance, inheritance and biochemical

393 mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest 394 Management Science , 65, 1189-1194.

395

396

Page 14 of 17

Insect Science

F o

r R

e v i e w

O

n l

y

397 398 Figure Legends

399

400

401 Figure 1. The expression levels of CYP6CM1vQ compared to imidacloprid

402 resistance (Resistance Ratio) in Bemisia tabaci from Crete.

403 The expression levels of CYP6CM1vQ in imidacloprid resistant strain GR – IMI and 404 field populations from Crete (“146”, “151”, “153”, “176”, “164”) described in details 405 (collection site/date and crop, insecticide spraying history, resistance status, levels of 406 biochemical resistance markers) in Roditakis et al (2009). Expression levels were also 407 determined in survivors (“164 Surv”) after exposure of a non homogeneous field 408 population (164) to high discriminating imidacloprid dosage. Y axis: normalised for 409 actin cyp6a14 expression ratio, compared to SUDs.

410 411

412 Figure 2. Relative levels of CYP6CM1vQ protein in Bemisia tabaci 413 with variable resistance levels to imidacloprid

414 As shown in commassie staining (down), equal amounts of microsomal protein from 415 the samples were applied to each lane. The blot (up) was developed with an 416 antipeptide antibody targeted against the CYP6CM1 protein under the conditions

417 described in the Methods section. 418

419

420

Page 15 of 17Insect Science

F o

r R

e v

i e w

O n

l y

15

Table 1. The response of the resistant Bemisia tabaci strain GR-IMI to imidacloprid alone or after synergistic exposure.

Strain Insecticide n

LC 50 (mg L -1) 95% CL Slope SE X 2 a RR Sud-S imidacloprid 578 0.36 0.24 - 0.53 1.04 0.10 5.4 - GR-MAL-RN imidacloprid 213 345 203 - 715 1.24 0.28 2.2 958 imidacloprid + DEF 277 261 180 – 421 1.54 0.28 4.1 727 imidacloprid + PB

222

17.8

6.47 - 34.5 0.67 0.13

2.4

49

n, number of whiteflies tested. CL, confidence limits. RR, resistance ratio. a

Chi square testing linearity of dose-mortality response

Page 16 of 17

Insect Science

Page 17 of 17Insect Science

F

o

r

R

e

v

i

e

w

O

n

l

y

F o

r R e v i e w

O n l y

Page 18 of 17

Insect Science

烟粉虱的生物防治

烟粉虱的生物防治 烟粉虱[Bemisia tabaci (Gennadius)],又称甘薯粉虱、棉粉虱,是热带和亚热带地区的重要害虫之一。20世纪80年代中期以来,由于新生物型(B型)的出现和广泛传布,以及抗药性的迅速发展,已成为许多国家棉花、蔬菜和园林花卉等植物的主要害虫,平均每年在世界各地造成的经济损失超过3亿美元,在美国10年内所造成的损失超过10亿美元。近年来,我国粉虱种群发生动态出现了明显变化,B型烟粉虱有逐年加重危害与蔓延的趋势。在烟粉虱的治理中,生物防治是十分重要的控制手段,且烟粉虱的天敌资源丰富,各国学者对其天敌的研究和应用做了较多工作并已在生产实践中取得一定成效。 1 捕食性天敌的研究和应用目前已报道的烟粉虱捕食性天敌约有114种(隶属9目31科),其中瓢虫94种、捕食蝽25种、草岭14种、捕食螨17种。虽然天敌种类较多,但实际应用的只有少数几种,且大部分属多食性捕食者。Dean等指出多食性捕食者具有行为可塑性,可通过取食多种猎物提高其捕食作用,使种群得以繁衍。 1.1瓢虫类小黑瓢虫(Delphastus catalinae)原产于美国,为粉虱的专食性捕食者,在加州和弗罗里达等地已成功地应用于控制棉花和圣诞红上的烟粉虱,并已被引入欧洲和我国福建。在室内,小黑瓢虫以取食粉虱卵的生殖力最强,而在田间取食粉虱若虫时生殖力较大。当粉虱密度较低时还可取食红蜘蛛等其它猎物,但不能维持种群繁衍。小黑瓢虫能够捕食已被寄生的粉虱若虫,但随着蚜小蜂的发育能被逐渐辨别而嗜食未被寄生的若虫。小黑瓢虫已由多家公司生产销售,其温室作物

推荐释放量为1头成虫/1.39-9.29m2。有报道说,小毛瓢虫(Nephaspis oculatus)捕食烟粉虱的潜能虽低,但其搜索力明显强于小黑瓢虫,因此当粉虱密度较低时,该种瓢虫的种群密度较高。 1.2 捕食蝽类盲蝽Macrolophus caliginosus为多食性捕食者,取食烟粉虱的卵、若虫和成虫,且更嗜食粉虱卵;当粉虱密度较低时,还可取食某些花卉植物以维持其种群的延续。在欧洲,盲蝽已被广泛用于防治烟粉虱和温室白粉虱(Trialeurodes vaporariorum)。由于该盲蝽历时1个多月方能建立种群,与丽蚜小蜂(Encarsia Formosa)同时释放是保持温室粉虱种群密度较低的关键措施。目前已在地中海地区一些国家得到应用。Rabou报道在茄子地以2头/株的释放量连续释放3次盲蝽,1个月后粉虱种群便可得到有效控制;以0.5-1头/m2的释放量每2周1次,结合每周释放1次丽蚜小蜂,亦能有效地控制温室番茄粉虱的危害。此外,斯氏盲走螨(Typhlodromus swirskii)和Euseius scutalis取食烟粉虱后,其内禀增长力比烟粉虱增大,且能在温室单一种植的作物上抑制烟粉虱种群的增长,有进一步利用的价值。 2 寄生性天敌的研究与应用烟粉虱的寄生性天敌资源丰富,包括恩蚜小蜂属(Encarsia)、桨角蚜小蜂属(Encarsia)、Amitus属和阔柄跳小蜂属(metaphycus)的许多种类。我国初步调查记录有19种(主要隶属恩蚜小蜂属和桨角蚜小蜂属)。 2.1恩蚜小蜂属该属种类多为单寄生。少数为重寄生或多寄生。成虫均将卵产在寄主体内。由于丽蚜小蜂能成功地防治温室白粉虱,因此,国内外学者已做了不少研究与报道。有关成蜂和幼虫的生物学特性、该蜂与粉虱相互作用的种群动态

我国丽蚜小蜂防治烟粉虱研究进展

我国丽蚜小蜂防治温室白粉虱研究 XXXX (XXXX大学,XXXX学院XX系,XX,4XXXXX) 摘要: 随着温室大棚的普及,温室优良的种植环境同样非常适合害虫的生长繁殖。农药的使用 让害虫的抗药性越来越强,农药残留也越来越严重。在这种情况下,利用生物防治控制温室害 虫的方法越来越受到重视。本文将为大家介绍我国针对丽蚜小蜂防治温室白粉虱的研究。 关键词:温室白粉虱;丽蚜小蜂;生物防治;低温贮存;蜂卡 Research in Encarsia formosa(Gahan)control Trialeurodes vaporariorum(Westwood)in our country WANG Run-Zheng (Department of Entomology, College of Plant protection , Henan Agricultural University , Zhengzhou 450000 , China) Abstract:With the popularity of gerrnhouses , the excellent growing conditions of green- houses are also very suitable for the growth of pests. The use of pesticides leads the pests get stronger resistance to pesticides, and the pesticide residue is becoming more and more seri- ous. In this situation, Using the method of biological control to control the pests of green- houses have got more and more attention. This article will introduce you that the research of using Encarsia formosa(Gahan)control Trialeurodes vaporariorum(Westwood) in our cou- ntry. Key words:Trialeurodes vaporariorum(Westwood); Encarsia formosa(Gahan); biological control; cold storage; Bee card 温室白粉虱Trialeurodes vaporariorum(Westwood)属于同翅目粉虱科(Homoptera:Aleyrodidae),是一种世界上非常普遍的多食性害虫,我国各地均有发生。寄住范围非常广,除了蔬菜中的黄瓜、茄子、辣椒、豆类、白菜、芹菜等外,还能为害花卉、果树、药草、烟草等共121科898种植物[1]。温室白粉虱主要取食植物韧皮部汁液,通过直接刺吸危害、传播植物病毒、引起植物生理混乱、分泌蜜露诱发真菌病害,给作物的生产造成了巨大的经济损失[2][3]。 蚜小蜂科(Aphelimidae)寄生蜂在针对粉虱和介壳虫等害虫的生物防治中发挥了重要的作用[4]。其中,丽蚜小蜂Encarsia formosa(Gahan)属于膜翅目(Hymenoptera)蚜小蜂科恩蚜小蜂属(Encarsia),主要分布在温带和亚热带。丽蚜小蜂是一种致死取食型寄生蜂,是目前公认的防治温室白粉虱最好的寄生性天敌,已在许多国家进行商业化生产并推广应用。丽蚜小蜂通过取食和寄生这两种方式控制烟粉虱,其生殖方式为单寄生、孤雌生殖,且能避免自身重复寄生[5]。1927年英国人Speyer最早用丽蚜小蜂控制温室白粉虱,随后其他国家开始引入使用,我国于1978年12月初从英国温室作物研究所引进丽蚜小蜂[6]。 1. 丽蚜小蜂防治温室白粉虱 1.1确定丽蚜小蜂放蜂密度 有研究表明,随着丽蚜小蜂的释放前期白粉虱虫口密度的增加,丽蚜小蜂对白粉虱的抑制作用降低,寄生率也降低。说明丽蚜小蜂的繁殖速度滞后于白粉虱,因此用丽蚜小蜂防治白粉虱时,应在发生的初期、虫口密度较低时释放丽蚜小蜂最为适宜[7]。 有研究显示丽蚜小蜂的释放方法可如此:以番茄为例,当每株番茄上温室白粉虱成虫在10头以下时,每667㎡释放丽蚜小蜂卵2000头,隔一周释放一次,持续3-5次;当每株番茄上温室白粉虱成虫在20-30头时,每667㎡释放丽蚜小蜂卵3000-4000头为宜[8]。

烟粉虱的危害生物型及有关生物化学的研究进展

北京农业科学 烟粉虱专辑 14烟粉虱的危害 北京市农林科学院植保环保所 北京 100089?-2úóúèè′?oí??èè′?μ?????3??a?àê3D?o|3??¨?üμè?-??×÷??ó???êò°×·?ê-Trialeurodes vaporariorum 相比涉及74科420余种植物具有更大的经济危害性 烟粉虱在我国部分地区正在取代温室白粉虱成为温室及其它经济作物的主要害虫本文对国外烟粉虱的部分研究成果综述如下 1889年Gennadius 记述了希腊的一种烟草害虫这是烟粉虱的首次报道在美国的甘薯上发现了第一个新北区白粉虱标本称之为甘薯粉虱[2]·?ààμ???ò2±?μ??ì?y2?????19个种名作为B. tabaci 的同物异名[3]?ì·?ê-?ú???×?D?1óD?T·?ê-oí?êêí·?ê-μè??????3? ???÷?2??êêó|?üá|ò??°′?2¥?2??2???μ??üá|é?óD?ù2?í?óúê?ò?D??§??òà?Y?ì·?ê-μ??aD?2?òì???ì·?ê-??·??aè??ééú??Dí ??óDè???B 生物型重新命名为银叶粉虱 文中描述了烟粉虱在温室花卉上前所未有的的危害据统计从1985~1998年间 A B 型比A 型产更多的卵因而分泌更大量的蜜露 而A 型不会它具有导致西葫芦叶片银叶化的特征从世界许多地方收集的烟粉虱标本证明了这样的假设B 生物型的存在可以用异构酶标记法和多态DNA 扩增法来证实 Bellows (1994)提出以烟粉虱B 生物型为基础建立粉虱新种Bemisia argentifolii B 型蛹的几个形态特征成为鉴别银叶粉虱的依据 B 生物型argentifolii 前蜡缨细窄与之相反这些描述和用于区分A 和B 生物型异构酶标记以及在某些条件下生物型不能交配的证据已经被用做新的分类单元

我国棉田烟粉虱研究进展

江西农业学报 2009,21(7):104~106Acta Agr i culturae Jiangxi 我国棉田烟粉虱研究进展 孙厚俊,谢逸萍 收稿日期:2009-04-29 基金项目:徐州市农科院基金(200705)。 作者简介:孙厚俊(1980-),男,江苏丰县人,助理研究员,硕士,主要从事作物虫害研究。 (中国农业科学院甘薯研究所,江苏徐州221121) 摘 要:综述了烟粉虱在我国棉田的为害现状、特点,对近几年烟粉虱爆发的原因进行了分析,并提出了棉花烟粉虱的防治措施。 关键词:棉花;烟粉虱;防治 中图分类号:S435.62 文献标识码:A 文章编号:1001-8581(2009)07-0104-03 R esearch Progress of Be m isia taba ci in Cotton F ields in Ch i n a S UN H ou-jun ,XIE Y i -ping (Instit ute of Sweet Pota t o ,Chi nese Acade my of Agricu lt ura l Sciences ,Xuzho u 221121,Ch i na) Abstra ct :The characteristics of the occurrence and da m age of B e m isi a taba ci (Gennadi us)i n cotto n fields i n Chi na were re 2vie wed i n this paper .The reaso ns for its o utbreak i n recent y ears were ana l yzed ,and its co ntrolm eas ures were put f or ward . Key words :Cotto n ;Be m isia taba ci ;Control 烟粉虱[Be m isia tab a c i (Ge nnadi us)]又叫棉粉虱、甘薯粉虱,属同翅目(Ho mopter a)粉虱科(Aleyrodi dae)小粉虱属(B e m isi a Quai ntance &Ba ker),是一种多食性的小型昆虫。以其刺吸式口器吸食寄主叶片汁液,同时其分泌物能诱发煤污病、病毒病危害,是近年我国经济作物上的重要害虫之一。烟粉虱在我国危害棉花的报道始见于1953年的台湾省[1] ,20世纪80年代末以前,云南、海南、湖北、上海等地有烟粉虱危害棉花的报道,但危害较轻,发生范围局限在部分区域[2] ,一直未列入主要害虫。20世纪90年代中期以来,我国棉田烟粉虱发生范围迅速扩大,危害逐步加重,并迅速成为棉田的重要害虫,给我国棉花生产造成了严重影响 [3~6]。本文就我国棉田烟 粉虱的分布、为害、重发生原因及防治策略作一综述。 1 我国棉田烟粉虱的分布 20世纪90年代以前,我国棉田烟粉虱发生范围局限于云南、上海、湖北等部分地区[7] ,90年代中、后期,发生范围呈逐步蔓延态势。1999年在新疆吐鲁番市长绒棉研究所试验地棉花遭受烟粉虱的严重危害,棉花、棉絮布满蜜露,纤维受到严重污染,煤污病也十分严重。1999年河北、山东、河南等黄河流域棉区先后受到危害。21世纪以来,烟粉虱在长江流域棉区迅速扩散,2003年江苏省棉田发生,2004年湖北省武汉市暴发,2007年湖南 省洞庭湖地区大发生。据统计,2007年棉田烟粉虱发生面积达206.7万h m 2 ,其中湖北、江苏、安徽、河北、山东、山西、河南、甘肃、湖南北部、新疆吐鲁番等地区发生较为严重,已上升为当地棉花生产的重要害虫 [3,4,7~11] 。烟粉 虱对我国棉花的生产构成了严重威胁,造成了很大的经济损失,并有进一步加重危害与扩散蔓延的趋势。 2 烟粉虱在棉花上的为害及分布特点 烟粉虱是一种多食性、刺吸式口器害虫,生活周期分为卵、4个若虫期和成虫期,通常人们将第4龄若虫称为伪蛹。在棉花上主要以吸食棉花叶片汁液、大量消耗 棉花同化产物为害,导致棉株衰弱,严重时甚至可使植株死亡,造成棉花大幅度减产。 2.1 烟粉虱对棉花的为害 烟粉虱为害棉花主要表现在3个方面:一是以成虫、若虫直接在棉花叶片刺吸汁液,造成植株衰弱,导致受害棉株叶片正面出现褪绿色斑,虫口密度高时出现成片黄斑,叶片失水枯死脱落成光秆,棉株中上部掉蕾落铃,严重影响棉花产量和纤维品质。二是诱发其他病害,烟粉虱若虫、成虫分泌的蜜露能诱发煤污病等真菌类病害,严重时病株表面形成较厚的霉层,影响光合作用,有的重发棉田最终因病毁苗。三是烟粉虱能传播多种病毒病,如由该虫传播的棉花皱缩病毒(Cd TV)可使早期得病的棉花产量损失80%,棉铃减少15%~87%,铃重降低0~39%,棉株上部受害减产58%,整株受害减产69% [12] 。该虫以持久性方式传毒, 在有毒寄主植物上取食较短时间(10~60m i n)后即可传毒,如果取食时间长(24~48h),则传毒效率更高,一旦 获得毒性,就可连续传毒20d 以上[13] 。因此,烟粉虱为害能给棉花生产带来严重威胁。 2.2 烟粉虱在棉花上的分布特征 烟粉虱在棉花上的分布特征,有不少学者进行了研究。周福才等研究结果

烟粉虱的发生规律与防治技术

烟粉虱的发生规律与防治技术 摘要近年来,烟粉虱在和县已由次要害虫上升为蔬菜、棉花上的主要害虫,成为蔬菜、棉花生产发展的主要障碍之一。分析烟粉虱发生与为害特点,针对烟粉虱发生规律,提出综合防治对策。 关键词烟粉虱;为害特点;发生规律;防治措施 近几年,我地蔬菜产区秋番茄、秋延辣椒烟粉虱局部暴发,少数重发田块出现了毁棚绝收;棉花产区烟粉虱全面暴发,为害面积大、减产严重。烟粉虱在我地已由次要害虫上升为蔬菜、棉花上的主要害虫,已成为蔬菜、棉花生产发展的主要障碍之一。 1发生与为害特点 近年来,冬季温室大棚等保护地迅速增多,持续暖冬气候,为烟粉虱种群数量的积累提供了有利条件。再加上我地大面积种植转Bt基因抗虫棉后,大幅度减少了化学农药的使用量,使原来棉田内的偶发性害虫得不到兼治,烟粉虱等种群越来越大,导致了烟粉虱的为害趋于加重。 烟粉虱虫体微小,体覆白色蜡粉,繁殖力强,1年发生10多代,田间世代重叠。在25℃条件下从卵到成虫需要18~30d,成虫寿命10~22d。 蔬菜上,烟粉虱成虫、若虫群集叶背为害,直接刺吸植株汁液,使叶片褪绿发黄、萎蔫,植株矮小或枯死;成虫、若虫所分泌的蜜露诱发煤污病,影响光合作用,直接严重影响蔬菜的产量和品质。棉花上,烟粉虱成虫、若虫聚集在棉叶背面,以刺吸式口器吸取棉株的营养物质。虫口密度大时,棉叶正面出现成片黄斑,严重时引起蕾铃和叶片大量脱落,使棉花减产;成虫、若虫还大量分泌蜜露,蜜露多时可使棉叶棉铃污染变黑,影响光合作用,导致干物质积累减少,棉铃吐絮时受到污染,会使棉纤维品质下降。烟粉虱还可传播多种病毒,使茄果类、瓜类、豆类等众多作物感染病毒病,造成严重损失。 2发生规律

烟粉虱的发生危害及防治对策

烟粉虱的发生危害及防治对策 摘要烟粉虱是徐州市棉花、蔬菜等多种旱作物上的重要害虫之一。总结其危害特点,并对其重发原因加以分析,以提出防治对策。 关键词烟粉虱;发生;防治 烟粉虱属同翅目、粉虱科,是我市棉花、蔬菜等多种旱作物上的重要害虫之一,自2001年在新沂市部分乡镇首次发现以来,发生程度逐年加重。受其为害,棉花、蔬菜等作物大量落叶、落果,煤污病暴发,作物产量和品质受到严重影响。据调查,烟粉虱在我市适宜寄主近70种,包括棉花、大豆、蔬菜等作物及一品红、紫荆等花卉林木,这些寄主作物往往插花种植,播期又相互交错,许多成为桥梁寄主,为烟粉虱种群暴发提供了稳定的食料条件。 1危害特点 烟粉虱是一种寄主范围广、传播和蔓延速度快、繁殖能力强、为害程度高、防治难度较大的危险性害虫,在适宜的寄主植物上具有趋嫩性,成虫喜聚集在植物顶部嫩叶背面活动,在植物的中下部叶片主要是卵及若虫。烟粉虱对植物的为害主要有三个方面:一是以成虫、若虫刺吸植物汁液,造成寄主营养缺乏,影响正常的生理活动,使受害叶片褪绿萎蔫直至死亡;二是成虫可作为植物病毒的传播媒介,传播病毒病;三是由于其分泌蜜露引起被害植物煤污病的发生,虫口密度高时,叶片呈现黑色,影响光合作用和外观品质。据调查,烟粉虱对不同的植物有不同的危害症状,如番茄被害,表现为果实不均匀成熟;甘蓝、花椰菜被害表现为叶片萎缩、黄化、枯萎;西葫芦、南瓜被害表现为银叶;花卉一品红被害造成茎苍白,叶黄化;棉花被害,叶正面出现褐色斑,虫口密度高时出现成片黄斑,严重时导致蕾铃脱落,影响棉花产量和纤维质量。近几年我市因烟粉虱危害造成棉花脱落成光杆、茄果类蔬菜减产超过5成以上的例子屡见不鲜。由于该虫迁移扩散能力较强,在发生量大的地区,秋季将大量向城区扩散,严重影响城市空气质量和环境,甚至影响居民出行。 2重发原因

烟粉虱测报技术规范20150428

NY/T ××××—2012 烟粉虱测报技术规范(试行稿) 1 范围 1.1 本规范规定了棉田烟粉虱发生程度分级指标、越冬虫源基数调查、成虫迁入监测、系统调查、大田普查、预测方法,以及数据汇总、汇报方法等方面的技术和方法。 1.2 本规范适用于长江流域、黄河流域和西北内陆棉区非自然露地越冬区棉田烟粉虱的测报调查和预报。 2 术语与定义 2.1 烟粉虱若虫分类:1龄和2龄若虫统称低龄若虫,3龄、4龄若虫和伪蛹统称为高龄若虫。 2.2 发生危害期的划分:全年的发生危害期划分为两个阶段,即蕾期烟粉虱和花铃期烟粉虱,简称蕾虱和花铃虱。 2.3 百株三叶成虫量(头/百株三叶):指选取一定株数棉花,在每株指定部位选3张叶片,用翻转叶片法调查叶片上成虫的数量,折算成百株三叶成虫量。 2.4 距蔬菜保护地距离:指棉田边缘与蔬菜保护地边缘最近点的直线距离。 3 发生程度分级指标 发生程度分级指标:分蕾期和花铃期,以百株三叶烟粉虱成虫虫量为指标定发生程度。发生程度分为5级,轻发生(1级)、偏轻发生(2级),中等发生(3级),偏重发生(4级),大发生(5级)。具体分级指标如下: 表1 烟粉虱发生程度分级指标 4 越冬虫量调查 4.1 调查时间 在蔬菜保护地揭膜前一周左右调查。正常年份各棉花揭膜时间,长江流域棉区在4 1

月上中旬;黄河流域棉区5月中旬,西北内陆棉区在6月上旬。 4.2 调查地点 棉田周边的保护地蔬菜上,重点调查葫芦科、十字花科、豆科、茄科和菊科等蔬菜。按距离棉田小于500m、500~1000m和大于1000m分别调查各类蔬菜保护地,每类保护地调查2个。 4.3 调查方法 保护地内蔬菜上随机取5点,每点随机选4株蔬菜,每株分别取上部、中部、下部叶片各1张,调查成虫和高龄若虫的数量。对叶片着生密集较难区分上、中、下部叶片的蔬菜,可取上、中部嫩叶2张和下部老叶1张,调查烟粉虱虫量。 成虫调查采用翻转叶片法,将叶片轻轻翻转,动作要既轻又快,集中精力迅速目测背面叶片上的大概成虫量,然后仔细查看叶片中的成虫数量,再加上估计已飞走的虫量,计为整个叶片上的成虫数量。高龄若虫的调查方法,取白纸一张,用刀刻出一个1cm×1cm的正方形小孔。将白纸上的正方形小孔随机放在叶片背面上,计数正方形小孔中高龄若虫的数量;还要估算叶片面积,算出单片叶片若虫量。结果记入烟粉虱越冬虫量调查记载表(见附录A表A.1)。 5 棉田系统调查 5.1 成虫迁入棉田时间调查 5.1.1 调查时间 棉花移栽或定苗后开始,至烟粉虱迁入棉田达始盛期结束,一般为15天左右。 5.1.2 调查地点 分别选择距保护地蔬菜田小于500m、500-1000m和大于1000m的棉田各1块,作为系统调查田。 5.1.3 调查方法 保护地,在系统调查田内,面向蔬菜保护地一侧、距田埂1m左右处悬挂黄板,每块田挂2块黄板,黄板尺寸为20cm×30cm。黄板悬挂高度为黄板下缘高出棉花冠层10cm。随着棉花的生长,黄板悬挂高度相应提高,以保持黄板与棉花冠层的相对高度。黄板5天更换1次,雨后及时更换。每5天调查1次,观察黄板上诱集的成虫数量。当成虫迁入数量显著增加,结合历年观测情况,确定成虫迁入棉田的始盛期。调查结果记入烟粉虱黄板诱集记载表(见附录A表A.2)。 5.2 棉田系统调查 5.2.1 调查时间 自黄板监测烟粉虱成虫迁入棉田始盛期开始,至9月底结束,每5天调查1次。晴天2

烟粉虱寄生蜂的应用

烟粉虱寄生蜂的应用 烟粉虱Bemisia tabaci ( Gennadius) 属同翅目粉虱科, 属于世界性害虫,其寄主范围广泛。烟粉虱可直接刺吸植物汁液,造成寄主营养缺乏,影响正常的生理活动。若虫和成虫还可分泌蜜露,诱发煤污病,虫口密度高时,叶片呈现黑色,严重影响光合作用和外观品质;虫还可作为植物病毒的传播媒介,引发病毒病[1]。烟粉虱被列为当今对农业造成较大灾害的 100种入侵害虫之一,它造成的全球每年经济损失超过 3亿美元[2]。因此,烟粉虱的防治成为研究的热点。烟粉虱的防治方法主要有药剂防治、物理防治、农业防治以及生物防治[3]。化学防治目前仍是烟粉虱防治的主要手段之一 ,但烟粉虱体被蜡粉 ,且对大多数农药以及优乐得等生长调节剂类杀虫剂产生了不同程度的抗性. 面对烟粉虱为害日趋严重而化学防治难以奏效的现状 ,世界许多国家、地区都给予极大关注,从不同方面对其防治方法和控制策略进行了大量研究, 其中生物防治是研究的重点之一. 生物防治主要包括利用天敌昆虫和昆虫病原微生物 ( 主要有虫生真菌 ) 进行防治[4]。本文着重概括了烟粉虱生物防治中的天敌昆虫寄生蜂防治的研究和应用情况。 2.烟粉虱寄生蜂种类 Gerling等列出了桨角蚜小蜂属 11 种、恩蚜小蜂属 34 种、和埃宓细蜂属 2 种[5],浙江大学孟祥锋等总结了烟粉虱的寄生蜂种类 ,共计 56 种, 包括桨角蚜小蜂属15 种、恩蚜小蜂属 35 种、棒小蜂属 2 种、埃宓细蜂属 3 种、阔柄跳小蜂属1种等[6]。根据研究统计,中国烟粉虱寄生蜂资源十分丰富,其种类目前约有 27 种,占世界总数的 54%。其中,中国烟粉虱寄生蜂有桨角蚜小蜂属 6种,恩蚜小蜂属 21 种,主要分布在长江流域以南的福建、广东、广西、台湾和香港等地,其中台湾种类分布最多,有 17 种恩蚜小蜂和 3 种桨角蚜小蜂,占总数的 74.0%;其次是福建,有 12 种恩蚜小蜂和 3 种桨角蚜小蜂,占总数的55.6%[7].下面就主要对恩呀小蜂属、浆角蚜小蜂两个属进行描述。 2.1恩呀小蜂属 目前,在已报道的恩蚜小蜂属47 种烟粉虱寄生蜂中,丽蚜小蜂和浅黄恩蚜小蜂已能进行商业化生产[8].并且前者已大量应用于生产实践[9]. 恩蚜小蜂为单寄生性内寄生蜂 ,是异律发育的寄生蜂(异律发育即雌雄蜂有不同的生殖方式和发育规律)。生殖方式是两性产雌, 雌蜂为初寄生蜂 ,雄蜂为自复寄生。

烟粉虱-双生病毒-植物互作加剧生物入侵的过程和生理机制

烟粉虱-双生病毒-植物互作加剧生物入侵的过程和生理机制 摘要:烟粉虱(Bemisa tabaci)及其传播的双生病毒是全球性重大入侵生物,给农业生产造成了严重损失。媒介昆虫—病毒—植物互作是决定病害流行和昆虫种群动态的重要因子,但其在生物入侵中所起的作用一直未受到关注。入侵烟粉虱与双生病毒通过寄主植物所形成的间接互惠共生可能是其广泛入侵并取代土著近缘生物的一个重要生态机制。现已从植物生理变化、昆虫共生细菌生理功能和昆虫生理反应三个方面综合探讨这种互惠关系的生理机制及分子机制,以期深入揭示媒介昆虫与病毒互作在生物入侵中的作用,为发展高效的预警和治理技术体系提供理论基础。 关键词:烟粉虱—双生病毒—植物互作;生物入侵;生理机制 Process and physiological mechanisms of the Bemisia tabaci—geminiviruses—plant interactions in accelerating biological invasions WANG Tao Abstract: Bemisa tabaci and the begomoviruses it transmits are importabt invasive pests worldwild, which have caused enormous damage to crops. V ector—begomovirus—plant interactions are potentially important determinants of disease epidemics and population dynamics of insects; however, their roles in biologic invasions are poorly understood. Our investigations indicate that an indirect mutualistic relationship between B. tabaci and begomoviruses may be established via their shared host plants and such an indirect mutualism may accelerate the process of biological invasions. We have also been investigating the physiological and molecular mechanisms of the indirect mutualism, inding the physiological changes of host plants,functions of endosymbionts associated with vector insects and physiological reactions of the insets. Our objectives are to reveal the roles of vector—begomovirus—plant interactions in biological invasions and provide fundamental information for the development of more effective forewarning and management systems. Key words:Bemisia tabac i—geminiviruses—plant interactions; biological invasions; physiological mechanisms 在全球经济一体化的背景下,随着国际贸易、旅游业和交通业蓬勃发展,人员、物资及交通工具在世界各地间的频繁往来使得外来生物入侵的机率大大增加。近二十年来生物入侵迅速加剧,已造成大量的经济损失和生态灾难。由于生物入侵可在全球范围内各种尺度和方向发生,就必然导致全球生物区系逐步同质化,加速土著物种的灭绝和生物多样性的丧失。由于生物入侵的机率在今后较长时间内将有增无减,同时入侵的生物会繁殖、扩散和爆发,并在此过程中不断进化并适应新的环境。因此,生物入侵对经济发展、生态安全和人体健康的危害将是巨大的、长远的。 生物入侵是一个包括到达新区域、定居、建群,而后扩散、暴发的复杂链式过程。对于生物入侵,预防比控制显然更为经济。然而,即使检疫体系不断完善,生物的入侵也会不断发生,而且一个新的入侵种,一旦被发现已在较大范围发生并造成严重危害,它就已经在新地区扎住了根,再想根除它往往是不可能的,我们可有的选择就是如何按照生态学规律对其进行持续治理,控制其危害。显然,深入揭示生物入侵过程的动态规律和调控机制,将有助于发展高效的预警和治理技术体系。此外,从进化生物学和生态学的基础研究而言,生物入侵给系统探索种间互作等许多生态现象的过程和机理提供了独特机遇。 然而,虽然对入侵生物学研究的理论和实践意义多有共识,但这一领域研究的进展却显得艰难。至今为止,对于“什么样的物种更易成为入侵种”以及“什么样的群落更易被入

烟粉虱成虫在日光温室内的分布和日活动规律

第26卷第5期 2006年5月生 态 学 报ACT A EC O LOGIC A SI NIC A V ol.26,N o.5May ,2006 烟粉虱成虫在日光温室内的分布和日活动规律 侯茂林,文吉辉,卢 伟 (中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京 100094) 基金项目:国家社会公益研究专项资助项目(2004DI B4J156);教育部留学回国科研基金资助项目 收稿日期:2005211211;修订日期:2006204225 作者简介:侯茂林(1968~),男,湖南人,博士,副研究员,主要从事昆虫生态、生物防治和害虫综合治理研究.E 2mail :maolinhou @https://www.360docs.net/doc/5119041864.html,.致谢:感谢长江大学实习本科生乔飞、胥小平、杨光全参与试验调查;河北省固安县蔬菜管理局于觉民、杜永清在温室使用和工作上提供诸多方便 Found ation item :The project was supported by Program on Research for Public G ood ,M OST of China (N o.2004DI B4J156)and SRF for ROCS ,M OE.of China R eceived d ate :2005211211;Accepted d ate :2006204225 Biography :H OU M ao 2Lin ,Ph.D.,Ass ociate profess or ,mainly engaged in research w ork in the fields of insect ecology ,biological control and IPM.E 2mail :maolinhou @https://www.360docs.net/doc/5119041864.html, 摘要:采用中色粘虫板(黄板)和植株调查方法在河北省固安县日光温室内研究了烟粉虱成虫在黄瓜结瓜盛期(4月下旬~5月 上旬)的分布和日活动规律。结果表明,温室北边平均诱集量((66818±66319)头Π(板?d ))是南边((35715±34914)头Π(板?d ))的 1187倍;除8∶00~10∶00以外,其他时段内北边诱集量均显著高于南边;同时,北边植株上烟粉虱成虫数量也显著高于南边。温室东边逐日和各时段诱集量均高于西边,但差异不显著。在垂直方向,烟粉虱成虫在黄瓜所有叶片上均有分布。烟粉虱成虫从6∶00~18∶00各时段均很活跃,但不同时段活动水平存在差异。8∶00~10∶00平均诱集比例最高(2517%±917%),12∶00~14∶00 最低(1312%±512%);8∶00~10∶00的诱集量显著高于其他时段。另外,黄板南面诱集量((35215±18611)头Π(板?d ))显著高于 北面诱集量((16017±9014)头Π(板?d ))。对日光温室黄瓜上烟粉虱的监测、成虫诱杀和综合治理的意义进行了讨论。 关键词:烟粉虱;日光温室;黄瓜;黄板;活动;分布 文章编号:100020933(2006)0521431207 中图分类号:Q96811 文献标识码:A Distribution and daily activities of Bemisia tabaci (G ennadius)adults within solar greenhouse H OU Mao 2Lin ,WE N Ji 2Hui ,LU Wei (Institute o f Plant Protection ,Chinese Academy o f Agricultural Sciences ,Stale K ey Laboratory o f Biology o f Plant Diseases and Insect Pests ,Beijing 100094,China ).Acta Ecologica Sinica ,2006,26(5):1431~1437. Abstract :Distribution and daily activities of Bemisia tabaci adults in solar greenhouse (east 2west oriented )were investigated with yellow sticky traps (Y STs ,25×30cm in size )and by plant inspection in G u ’an C ounty ,Hebei Province from late April to early M ay when cucumber was vig orous fruiting.Results show that the Y STs installed in the north side of the greenhouse caught 11872 fold m ore whitefly adults than those in the south side (66818adults Π(trap ?d )vs 35715adults Π(trap ?d )).Catches within each of the five tw o 2hour intervals from 6∶00to 18∶00by Y STs in the north side were significantly greater than in the south side with an exception of the tw o 2hour interval from 8∶00to 10∶00.Number of B .tabaci adults on plants in the north side was also significantly greater than that in the south side.In the east 2west direction ,catches (daily average and averages within each tw o 2hour interval )in the east side were not significantly different from those in the west side.B .tabaci adults were m ore active at certain periods of time than at others during the day as indicated by the percentages of adults caught on the Y STs at different time intervals ;the highest percentage of adults was caught between 8∶00to 10∶00(2517%)and the lowest ,between 12∶00to 14∶00(1312%).When the Y STs were arranged at east 2west direction ,the surface facing south caught significantly m ore B .tabaci adults than the surface facing north.The current results are discussed with reference to m onitoring ,adult trapping and IPM of B .tabaci on solar greenhouse cucumber.

烟粉虱和温室白粉虱的区别

调查 研究 烟粉虱和温室白粉虱的区别Ξ 胡敦孝, 吴杏霞 (中国农业大学昆虫学系,北京 100094) 摘要: 对烟粉虱和温室白粉虱形态做了区别,介绍了B型烟粉虱和温室白粉虱在生物生态学上的差异,同时给出了B型烟粉虱特征性银叶反应的鉴定方法。 关键词: 烟粉虱; 温室白粉虱; 银叶反应 中图分类号: S43313 S4361429 文献标识码: B 文章编号: 0529-1542(2001)05-0015-04 长期以来在中国北方温室中发生的粉虱均为温室白粉虱(T rialeurodes vaporariorum Westwood),在露地未见粉虱大发生的报道。但从1995年以后,烟粉虱(Bem isia tabaci G ennadius)在北方部分温室中逐渐蔓延开来,2000年8~11月北京市东南郊的温室蔬菜和露地蔬菜烟粉虱大暴发。烟粉虱又称棉粉虱,甘薯粉虱, 是热带或亚热带大田作物的主要害虫之一。最近十几年来,出现新的B型烟粉虱(又称银叶粉虱Bem isia argentif olii Bellows&Perring),它比其他型烟粉虱有更强的适应能力,造成作物严重减产和品质损害,已引起世界各国关注[1~3]。如何防治这两种粉虱,明确它们在温室、大棚蔬菜、花卉上的生 物学特性和相互关系,以及B型烟粉虱在田间棉花、蔬菜、花卉等作物上的发生情况,首先需准确认识这两种粉虱。现把这两种粉虱的主要区别介绍如下。 1 粉虱鉴别的主要特征 粉虱的分类鉴定是根据粉虱4龄若虫后期的拟蛹特征来进行,其中拟蛹腹部端节背面的皿状孔的特征是分类的重要依据。分类特征主要包括:皿状孔的形状,隆起或凹陷;盖片的形状;舌状突是否突出盖片外,突出部分的形状,末端是否具有刚毛,是否伸出皿状孔外等等。皿状孔的功能是排泄蜜露。肛门即开口于盖瓣下面与舌状突的基部,盖片和舌状突起控制蜜露最终排出的作用。用于分类的其他拟蛹特征还很多,见图1所标注内容[4]。 2 两种粉虱拟蛹的区别 显微镜下观察,烟粉虱的皿状孔为长三角形,舌状突长,匙状,顶端有一对毛,尾沟基部有瘤状突起5~7个(封面图右上)。而温室白粉虱皿状孔长心脏形,舌状突短,上有小瘤状突起多个,轮廊呈三叶草状,顶端有1对刚毛,亚缘体周边单列分布,有60 图1 粉虱拟蛹模式图(仿Matin修改) 多个小乳突,背盘区还对称有4~5个较大的圆锥形大乳突(封面图右下)。在田间,两者的区别也是明显的。烟粉虱拟蛹的外观为椭圆形、边缘自然倾斜,通常无背刺毛,颜色为淡绿色至黄色,有1对红眼睛(封面图中上)。在多毛的叶片上,拟蛹边缘被叶毛挤压成不规则形,拟蛹背面可具刺毛;温室白粉虱拟蛹的外观为立体(边缘垂直)椭圆形,似蛋糕状,颜色为白色至淡绿色,半透明,拟蛹边缘有腊丝,背上通常有发达直立长刺毛5~8对,是由原乳突内蜡腺分泌的(封面图中下),光滑的叶片上也有不具长刺毛的拟蛹。两者成虫羽化均经拟蛹背面的倒“T”形裂缝中脱出。拟蛹壳上有圆形孔的均为该拟蛹寄生蜂的羽化孔。温室白粉虱被寄生的拟蛹为黑紫色,烟粉虱被寄生拟蛹为深褐色。烟粉虱B型与其他型烟粉虱的拟蛹在形态上很难区分,依据个体第4前亚缘毛(ASMS4)存在于种群中比例的大小,前胸气门外的腊缘饰的宽度曾用来区别烟粉虱B型和A Ξ收稿日期: 2001-05-29

烟粉虱经济阈值的研究

第27卷第2期江西农业大学学报Vol.27,No.2 2005年4月Acta Agriculturae Universitatis J iangxiensis Ap r.,2005 文章编号:1000-2286(2005)02-0234-04 烟粉虱经济阈值的研究 沈斌斌,任顺祥,P.h.Musa,陈超 (华南农业大学资源环境学院昆虫学系,广东广州510642) 摘要:研究了烟粉虱在黄瓜上的经济损害水平和经济阈值。黄瓜幼苗4叶期时,烟粉虱的经济损害水平为 9.3159%;烟粉虱的经济阈值为每株黄瓜有烟粉虱成虫18.4474头,即平均每片黄瓜叶有成虫4.6119头。 关键词:经济损害水平;经济阈值;烟粉虱;黄瓜 中图分类号:Q968.1 文献标识码:A A Study on Econo m i c Threshold of B em isia tabaci SHEN B in-bin,REN Shun-xiang,P.h.Musa,CHEN Chao (Depart m ent of Ent omol ogy,College of Res ources and Envir onment,SCAU,Guangzhou510642, China) Abstract:The experi m ent was conducted t o esti m ate the econo m ic injury level(E I L)and econom ic threshold(ET)of B.tabaci.W hen the cucu mber p lant gre w int o the4-leaf stage,the E I L of B.tabaci was 9.3159%;the ET of B.tabaci was about18.4474adults/p lant,or4.6119adults/leaf. Key words:econom ic injury level;econom ic threshold;B e m isia tabaci;cucumber 烟粉虱B e m isia tabaci(Gennaduid)属同翅目(Homop tera)粉虱科(A leyr odidae),近年来,由于一系列原因使得烟粉虱已成为黄瓜上的重要害虫,导致黄瓜产量大幅度下降[1,2]。害虫经济损害水平(Eco2 nom ic injury level,E I L)和经济阈值(Econom ic threshold,ET)的测定,是对害虫进行综合防治的重要内容和基础。在对烟粉虱由目前单纯的、盲目的农药防治转向综合防治和生态控制的过程中,烟粉虱经济损害水平和经济阈值的制订具有重要的实践意义。 Hussey等(1971)曾提出温室白粉虱Tria leurodes vaporariorum的防治指标,即黄瓜上部叶片每片有烟粉虱成虫50~60头[3],该防治指标由于没有附加黄瓜植株生长发育期,因而一直存在较大争议。目前国外(美国、巴基斯坦)只有烟粉虱在棉花上经济损害水平和经济阈值的研究报道[4,5]。国内尚无烟粉虱的相关报道。 1 材料与方法 试验于2003年9~11月在广东省江门市新会区沙堆镇沙湾村黄瓜大田内进行,黄瓜品种为神农春4号,由天津市科兴蔬菜研究所生产。 当黄瓜幼苗刚移栽至大田时,用密纱网将黄瓜幼苗罩住,保证幼苗上无烟粉虱和其它害虫。网室大小为长2m、宽1m、高2.2m,每个网室小区罩5株黄瓜幼苗。黄瓜地行距1.0m、株距0.4m。当黄瓜苗移栽至大田约1个星期、黄瓜幼苗长出4片嫩真叶时,以每株黄瓜苗0、40、60和80头(平均每片黄瓜叶有烟粉虱成虫0、10、15和20头)的密度分别向每个网室小区内接入烟粉虱成虫5×0=0、5×40= 收稿日期:2004-11-28 基金项目:“十五”国家攻关资助项目(2001BA509B0604) 作者简介:沈斌斌(1965-),男,博士,从事昆虫生态和种群控制研究工作。

相关文档
最新文档