《Matlab神经网络30个案例分析》RBF网络的回归-非线性回归的实现

《Matlab神经网络30个案例分析》RBF网络的回归-非线性回归的实现
《Matlab神经网络30个案例分析》RBF网络的回归-非线性回归的实现

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

高二数学《1.1回归分析的基本思想及其初步应用》教案 文

第一章统计案例 1.1回归分析的基本思想及其初步应用(一) 第一课时 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编号 1 2 3 4 5 6 7 8 165 165 157 170 175 165 155 170 身高 /cm 体重 48 57 50 54 64 61 43 59 /kg 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路→教师演示→学生整理) 第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身次函数y bx a 高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即 =++,其中残差残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e 变量e中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同. 备课人:张颖岳新霞王莉

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

matlab多元线性回归模型

云南大学数学与统计学实验教学中心 实验报告 一、实验目的 1.熟悉MATLAB的运行环境. 2.学会初步建立数学模型的方法 3.运用回归分析方法来解决问题 二、实验内容 实验一:某公司出口换回成本分析 对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本. 实验二:某建筑材料公司的销售量因素分析 下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品

竞争数和地区销售潜力分别是影响建筑材料销售量的因素。1)试建立回归模型,且分析哪些是主要的影响因素。2)建立最优回归模型。 提示:建立一个多元线性回归模型。

三、实验环境 Windows 操作系统; MATLAB 7.0. 四、实验过程 实验一:运用回归分析在MATLAB 里实现 输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x]; Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*'); [b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288 bint = 1.8873 3.4322 -0.3820 -0.0757 stats = 0.4958 10.8168 0.0072 0.0903 即==1,0?6597.2?ββ,-0.2288,0?β的置信区间为[1.8873 3.4322],1,?β的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立. 1 1.5 2 2.5 散点图 估计某家公司商品流转费用率是6.5%的出口换汇成本。将x=6.5代入回归模型中,得到 >> x=6.5; >> y=2.6597-0.2288*x y = 1.1725

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

线性回归分析教案

线性回归分析 管理中经常要研究变量与变量之间的关系,并据以做出决策。前面介绍的检验可以确定两个变量之间是否存在着某种统计关系,但是如果检验说明两个变量之间存在着某种关系,我们还是不能说明它们之间究竟存在什么样的关系。 本章介绍的回归分析能够确定两个变量之间的具体关系和这种关系的强度。回归分析以对一种变量同其他变量相互关系的过去的观察值为基础,并在某种精确度下,预测未知变量的值。 社会经济现象中的许多变量之间存在着因果关系。这些变量之间的关系一般可以分为两类:一类是变量之间存在着完全确定的关系,即一个变量能被一个或若干个其他变量按某种规律唯一地确定,例如,在价格P确定的条件下,销售收入Y与所销售的产品数量之间的关系就是一种确定性的关系:Y=P·X。另一类是变量之间存在着某种程度的不确定关系。例如,粮食产量与施肥量之间的关系就属于这种关系。一般地说,施肥多产量就高,但是,即使是在相邻的地块,采用同样的种子,施相同的肥料,粮食产量仍会有所差异。统计上我们把这种不确定关系称为相关关系。 确定性关系和相关关系之间往往没有严格的界限。由于测量误差等原因,确定性关系在实际中往往通过相关关系表现出来;另一方面,通过对事物内部发展变化规律的更深刻的认识,相关关系又可能转化为确定性关系。 两个相关的变量之间的相关关系尽管是不确定的,但是我们可以通过对现象的不断观察,探索出它们之间的统计规律性。对这类统计规律性的研究就称为回归分析。回归分析研究的主要内容有:确定变量之间的相关关系和相关程度,建立回归模型,检验变量之间的相关程度,应用回归模型进行估计和预测等。 第一节一元线性回归分析 一、问题的由来和一元线性回归模型 例7-1。某地区的人均月收入与同期某种耐用消费品的销售额之间的统计资料如表7-1所示。现要求确定两者之间是否存在相关关系。 表7-1 年份1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 人均收入 1.6 1.8 2.3 3.0 3.4 3.8 4.5 4.8 5.2 5.4 销售额(百万元) 4.7 5.9 7.0 8.2 10.5 12 13 13.5 14 15 如果作一直角坐标系,以人均收入x i为横轴,销售额y i为纵轴,把表7-1中的数据画在这个坐标系上, 我们可以看出两者的变化有近似于直线的关系,因此,可以用一元线性回归方程,以人均收入为自变量,以销售额为因变量来描述它们之间的关系。即: y i =a+b x i+e i() i n =12,,,

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

Matlab多元线性回归

Matlab多元线性回归 [ b , bint , r , rint , stats ]=regress ( y , x ) , 其中b 是回归方程中的参数估计值,bint 是b 的置信区间,r 和rint 分别表示残差及残差对应的置信区间。StatS 数组包含三个数字,分别是相关系数,F 统计量及对应的概率p 值。 拟合结果: Y=b(1)x(1)+b(2)x(2)+b(3)x(3)+…+b(n)x(n) b(1)是系数,x(1)为全1的一个列向量。 注意:不是插值。 x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3155 3372];%因变量时间序列数据 y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%自变量时间序列数据 X=[ones(size(x')),x']; [b,bint,r,rint,stats]=regress(y',X,0.05);%调用一元回归分析函数 rcoplot(r,rint)%画出在置信度区间下误差分布. 举例:

x = 1 2 4 9 1 4 3 7 1 5 9 0 1 9 1 8 >> y=[10 3 90 48]'; >> [ b , bint , r , rint , stats ]=regress ( y , x ) 得到的结果 b = -186.8333 16.0238 21.8571 8.5952 bint = NaN NaN NaN NaN

高中数学《回归分析》教案1 苏教版选修2-3

3.2回归分析(1) 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计 时刻x /s 1 2 3 4 5 6 7 8 位置观测值y /cm 5.54 7.52 10.02 11.73 15.69 1 6.12 16.98 21.06 根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据线性回归的系数 公式,1 221 ()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑ 可以得到线性回归方为$3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为$22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型. 说明:(1)产生随机误差的主要原因有:

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

实验六-用SPSS进行非线性回归分析

实验六用SPSS进行非线性回归分析 例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系

图1原始数据和散点图分析 一、散点图分析和初始模型选择 在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。 分析各模型的R平方,选择指数模型较好,其初始模型为 但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型进行优化。 模型汇总和参数估计值 因变量: 单位成本 方程模型汇总参数估计值 R 方 F df1 df2 Sig. 常数b1 线性.912 104.179 1 10 .000 158.497 -1.727 对数.943 166.595 1 10 .000 282.350 -54.059 幂.931 134.617 1 10 .000 619.149 -.556 指数.955 212.313 1 10 .000 176.571 -.018 自变量为月产量。 表1曲线估计输出结果

二、非线性模型的优化 SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:176.57和B:-.0183;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。SPSS输出结果见表2。 由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为568.97,误差率小于0.00000001, 优化后的模型为: 迭代历史记录b 迭代数a残差平方和参数 A B 1.0 104710.523 176.570 -.183 1.1 5.346E+133 -3455.813 2.243 1.2 30684076640.87 3 476.032 .087 1.3 9731 2.724 215.183 -.160 2.0 97312.724 215.183 -.160 2.1 83887.036 268.159 -.133 3.0 83887.036 268.159 -.133 3.1 59358.745 340.412 -.102 4.0 59358.745 340.412 -.102 4.1 26232.008 38 5.967 -.065 5.0 26232.008 385.967 -.065 5.1 7977.231 261.978 -.038 6.0 797 7.231 261.978 -.038 6.1 1388.850 153.617 -.015 7.0 1388.850 153.617 -.015 7.1 581.073 180.889 -.019 8.0 581.073 180.889 -.019 8.1 568.969 182.341 -.019 9.0 568.969 182.341 -.019 9.1 568.969 182.334 -.019 10.0 568.969 182.334 -.019 10.1 568.969 182.334 -.019 导数是通过数字计算的。 a. 主迭代数在小数左侧显示,次迭代数在小数右侧显示。 b. 由于连续残差平方和之间的相对减少量最多为SSCON = 1.000E-008,因此在 22 模型评估和 10 导数评估之后,系统停止运行。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检 验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回 归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 % % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显著 % fV:F分布值,越大越好,线性回归方程 越显著 % fH:0或1,0不显著;1显著(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是 否与Y有显著线性关系 % tV:T分布值,beta_hat(i)绝对值越大, 表示Xi对Y显著的线性作用 % tH:0或1,0不显著;1显著 % tW:区间估计拒绝域,如果beta(i)在对 应拒绝区间内,那么否认Xi对Y显著的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总 离差的百分比,越大越好 % 举例说明 % 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程 线化 % x1=rand(10,1)*10;

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

高中数学 选修1-2 2.非线性回归模型

2.非线性回归模型 教学目标 班级____姓名________ 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程 一、非线性回归模型. 非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2 R ,刻画拟合效果. 二、例题分析. 例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据: 3.作散点图: 4.选取函数模型,并转化成线性回归模型,并转化数据: (1)根据样本点的变化趋势,选取函数模型:x c e c y 21=(指数函数模型); (2)令y z ln =,将指数函数模型转化成一次函数模型a bx z +=(1ln c a =,2c b =); (3)数据转化: 温度C x / 21 23 25 27 29 32 35 产卵数/y 个 7 11 21 24 66 115 325 x 21 23 25 27 29 32 35 z 1.946 2.398 3.045 3.178 4.190 4.745 5.784

(4)新散点图: 5.求线性回归 方程: 运用公式求得272.0?=b ,849.3?=a ,线性回归方程为849.3272.0?-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0) 1(?-=x e y . 6.建线性回归模型,求残差,画残差图; 残差849.3272.0)1() 1(??--=-=i x i i i i e y y y e 7.求2 R ,刻画拟合效果. 注意事项: (1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=, (3)令2 x t =,将二次函数模型转化成一次函数模型43c t c y +=; (4)不同模型拟合效果不同,可根据2 R 来判断,2 R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y /个 6 12 25 49 95 190 (1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数2 R .

计量第3章(7节)非线性回归实例

非线性回归实例 例1:此模型用来评价台湾农业生产效率。用台湾1958-1972年农业生产总值(Y t ),劳动力(X 1t ),资本投入(X 2t )数据为样本得到估计模型: = -3.4 + 1.50 LnX 1t + 0.49 LnX 2t (2.78) (4.80) R 2 = 0.89, F = 48.45 还原后得, = 0.713X 1t 1.50 X 2t 0.49 因为1.50 + 0.49 = 1.99,所以,此生产函数属规模报酬递增函数。当劳动力和资本投入都增加1%时,产出增加近2%。 例2:用天津市工业生产总值(Y t ),职工人数(L t ),固定资产净值与流动资产平均余额(K t )数据 (1949-1997年) 为样本得估计模型如下: Ln Y t = 0.7272 + 0.2587 Ln L t + 0.6986 LnK t (3.12) (3.08) (18.75) R 2 = 0.98, s.e. = 0.17, DW = 0.42, F = 1381.4 因为0.2587 + 0.6986 = 0.9573,所以此生产函数基本属于规模报酬不变函数。 例3: 中国铅笔需求预测模型 中国从上个世纪30年代开始生产铅笔。1985年全国有22个厂家生产铅笔。产量居世界首位(33.9亿支),占世界总产量的1/3。改革开放以后,铅笔生产增长极为迅速。1979-1983年平均年增长率为8.5%。铅笔销售量时间序列见图1。1961-1964年的销售量平稳状态是受到了经济收缩的影响。文革期间销售量出现两次下降,是受到了当时政治因素的影响。1969-1972年的增长是由于一度中断了的中小学教育逐步恢复的结果。1977-1978年的增长是由于高考正式恢复的结果。1981年中国开始生产自动铅笔,对传统铅笔市场冲击很大。1979-1985年的缓慢增长是受到了自动铅笔上市的影响。 初始确定的影响铅笔销量的因素有全国人口、各类在校人数、设计

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

北师大版选修1-2:1.1.1回归分析--教学设计一、二、三

1.1.1回归分析 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计 当x=9时的位置y 的值. 根据《数学3(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据线性回归的系数公式, 1 221()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑

可以得到线性回归方为 3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为 22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型. 说明:(1)产生随机误差的主要原因有: ①所用的确定性函数不恰当引起的误差; ②忽略了某些因素的影响; ③存在观测误差. (2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理; ②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值: 对于问题②,设有n 对观测数据(,)i i x y (1,2,3,,)i n = ,根据线性回归模型,对于每一个i x ,对应的随机误差项()i i i y a bx ε=-+,我们希望总误差越小越好,即要使 2 1 n i i ε =∑越小越好.所以,只要求出使2 1 (,)() n i i i Q y x αββα== --∑取得最小值时的α, β值作为a ,b 的估计值,记为 a ,b . 注:这里的 i ε就是拟合直线上的点(),i i x a bx +到点(),i i i P x y 的距离. 用什么方法求 a ,b ?

相关文档
最新文档