大学物理学(第3版.修订版)下册答案

大学物理学(第3版.修订版)下册答案
大学物理学(第3版.修订版)下册答案

习题9

9.1选择题

(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,

则Q与q的关系为:()

(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q

[答案:A]

(2)下面说法正确的是:()

(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;

(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;

(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;

(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D]

(3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()

(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0

[答案:C]

(4)在电场中的导体内部的()

(A)电场和电势均为零;(B)电场不为零,电势均为零;

(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]

9.2填空题

(1)在静电场中,电势不变的区域,场强必定为。

[答案:相同]

(2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中

心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零]

(3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命]

(4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:5:6]

9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?

解: 如题9.3图示

(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

2

220)3

3(π4130cos π412a q q a q '=?εε

解得 q q 3

3-

=' (2)与三角形边长无关.

题9.3图 题9.4图

9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,

求每个小球所带的

解: 如题9.4图示

??

?

??

===220)sin 2(π41

sin cos θεθθl q F T mg T e

解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式2

04r

q E πε=

,当被考察的场点距源点电荷很近(r →0)时,则场强→

∞,这是没有物理意义的,对此应如何理解

?

解: 02

0π4r r q E

ε=

仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求

场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.

9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =

2

024d q πε,又有人说,因为f =qE ,S

q

E 0ε=

,所以f =S

q 02

ε.试问这两种说法对吗?为什么? f 到底应等于多少

?

解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S

q

E 0ε=

看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q

E 02ε=,另一板受它的作用力S

q S q

q f 02

022εε=

=,这是两板间相互作用的电场力.

9.7 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m

-1

(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示

(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强

为2

0)

(d π41d x a x

E P -=

λε 2

22

)

(d π4d x a x

E E l l P P -=

=?

?-ελ

题9.7图

]2

12

1[π40

l a l a +

--=

ελ

)

4(π220l a l

-=

ελ

用15=l cm ,9100.5-?=λ1m C -?, 5.12=a cm 代入得

21074.6?=P E 1C N -? 方向水平向右

(2)

22

20d d π41d +=

x x

E Q λε 方向如题9.7图所示

由于对称性?

=l Qx

E 0d ,即Q E

只有y 分量,

∵ 2

2

2

222

20d

d d d π41d ++=

x x x E Qy

λε

2

2π4d d ελ?==l

Qy

Qy E E ?

-+22

2

3

222)

d (d l l x x

22

2

0d

4π2+=

l l

ελ

以9100.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代入得

21096.14?==Qy Q E E 1C N -?,方向沿y 轴正向

9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取?Rd dl =

题9.8图

?λλd d d R l q ==,它在O 点产生场强大小为

2

0π4d d R R E ε?

λ=

方向沿半径向外

则 ??ελ

?d sin π4sin d d 0R

E E x =

=

??ελ

?πd cos π4)cos(d d 0R

E E y -=

-=

积分R

R E x 000

π2d sin π4ελ

??ελπ

==

?

0d cos π400

=-=?

??ελ

π

R

E y

∴ R

E E x 0π2ελ

==,方向沿x 轴正向.

9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r

处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强

E

解: 如9.9图示,正方形一条边上电荷

4

q

在P 点产生物强P E d 方向如图,大小为 ()

4

π4cos cos d 2

2021l r E P +

-=

εθθλ

∵ 2

2cos 2

21l r l +

=

θ

12cos cos θθ-=

∴ 2

4

π4d 2

22

20l r l l r E P +

+

=

ελ

P E

d 在垂直于平面上的分量βcos d d P E E =⊥

∴ 4

2

4

π4d 2

22

22

20l r r

l r l r l

E

+

+

+

=

⊥ελ

题9.9图

由于对称性,P 点场强沿OP 方向,大小为

2

)4(π44d 42

22

20l r l r lr

E E P ++

=

?=⊥ελ

∵ l

q 4=λ ∴ 2

)4(π42

22

20l r l r qr

E P ++

=

ε 方向沿OP

9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?

解: (1)由高斯定理0

d εq

S E s

?=?

立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量0

6εq

e =

Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量0

6εq e =

Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则0

24εq

e =Φ, 如果它包含q 所在顶点则0=Φe .

如题9.10图所示. 题9.10 图

9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3

求距球心5cm ,

8cm ,12cm 各点的场强. 解: 高斯定理0

d ε∑?

=

?q S E s

,0

2

π4ε∑=

q r

E

当5=r cm 时,0=∑q ,0=E

8=r cm 时,∑q 3

π4p

=3(r )3

内r - ∴ ()

202

3π43π4r

r r E ερ

内-=

41048.3?≈1C N -?, 方向沿半径向外. 12=r cm 时,3

π4∑=ρ

q -3(外r )内3

r ∴ ()

4203

31010.4π43π4?≈-=

r

r r E ερ

内外 1C N -? 沿半径向外.

9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.

解: 高斯定理0

d ε∑?=?q

S E s

取同轴圆柱形高斯面,侧面积rl S π2=

则 rl E S E S

π2d =??

对(1) 1R r <

0,0==∑E q

(2) 21R r R << λl q =∑

∴ r

E 0π2ελ

=

沿径向向外

(3) 2R r >

=∑q

∴ 0=E

题9.13图

9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ

,试求空间各处场

解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E

)(21210

σσε-=

1σ面外, n E

)(21210

σσε+-=

2σ面外, n E

)(21210

σσε+=

n

:垂直于两平面由1σ面指为2σ面.

9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.

解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).

(1) ρ+球在O 点产生电场010=E

ρ- 球在O 点产生电场'd π4π343

0320

OO r E ερ=

∴ O 点电场d 33

030r E ερ

= ;

(2) ρ+在O '产生电场'd

π4d 3430301E ερπ='

ρ-球在O '产生电场002='E

∴ O ' 点电场 0

03ερ

='E 'OO

题9.14图(a) 题9.14图(b)

(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r

(如题8-13(b)图)

则 0

3ερr

E PO =,

3ερr E O P '

-=' ,

∴ 0

003'3)(3ερερερd

OO r r E E E O P PO P

=

='-=+=' ∴腔内场强是均匀的.

9.15 一电偶极子由q =1.0×10-6

C d=0.2cm ,把这电

偶极子放在1.0×105

N ·C

-1

解: ∵ 电偶极子p

在外场E 中受力矩

E p M ?= ∴ qlE pE M ==max 代入数字

4536max 100.2100.1102100.1---?=?????=M m N ?

9.16 两点电荷1q =1.5×10-8

C ,2q =3.0×10-8

C ,相距1r =42cm ,要把它们之间的距离变为

2r =25cm ,需作多少功?

解: ??

==?=

222

1

02120

21π4π4d d r r r r q q r r q q r F A εε )1

1(21r r -

61055.6-?-=J

外力需作的功 61055.6-?-=-='A A J

题9.17图

9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的

解: 如题9.17图示

0π41ε=

O U 0)(=-R

q

R q 0π41ε=

O U )3(R q

R q -R

q 0π6ε-

= ∴ R

q

q U U q A o C O 00π6)(ε=-=

9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O

解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =

则θλd d R q =产生O 点E

d 如图,由于对称性,O 点场强沿y 轴负方向

题9.18图

θεθ

λπ

πcos π4d d 22

2

0??-==R R E E y

R 0π4ελ=

[)2sin(π-2

sin π

-]

R

0π2ελ

-=

(2) AB 电荷在O 点产生电势,以0=∞U

?

?===A

B

20

0012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π40

2ελ

=

U 半圆环产生 0

034π4πελ

ελ==

R R U

∴ 0

032142ln π2ελ

ελ+=

++=U U U U O

9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1

的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31

kg ,电子电量e =1.60×10-19

C)

解: 设均匀带电直线电荷密度为λ,在电子轨道处场强

r

E 0π2ελ

=

电子受力大小 r

e eE F e 0π2ελ

=

=

∴ r

v m r e 2

0π2=ελ

得 132

0105.12π2-?==

e

mv ελ1m C -?

9.20 空气可以承受的场强的最大值为E =30kV ·cm -1

,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm

解: 平行板电容器内部近似为均匀电场 4105.1d ?==E U V

9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符

证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,

2σ,3σ,4σ

题9.21图

(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有

0)(d 32=?+=??S S E s

σσ

∴ +2σ03=σ

说明相向两面上电荷面密度大小相等、符号相反;

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即

022220

4

030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=

说明相背两面上电荷面密度总是大小相等,符号相同.

9.22 三个平行金属板A ,B 和C 的面积都是200cm 2

,A 和B 相距4.0mm ,A 与C 相距2.0

mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7

C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?

解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ

题9.22图

(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴

2d d 21===AC

AB

AB AC E E σσ 且 1σ+2σS

q A

=

得 ,32S q A =

σ S

q A 321=σ 而 711023

2

-?-=-

=-=A C q S q σC C

10172-?-=-=S q B σ

(2) 30

1

103.2d d ?==

=AC AC AC A E U εσV

9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势

??

∞∞==?=2

2

02

0π4π4d d R R R q

r

r q r E U εε

题9.23图

(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:

0π4π42

02

0=-

=

R q R q U εε

(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且

0π4'

π4'π4'2

02

01

0=+-+

-

=

R q q R q R q U A εεε

得 q R R q 2

1

=' 外球壳上电势

()2

2

021202

02

0π4π4'π4'π4'R q

R R R q q R q R q U B εεεε-=+-+

-

=

9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有

一点电荷+q ,试求:金属球上的感应电荷的电量.

解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U

题9.24图

由电势叠加原理有:

=

O U 03π4π4'00=+R

q R q εε

得 -='q 3

q

9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:

(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2

解: 由题意知 2

020π4r q F ε=

(1)小球3接触小球1后,小球3和小球1均带电

2

q q =

', 小球3再与小球2接触后,小球2与小球3均带电

q q 4

3=''

∴ 此时小球1与小球2间相互作用力

0022018

348342

F r πq

r π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为

3

2q

. ∴ 小球1、2间的作用力0029

4

π432322F r q

q F ==ε

9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.

解: 利用有介质时的高斯定理∑?=?q S D S

d

(1)介质内)(21R r R <<场强

3

03π4,π4r

r

Q E r r Q D r εε ==内; 介质外)(2R r <场强

3

03π4,π4r r

Q E r Qr D ε ==外

(2)介质外)(2R r >电势

r

Q

E U 0r

π4r d ε=

?=?∞ 外 介质内)(21R r R <<电势

2

020π4)11(π4R Q R r q

r εεε+-=

)1

1(π42

0R r Q

r r -+=

εεε

(3)金属球的电势

r d r d 2

2

1 ?+?=??

∞R R R E E U 外内

?

?

+=22

2

2

0π44πdr R R R

r r Qdr

r Q εεε

)11(

π42

10R R Q r r

-+=

εεε

9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.

解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E

,自由电荷面密度分别为2σ与1σ 由∑?=?0d q S D

11σ=D ,22σ=D

而 101E D ε=,202E D r εε=

d

21U

E E =

= r

d r d ?+?=??∞∞r

r

E E U 外内

r r E E εεεεσσ==1

02

012

题9.27图 题9.28图

9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S

则 rlD S D S π2d )

(=??

当)(21R r R <<时,

Q q =∑

∴ rl

Q

D π2=

(1)电场能量密度 2

222

2π82l r Q D w εε== 薄壳中 rl

r

Q rl r l r Q w W εευπ4d d π2π8d d 22

222=== (2)电介质中总电场能量

?

?===2

1

1

22

2ln π4π4d d R R V

R R l Q rl r Q W W εε (3)电容:∵ C

Q W 22

=

∴ )

/ln(π22122R R l

W Q C ε=

=

题9.29图

9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:

AB U .

解: 电容1C 上电量

111U C Q =

电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 35

50

25231123232?===

C U C C Q U 86)35

25

1(5021=+

=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ?

解: (1) 1C 与2C 串联后电容

120300

200300

2002121=+?=+=

'C C C C C pF

(2)串联后电压比

2

3

1221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.

9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8

C

(1)整个电场储存的能量;

(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.

解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q

题9.31图

(1)在1R r <和32R r R <<区域

0=E

在21R r R <<时 301π4r r

Q E ε

=

3R r >时 3

02π4r

r

Q E ε

=

∴在21R r R <<区域

?

=2

1

d π4)π4(21222001R R r r r

Q W εε ?

-==2

1

)1

1(π8π8d 2

102202R R R R Q r r Q εε

在3R r >区域

?∞

==323

022

20021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )1

11(π83

210221R R R Q W W W +-=+=ε

41082.1-?=J

(2)导体壳接地时,只有21R r R <<时3

0π4r

r

Q E ε

=

,02=W ∴ 42

10211001.1)1

1(π8-?=-==R R Q W W ε J

(3)电容器电容 )1

1/(π42210

2

R R Q W C -==

ε 121049.4-?=F

习题10

10.1选择题

(1) 对于安培环路定理的理解,正确的是:

(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;

(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C]

(2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;

(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;

(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B]

(3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B]

(4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]

10.2 填空题

(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。

[答案:

a

I

πμ220,方向垂直正方形平面]

(2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。

[答案:能, 不能]

(3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。

[答案:零,正或负或零]

(4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。

[答案:相同,不相同]

10.3 在同一磁感应线上,各点B

的数值是否都相等?为何不把作用于运动电荷的磁力方向

定义为磁感应强度B

的方向?

解: 在同一磁感应线上,各点B

的数值一般不相等.因为磁场作用于运动电荷的磁力方向

不仅与磁感应强度B

的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁

场决定的,所以不把磁力方向定义为B

的方向.

题10.3图

10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B

的大小在沿磁

感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?

解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B

=

∑?

==-=?0d 021I bc B da B l B abcd

μ

∴ 21B B

=

(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,

但B 方向相反,即21B B

≠.

10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?

答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.

10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题10.6图)的环路积分

?外B L

·d l =0

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学第三版课后习题参考答案

习 题 1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度 2/2s m a ,则一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R 2, 2 (B) t R 2,0 (C) 0,0 (D) 0,2t R [答案:B] 1.2填空题 (1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初

始时刻质点的速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以 速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321 V V V ] 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零

大学物理课后习题答案(北邮第三版)下

大学物理习题及解答 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 20 220)33(π4130cos π412a q q a q '=?εε 解得 q q 33 - =' (2)与三角形边长无关. 题8-1图 题 8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ????? ===22 0)sin 2(π41sin cos θεθθl q F T mg T e 解得 θ πεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式 204r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解? 解: 2 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则 这两板之间有相互作用力f ,有人说f =2 02 4d q πε,又有人说,因为f =qE , S q E 0ε= ,所

大学物理学第二版第章习题解答精编

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理学(第三版)第二章课后标准答案

习题2 2.1 选择题 (1) 一质点作匀速率圆周运动时, (A)它的动量不变,对圆心的角动量也不变。 (B)它的动量不变,对圆心的角动量不断改变。 (C)它的动量不断改变,对圆心的角动量不变。 (D)它的动量不断改变,对圆心的角动量也不断改变。 [答案:C] (2) 质点系的内力可以改变 (A)系统的总质量。 (B)系统的总动量。 (C)系统的总动能。 (D)系统的总角动量。 [答案:C] (3) 对功的概念有以下几种说法: ①保守力作正功时,系统内相应的势能增加。 ②质点运动经一闭合路径,保守力对质点作的功为零。 ③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 在上述说法中: (A)①、②是正确的。 (B)②、③是正确的。 (C)只有②是正确的。 (D)只有③是正确的。 [答案:C] 2.2填空题 (1) 某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。在从x=0移动到x=10m 的过程中,力F 所做功为。 [答案:290J ] (2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。则物体加速度的大小为,物体与水平面间的摩擦系数为。 [答案:2 2 ;22v v s gs ] (3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为。 [答案:2; 3 k k E E ] 2.3 在下列情况下,说明质点所受合力的特点: (1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。 解:(1)所受合力为零;

大学物理学第三版下册习题答案习题8

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 2 20) 33( π4130cos π41 2 a q q a q '= ?εε 解得 q q 3 3-=' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ?? ??? ===22 0)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθ tan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 02 4d q πε,又有人 说,因为f =qE ,S q E 0ε= ,所以f = S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强 也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 3 02cos r p πεθ, θE = 3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

最新大学物理第三版下册答案

大学物理第三版下册 答案

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ?? ? ? ? = = = 2 2 ) sin 2( π4 1 sin cos θ ε θ θ l q F T mg T e 仅供学习与交流,如有侵权请联系网站删除谢谢103

仅供学习与交流,如有侵权请联系网站删除 谢谢103 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷 很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解? 解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说 f = 2 02 4d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作 用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力.

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理学(第三版)第三章课后答案(主编)赵近芳

习题3 3.1选择题 (1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转 动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台 中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J + (B) 02)(ωR m J J + (C) 02ωmR J (D) 0ω [答案: (A)] (2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角 速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止, 其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a) (b) 题3.1(2)图 [答案: (A)] (3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端 连结此物体,;另一端穿过桌面的小孔,该物体原以角速度w 在距孔为R 的圆周 上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。 (B )动量不变,动能改变。 (C )角动量不变,动量不变。 (D )角动量改变,动量改变。 (E )角动量不变,动能、动量都改变。 [答案: (E)] 3.2填空题 (1) 半径为30cm 的飞轮,从静止开始以0.5rad ·s -2的匀角加速转动,则飞轮边缘 上一点在飞轮转过240?时的切向加速度a τ= ,法向加速度

a n= 。 [答案:0.15; 1.256] (2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。 题3.2(2)图 [答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒] (3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B,则有J A J B 。(填>、<或=) [答案: <] 3.3刚体平动的特点是什么?平动时刚体上的质元是否可以作曲线运动? 解:刚体平动的特点是:在运动过程中,内部任意两质元间的连线在各个时刻的位置都和初始时刻的位置保持平行。平动时刚体上的质元可以作曲线运动。 3.4刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同? 解:刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。 3.5刚体的转动惯量与哪些因素有关?请举例说明。 解:刚体的转动惯量与刚体的质量、质量的分布、转轴的位置等有关。如对过圆心且与盘面垂直的轴的转动惯量而言,形状大小完全相同的木质圆盘和铁质圆盘中铁质的要大一些,质量相同的木质圆盘和木质圆环则是木质圆环的转动惯量要大。

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2 /2s m a ,则一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R 2, 2 (B) t R 2,0 (C) 0,0 (D) 0,2t R [答案:B] 1.2填空题 (1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小 是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 [答案: 23m·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321 V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r |与r 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r 是位移的模, r 是位矢的模的增量,即r 12r r ,12r r r ; (2) t d d r 是速度的模,即t d d r v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r (式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r 式中 t r d d 就是速度在径向上的分量,

大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章答案(赵近芳)

————————————————————————————————作者:————————————————————————————————日期:

习题11 11.1选择题 (1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。 [答案:B] (2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。 [答案:A] (3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式22 1LI W m =() ( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。 [答案:D] (4)对于涡旋电场,下列说法不正确的是(): (A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。 [答案:C] 11.2 填空题 (1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。 [答案:磁力] (2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。 [答案:洛伦兹力,涡旋电场力,变化的磁场] (3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。 [答案:端点,2 2 1l B ω;中点,0] 11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ? 垂直.当回路半 径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m ,v

=0,求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 12 2 34c t t v ++ = 由题知,0=t ,00=v ,∴01=c 故 22 34t t v + = 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2 + = 积分得 23 2 2 12c t t x ++ = 由题知 0=t ,50=x ,∴52=c 故 52 123 2 ++ =t t x 所以s 10=t 时 m 7055102 1 102s m 190102 3 10432101210=+?+?=?=?+ ?=-x v 1-10 以初速度0v =201 s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理(第二版)下册答案-马文蔚剖析

物理学教程(二)下册 答案9—13 马文蔚 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图 (B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电

场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零 (D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ). *9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止 (B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题 9-4 图 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ). 9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10 -21 e ,而中子电量与零差值的最大范围也不会超过±10 -21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10 -21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-??+= 二个氧原子间的库仑力与万有引力之比为 1108.2π46202max <

相关文档
最新文档