EX&ANS_C4马尔可夫链

EX&ANS_C4马尔可夫链
EX&ANS_C4马尔可夫链

练习 随机过程练习题

1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处,

在其它整数点分别以概率

3

1

向左、右移动一格或停留在原处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0,

1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),

(反,正)或(反,反)。求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。

3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++

(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P

}|,,,{111100++=====n n n n i X i X i X i X P ==?+++m n n n X i X P ,,{22 }|11+++=n n m n i X i

4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i

4,3,2,1,41}==i i ,?????

?

? ??=4/14/14/14/18

/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P

5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独

立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。

6.已知随机游动的转移概率矩阵为????

? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩阵)

3(P 及

当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态

3的概率。

7.已知本月销售状态的初始分布和转移概率矩阵如下:

(1))4.0,2.0,4.0()0(=T

P ,????

? ??=6.02.02.02.07.01.01.08.08.0P ;

(2))3.0,3.0,2.0,2.0()0(=T P ,????

??

?

?

?=5.02

.01.01.02.06.01.01.01.02.06.01

.01.01.01.07.0P ; 求下一、二个月的销售状态分布。

8

后的销售状态分布。

10.讨论下列转移概率矩阵的马尔可夫链的状态分类。

(1)?????

??

? ??=010006.04.0000000100003.07.000

5.03.02.0P ;(2)?

??

?

??? ??=02.02.06.0007.03.000010100

P ;

(3)??????

???

?

??=1000000000001 p r q p r q p r q P ,其中1=++p r q ,},,1,0{b I = 11.设马尔可夫链的转移概率矩阵为(1)???? ??3/23/12/12/1;

(2)?

???

? ??332211000p q q p q p ;计算)(11n f ,)

(12

n f ,3,2,1=n 12.设马尔可夫链的状态空间}7,,2,1{ =I ,转移概率矩阵为

?

?

????

?

??

?

?

??=2.08.0000007.03.000000003.05.02.000006.004.00

00004.06.0001.01.01.02.02.03.01.01.01.01.00

1.02.04.0P 求状态的分类及各常返闭集的平稳分布。

13.设马尔可夫链的转移概率矩阵为??????

? ??=

00000010221

1p q p q P ,求它的平稳分布。

14.艾伦菲斯特(E renfest)链。设甲乙两个容器共有N 2个球,每隔单位时间从这N 2个球中任取一球放入另一容器中,记n X 为在时刻n 甲容器中球的个数,则}0,{≥n X n 是齐次马尔可夫链,称为艾伦菲斯特链,求该链的平稳分布。

15.将2个红球4个白球任意地分别放入甲、乙两个盒子中,每个盒子放3个,现从每个盒子中各任取一球,交换后放回盒中(甲盒内取出的球放入乙盒中,乙盒内取出的球放入甲盒中),以)(n X 表示经过n 次交换后甲盒中红球数,则}0),({≥n n X 为一齐次马尔可夫链,(1)求一步转移概率矩阵;(2)证明}0),({≥n n X 是遍历链;(3)求

2,1,0,lim )(=∞

→j P n ij n 16.设}1),({≥n n X 为非周期不可约马尔可夫链,状态空间为I ,若对一切I j ∈,其一步转移概率矩阵满足条件:

1=∑∈I

i j

i p

,试证(1)对一切I j ∈,1)(=∑∈I

i n j i p ;

(2)若状态空间},,2,1{m I =,计算各状态的平均返回时间。

17.设河流每天的BOD (生物耗氧量)浓度为齐次马尔可夫链,状态空间}4,3,2,1{=I 是按BOD 浓度为极低、低、中、高分别表示的,其一步转移概率矩阵(以一天为单位)

为??

?

?

?

?

?

?

?=4.04.02

.001.06.02.01.01.02.05.02.001.04.05.0P 。若BOD 浓度为高,则称河流处于污染状态。(1)证明

该链是遍历链;(2)求该链的平稳分布;(3)河流再次达到污染的平均时间4μ。

答 案 1.解:质点随机游动的一步转移的概率矩阵为

???????

?????????=100003/13/13/10003/13/13/10003/13/13/100001

P

质点随机游动的二步转移的概率矩阵为

?????

??

?????????==100009/49/29/29/109/19/29/39/29/109/19/29/2/9/400001

2

)2(P P

2.解:马尔可夫链},2,1,0,{ =n X n 的一步转移的概率矩阵为

????

?

?

???

???=q p q p q p q p P 00000000 马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵为

????

??

?

???????==2222

2222

2

)

2(q pq pq

p

q pq pq p q pq pq

p q pq pq p P P 3.证:

(1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }

,,,{}

,,,,,,,{110022111100n n m n m n n n n n n n i X i X i X P i X i X i X i X i X i X P ==========

++++++

n n m

n m n n n n n i i i i i i i i i i i i i i p p p p p p p p 1100111100-+-++-=

m n m n n n i i i i p p +-++=11 }

{}

,,,{11n n m n m n n n n n i X P i X i X i X P =====

++++

}|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++

(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P

}

{}

,,,,,,,{1122111100++++++++========

n n m n m n n n n n n n i X P i X i X i X i X i X i X P

}

,,|,,{}

{}

,,{110022111100++++++++++========

n n m n m n n n n n n n i X i X i X i X P i X P i X i X P }|,,{1100++====n n n n i X i X i X P }|,,{1122++++++===?n n m n m n n n i X i X i X P

4.证:}

41,1{}

,4,41,1{}41,1|4{10210102<<==<<==<<==X X P X X X P X X X P

}

3,1{}2,1{},4,3,1{}4,2,1{1010210210==+=====+====

X X P X X P X X X P X X X P 1311213413124121p p p p p p p p p p ++=16541414141834141414141=?+??

?+??=

}

41{}

41,4{}41|4{11212<<<<==

<<=X P X X P X X P }

3{}2{}

4,3{}4,2{112121=+===+===

X P X P X X P X X P }3{}2{}3{}2{11341241=+==+==X P X P p X P p X P )

(34

1

2

3

4

1

3441

224i i i i i i i i i i p p

p p p p p p p ++=

∑∑∑===

)

(34

1

2

4

1

3

344

1224i i i i i i i p p

p p p p ++=

∑∑∑===18

718

3

8741+?+?=6019

=

5.解:由题意1--=n n n CY X Y 知n Y 是),,(1n X X 的函数,由于 ,,,1n X X 是相互独立的随机变量,故对0≥?n ,1+n X 与),,,(10n Y Y Y 独立。

},,,0|{11011n n n n i Y i Y Y i Y P ====++

},,,0|{11011n n n n n n i Y i Y Y Ci i CY Y P ===+=+=++ },,,0|{11011n n n n n i Y i Y Y Ci i X P ===+==++

}{11n n n Ci i X P +==++}|{11n n n n n i Y Ci i X P =+==++}|{11n n n n i Y i Y P ===++ 由k i ,1,,2,1+=n k 的任意性知}0,{≥n Y n 为马尔可夫链。

6.解:????

?

?????=25.0375.0375.0375.025.0375.0375.0375.025.0)

3(P

,25.0)3(2=p

7.解:)32.0,26.0,42.0()1(=T P ,)286.0,288.0,426.0()2(=T

P

8.解:???

??=249,24150T P ,?

??

? ??=38.062.04.06.0)3(P ,)39.0,61.0()3(=T

P 9.解:}9,,2,1{ =I

????

?

??

??

?

????

?

??=010003/103/103/102/102/10001000100001002/102/1002/102/10010O O P

}4,3,2,1{1=C ,}9,8,7,6,5{2=C 两个闭集。

10.解:(1)}3,2,1{1=C ,}5,4{2=C 两个遍历状态闭集。 (2)}3,2,1{=C 遍历闭集,}4{=N 非常返态。

(3)}0{1=C ,}{2b C =是吸收态闭集,}1,,1{-=b N 是非常返集。

11.解:(1)21)

1(11=

f ,6

1)2(11=f ,91)3(11=f ;21)1(12=f ,41)2(12=f ,81)3(12=f ;1)

1(11p f =,

0)2(11=f ,321)3(11

q q q f =;1)

1(12q f =,11)2(12

q p f =,121)3(12q p f =。

12.解:,}2,1{=N 非常返集,}5,4,3{1=C ,}7,6{2=C 是正常返闭集。由转移矩阵

?????

??3.05.02.06.004.004.06.0

解得1C 的平稳分布为}0,0,23

6

,237,2310,0,0{;

同理,2C 的平稳分布为}15

7

,158,0,0,0,0,0{。

13.解:0111ππj

j j q q p p -=

,1≥j ,∑∏

=-=++=

11

01

011j j k k k q p π

14.解:}0,{≥n X n 的转移概率为 0=ii p ,N i N p i i 221,-=

+,N

i

p i i 21,=-,N i 2,,1,0 =,

其平稳分布}2,,1,0,{N j j =π满足方程组

N j N j N N

N j N j N j 2121221211

1211

20+++-????

?

?

?????

===+--ππ

πππππ 解此方程组得 02ππj N j C =

由条件

1=∑j

j

π

02202021ππN N

j j N C ==∑=

N 202-=π

故}0,{≥n X n 的平稳分布为N j N j C 222-=π,N j 2,,2,1,0 =

15.解:(1)

??

??

?

?????=3/13/209/29/59/203/23/1P

(2)由于}2,1,0{=I 是有限的,I 中所有状态是互通的,且状态0是非周期的,故}{n X 为遍历链。

(3)由平稳分布满足的方程组

1319232953292312102

122

1011

00=+++=++=+=πππππππππππππ 解方程组得:510=π,531=π,51

2=π

51lim 0)(0==∞→πn i n p ,53lim 1)(1==∞

→πn i n p ,51

lim 2)(2==∞→πn i n p

16.解:(1)用归纳法。设当m n =时,对一切I j ∈,都有

1)(=∑∈I i n ij

p ,则 )()()

1(∑∑∑∈∈∈+=I

i kj I

k m ik

I

i n ij

p p

p

)()(∑∑∈=I

k i

m ik

kj p

p 1==∑∈I

k kj

p

(2)由条件知}1),({≥n n X 为非周期不可分马尔可夫链,且状态空间有限,故

}1),({≥n n X 为遍历链,因此 I j p j

j n ij n ∈>=

=∞

→,01

lim )

(μπ,所以

11

lim lim 1

1

)(1

)

(==

==∑

∑∑==∞

→=∞

→j

m

i j

m

i n ij

n m

i n ij

n m

p

p

μμ,m j =μ,m j ,,2,1 =

17.解:(2)2112.01=π,3028.02=π,3236.03=π,1044.04=π;

(3)8.84=μ(天)

练习

随机过程练习题

1.设连续时间马尔可夫链}0),({≥t t X 具有转移概率

???

???

?≥--==+-+=+=,2||),(,1,0,),(1,1),

()(i j h o i j i j h o h i j h o h h p i

i ij λλ

其中i λ是正数,)(t X 表示一个生物群体在时刻t 的成员总数,求柯尔莫哥洛夫方程,转移概率)(t p ij 。(提示:利用以下结果,若k t h t kg t g ),()()(=+'为实数,)(t h 为

连续函数,b t a ≤≤,则)()()()()(a t k t

a

s t k e a g ds s h e t g ----+=

?

2.一质点在1,2,3点上作随机游动。若在时刻t 质点位于这三个点之一,则在)

,[h t t +内,它以概率)(2/h o h +分别转移到其它二点之一。试求质点随机游动的柯尔莫哥洛夫方程,转移概率)(t p ij 及平稳分布。

3.在某车间有M 台车床,由于各种原因车床时而工作,时而停止。假设时刻t ,一台正在工作的车床,在时刻h t +停止工作的概率为)(h o h +μ,而时刻t 不工作的车

床,在时刻h t +开始工作的概率为)(h o h +λ,且各车床工作情况是相互独立的。若)(t N 表示时刻t 正在工作的车床数,求(1)齐次马尔可夫过程}0),({≥t t N 的平稳分布;(2)若10=M ,60=λ,30=μ,系统处于平稳状态时有一半以上车床在工作的概率。 4.排队问题。设有一服务台,),0[t 内到达服务台的顾客数是服从泊松分布的随机变量,

即顾客流是泊松过程。单位时间到达服务台的平均人数为λ。服务台只有一个服务

员,对顾客的服务时间是按指数分布的随机变量,平均服务时间为μ/1。如果服务台空闲时到达的顾客立即接受服务;如果顾客到达时服务员正在为另一顾客服务,则他必须排队等候;如果顾客到达时发现已经有二人在等候,则他就离开而不再回

来。设)(t X 代表在t 时刻系统内的顾客人数(包括正在被服务的顾客和排队等候的顾客),该人数就是系统处于状态。于是这个系统的状态空间为}3,2,1,0{=I ;又设在0=t 时系统处于状态0,即服务员空闲着。求过程的Q 矩阵及t 时刻系统处于状态j 的绝对概率)(t p j 所满足的微分方程。

5.一条电路供m 个焊工用电,每个焊工均是间断用电。现作如下假设:(1)若一焊工在t 时用电,而在),(t t t ?+内停止用电的概率为)(t o t ?+?μ;(2)若一焊工在t 时

没有用电,而在),(t t t ?+内用电的概率为)(t o t ?+?λ。每个焊工的工作情况是相互独立的。设)(t X 表示在t 时刻正在用电的焊工数。(1)求该过程的状态空间和Q 矩阵;(2)设0)0(=X ,求绝对概率)(t p j 满足的微分方程;(3)当∞→t 时,求极限分布j p 。

6.设],0[t 内到达的顾客服从泊松分布,参数为t λ。设有单个服务员,服务时间为指数

分布的排队系统(M/M/1),平均服务时间为μ/1。试证明:(1)在服务员的服务时间内到达顾客的平均数为μ/1;(2)在服务员的服务时间内无顾客到达的概率为

)/(μλμ+。

答案:

1.解:柯尔莫哥洛夫向前方程为??

?-='+≥+-='--)()(1

),()()(1,1t p t p i j t p t p t p ii i ii

j i j ij j ij

λλλ

由初始条件:?

?

?≠==j i j

i p ij ,0,1)0(解得

???

??+≥==?----1,)()(,)(01,1i j ds s p e e t p e t p t j i j t t ij

t

ii j j i λλλλ

2.解:21=i λ,2

1

=i μ

柯尔莫哥洛夫向前方程为),(2

1

)(21)()(1,1,t p t p t p t p j i j i ij ij

+-++-='

状态空间为}3,2,1{=I ,故1)()()(1,1,=+++-t p t p t p j i j i ij ,代入以上方程得

+')(t p ij

2

1)(23=t p ij 3

1)(2

3

+=-t ij ce

t p 由初始条件:??

?≠==j

i j

i p ij ,0,1)0(确定c ,得

???????=+≠-=--j i e j i e t p t

t ij ,3

231,3

131)(23

2

3 故其平稳分布3

1

)(lim =

=∞

→t p ij t j π,3,2,1=j

3.解:(1)据题意,)(t N 是连续时间的马尔可夫链,状态空间为},,1,0{m I =。

设时刻t 有i 台车床在工作,则在],(h t t +内又有一台车床开始工作,则在不计高

阶无穷小时,它应等于原来停止工作的i M -台车床中,在],(h t t +内恰有一台开始工作,则1,,2,1,0),()()(1,-=+-=+M i h o h i M h p i i λ;同样地,

M i h o h i h p i i ,,2,1),()(1, =+=-μ,2||),()(≥-=j i h o h p ij

λλ)(i M i -=,1,,2,1,0-=M i

μμi i =,M i ,,2,1 =

因此,它的平稳过程为

M

M

??

????+=?

?

????+=-λμμμλπ10, j

M j

j M j

j M j C C -???

? ??+?

??

? ??+=???? ??=μλμμλλπμλπ0,M i ,,2,1 =

(2)7809.0)90

30()9060(}5)({1010

6

1010

6

===>-==∑∑j j j j

j j C t N P π

4.解:据题意,}0),({≥t t X 是连续时间的马尔可夫链,状态空间为}3,2,1,0{=I 。

?????

?

?

??-+-+--=μμλμλμλμλμλλ

)(00)

(00Q 绝对概率)(t p j 满足柯尔莫哥洛夫方程:

???

???

?

-='++-='++-='+-=')()()()()()()()()()()()()()()()(32332122

101100t p t p t p t p t p t p t p t p t p t p t p t p t p t p μλμμλλμμλλμλ 初始条件:3,2,1,0)0(,1)0(0===j p p j

5.解:据题意,}0),({≥t t X 是连续时间的马尔可夫链,状态空间为},,1,0{m I =。

????

??

?

??-+--=μμλμλμλλm m m m m m m Q 000)(00 绝对概率)(t p j 满足柯尔莫哥洛夫方程:

??

?

???

?

=-='<<++-='+-='-+-0)0()()()(0),()()()()()()()(011

1100p t p m t p m t p m j t p m t p m t p m t p t p m t p m t p m m m j j j j μλμμλλμλ 由于j j t p t p =∞

→)(lim (常数),故从以上方程组可解出j p ,m j ,,1,0 =。

6.设服务员的服务时间为T ,则由题意知:)(~μE T 。以)(t X 表示在],0[t 内到达的顾客数,则)(~)(t P t X λ。

(1)在服务员的服务时间内到达顾客的平均数为

)()|()]|([t dF t T X E T X E E EX T ===?

-)())((t dF t X E T ?

-=

μ

λ

μλμ=

?=-+∞

?dt e t t 0 (2))(}|0)({},0)({}0)({0

t dF t T t X P T T X P T X P T ===

+∞<===?

+∞

μ

λμμμλ+=

?=?+∞

--0

dt e e t t

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

基于马尔可夫链的市场占有率的预测

市场占有率问题 摘要 本文通过对马尔可夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,认为该理论的无后效性和稳定性特点能够帮助企业在纵向和横向资讯不够充分的情况下克服预测的误差和决策的盲目性,并给出了均衡状态下的市场占有率模型,以期通过不同方案的模拟分析,帮助企业优化决策. 关键词马尔科夫链转移概率矩阵 一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某产品的需求受多种因素的影响,其特性是它在市场流通领域中所处的状态。这些状态的出现是一个随机现象,具有随机性。为此,利用随机过程理论的马尔可夫(Markov)模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况 二、问题分析 第一步进行市场调查.主要调查以下两件事: (1)目前的市场占有情况.若购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C 三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布. (2)查清使用对象的流动情况.流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出.若从定货单得表1-0.

表(1-5) 顾客订货情况表 下季度订货情况 合计 来 自 A B C A 160 120 120 400 B 180 90 30 300 C 180 30 90 300 合计 520 240 240 1000 第二步 建立数学模型. 假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A 、B 、C 三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表(1-5),我们可以得模型的转移概率矩阵: ? ???? ??=?????? ? ? ??=????? ??=3.01.06.01.03.06.03.03.04.03009030030 3001803003030090300180400120400120400160333231232221131211p p p p p p p p p P 矩阵中的第一行(0.4,0.3,0.3)表示目前是A 厂的顾客下季度有40%仍买A 厂的药,转为买B 厂和C 厂的各有30%.同样,第二行、第三行分别表示目前是B 厂和C 厂的顾客下季度的流向. 由P 我们可以计算任意的k 步转移矩阵,如三步转移矩阵: ???? ? ? ?=????? ? ?==252.0244 .0504.0244.0252.0504 .0252.0252.0496.03.01 .06.01.03.06 .03.03.04.03 3 ) 3(P P 从这个矩阵的各行可知三个季度以后各厂家顾客的流动情况.如从第二行(0.504, 0.252,0.244)知,B 厂的顾客三个季度后有50.4%转向买A 厂的药,25.2%仍买B 厂的,24.4%转向买C 厂的药. 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。 四、模型的建立与求解 4.1模型背景 在考虑市场占有率过程中影响占有率的大量随机性因素后,可以认为这一过程充

随机过程-C4马尔可夫链

练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处, 在其它整数点分别以概率 3 1 向左、右移动一格或停留在原处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0, 1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反), (反,正)或(反,反)。求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P }|,,,{111100++=====n n n n i X i X i X i X P ==?+++m n n n X i X P ,,{22 }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,4 1}==i i ,???? ?? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独 立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证 }0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为???? ? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩阵) 3(P 及 当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态 3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

马尔可夫链

马尔可夫链 马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。 1) 离散时间参数的马尔可夫链 ①基本概念 定义 5.7 设{()0,1,2,}X n n ???=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数 时间120k n n n ???≤<<<,以及任意状态12,, ,k i i i E ∈,都有条件概率 11{()|()}k k k k P X n i X n i --=== (5-17) 即过程{()0,1,2,}X n n ???=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称 {()0,1,2,}X n n ???=,是一个离散时间参数的马尔可夫链。当E 为可列无限集时称其为可列无限状态的马尔可 夫链,否则称其为有限状态的马尔可夫链。 定义5.8 设{()0,1,2,}X n n ???=,是状态空间{0,1,2, }E =上的马尔可夫链,条件概率 (,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18) 称为马尔可夫链{()0,1,2,}X n n ???=,在m 时刻的k 步转移概率。 k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状 态j 的条件概率。特别地,当1k =时, (,1){(1)|()}ij p m P X m j X m i =+== (5-19) 称为一步转移概率,简称转移概率。 如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。 定义5.9 设{()0,1,2,}X n n ???=,是状态空间{0,1,2,}E ???=上的马尔可夫链,矩阵 0001010 11101(,)(,)(,)(,)(,)(,)(,)(,)(,) (,) n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ?? ???? ? ?=? ?????? ? (5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。 当1k =时,(,1)P m 称为一步转移概率矩阵。 对于齐次马尔可夫链,容易推得k 步转移概率矩阵与一步转移概率矩阵具有关系 ()(),,1k P m k P m =????,1,2,k ???= (5-21)

第五章 连续时间的Markov链

第五章 连续时间的马尔可夫链 第四章我们讨论了时间和状态都是离散的M arkov 链,本章我们研究的是时间连续、状态离散的M arkov 过程,即连续时间的M arkov 链. 连续时间的M arkov 链可以理解为一个做如下运动的随机过程:它以一个离散时间M arkov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立. 5.1 连续时间马尔可夫链的基本概念 定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数 1210n t t t +≤<<< 及任意的非负整数121,,,n i i i I +∈ ,条件概率满足 {}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++==== {}11()|()n n n n P X t i X t i ++=== (5.1) 则称{(),0}X t t ≥为连续时间的M arkov 链. 由定义知,连续时间的M arkov 链是具有M arkov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关. 记(5.1)式条件概率的一般形式为 {()|()}(,)ij P X s t j X s i p s t +=== (5.2) 它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关. 定义 5.2 若(5.2)式的转移概率函数与s 无关,则称连续时间M arkov 链具有平稳的转移概率函数,称该M arkov 链为连续时间的齐次(或时齐)M arkov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥. 若状态空间{0,1,2,}I = ,则有 ()00010210 11 12 012() ()() ...()()()()()... ... .. ....()()( )...... .. .... ij n n n p t p t p t p t p t p t P t p t p t p t p t ?? ? ? ?== ? ? ?? ? (5.3) 假设在某时刻,比如说时刻0,M arkov 链进入状态i ,在接下来的s 个单位时间内过程 未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由M arkov 性知,过程在时刻s 处于状态i 的条件下,在区间[,] s s t +

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P 即题目实际上给出了八个个条件概率和四个概率 [][][][]0,0|00|000===?==?===X Y Z P X Y P X P Z P [][][]0,1|00|10===?==?=+X Y Z P X Y P X P [][][]1,0|01|01===?==?=+X Y Z P X Y P X P [][][]1,1|01|11===?==?=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有 [][][][]0,0|0000===?=?===X Y Z P Y P X P Z P [][][]0,1|010===?=?=+X Y Z P Y P X P [][][]1,0|001===?=?=+X Y Z P Y P X P [][][]1,1|011===?=?=+X Y Z P Y P X P []5.02.03.00??==Z P 1.08.03.0??+9.02.07.0??+1.08.07.0??+ =? 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==2 11,,()Y X Y X g Z /,22==, 求:

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可 夫链

收集于网络,如有侵权请联系管理员删除 练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1 停留在原处,在其它整数点分别以概率3 1 向左、右移动一格或停留在原 处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2 ≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ }|,,,{111100++=====n n n n i X i X i X i X P Λ==?+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为 ==0{X P p i 4,3,2,1,4 1}==i i ,???? ? ? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ ),(n n t X X =为独立同分布随机变量序列,令 2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为??? ?? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩 阵)3(P 及当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转 移后处于状态3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

随机过程报告——马尔可夫链.doc

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由 A.A .M arkov 所研究。它的直观背景如下 : 设有一随机运动的系统 E ( 例如运动着的质点等 ) ,它可能处的状态记为E 0 , E1 ,..., E n ,.... 总共有可数个或者有穷个。这系统只可能在时刻t=1,2, n, 上改变它的状态。随着的运动进程,定义一列随机变量 Xn,n=0,1, 2, ?其中Xn=k,如在 t=n 时,位于 Ek。 定义 1.1 设有随机过程 X n, n T ,若对任意的整数 n T 和任意的 i 0 , i1 ,...i n 1 I , 条件概率满足 { i n 1 X i ,..., X n i n }{ i n 1 X n i n } P X n 1 0 P X n 1 则称 X n, n T为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统。如果己知它在t=n 时的状态,则关于它在 n时以前所处的状态的补充知识,对预言在 n时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下,“将来”与“过去”是 无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性” 。假设马尔可夫过程 X n, n T 的参数集T是离散时间集合,即T={0,1,2, }, 其相应 Xn可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义 1.2 条件概率 P( n) { j X n i } ij p X n 1 称为马尔可夫链X n, n T 在时刻n的一步转移矩阵,其中i,j I ,简称为转移概率。 一般地,转移概率 P ij( n )不仅与状态 i,j 有关,而且与时刻 n有关。当 P ij( n)不依赖于时刻 n时,表示马尔可夫链具有平稳转移概率。若对任意的 i ,j I,马尔可夫

课上练习题_连续时间马尔科夫链 619

6.2 Suppose that a one-celled organism can be in one of two states-either A or B. An individual in state A will change to state B at an exponential rate α; an individual in state B divides into two new individuals of type A at an exponential rate β. Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model. 6.3 Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μbefore breaking down, i = 1,2. The repair times (for either i machine) are exponential with rate μ. Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?

马尔可夫链预测股票例1

1、对单支股票走势、收益的预侧 现以上海A股精伦电子的股价时间序列为例(原始资料如表1),应用马尔可夫链对股价分别进行中短期和长期预测分析,这里不妨将时间序列的单位以天记。 表1:上海A股精伦电子2002年6月13日一7月17日23个交易日的收盘价格资料 将表1中这23个收盘价格划分成4个价格区间(由低到高每区间1.5个价格单位),得到区间状态为: S1:(26.00以下)、S2:(26.00--27.50)、S3:(27.50--28.00)、S4:(28.00及以上)。则到达个区间的频数分别为5, 3, 9, 6。综合这些资料于是得到这23个交易日的收盘价格状态转移情况如表2, 由此得到各状态之间的转移概率和转移概率矩阵: 表1知,第23个交易日的收盘价格是27.53(即为k状态区间),所以用马尔可夫链进行预测时初始状态向量,P(0) =( 0,0,1,0),第24, 25日的收盘价格状态向量分别为即

P(1)=P(0)P=(0,0.125,0.625,0.25); P(2)=P(1)P=(0.042,0.078,0.451,0.323) 预测这两日的收盘价格处于k状态区间的概率最大,与实际情况27.21和27.39一致. 随着交易日的增加,即n足够大时,只要状态转移概率不变(即稳定条件),则状态向量趋向于一个和初始状态无关的值,并稳定下来.按马尔可夫系统平稳定条件,可得一个线性方程组: 解得的数值即为较长时间后股价处于各区间的平稳分布。对照资料可以看出,由上述公式计算出的各收盘价格状态区间基本上是准确的。 2、用马氏链对沪市的走势进行预铡及相应分析 我们利用沪市1998年1月5日至2001年11月2日的上证综合指数每周收盘资料,将上证指数划分为六个区间,即六种状态:区间1(1000点一1300点);区间2 (1300点一1600点);区间3 (1600点一1800点):区间4 (1800点~2000点);区间 5 (2000点~2200点);区间6 (2200点以上)。即可得到上证综合指数以周为单位的转移概率矩阵 因为11月2日上证综合指数周收盘为1691点,处于状态3,所以在对沪市进行预测时,初始状态向量P(0)=(0,0,1,0,0,0),然后按上例中的马尔可夫方法进行中短期和长期预测分析。通过对比可以发现,马尔可夫链对整个证券市场的预测结果是比较准确的,而且长期预测所得的结论与股票价格根本上是由股票内在投资价值决定的这一基本原理也是惊人的一致。

马尔可夫链

马尔可夫过程 编辑词条 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗

股票成交量的马尔可夫链分析与预测 论文

股票成交量的马尔可夫链分析与预测论文 关键字:预测股票成交链分析量的马尔 【摘要】成交量是判断股票走势的重要依据,投资者对成交量异常波动的股票应当密切关注。股票的成交量对于投资者操作股票具有至关重要的参考意义,关系到投资者的切身经济利益。文章对股票成交量引入马氏链预测模型,通过研究发现,在短期里,该模型可以比较准确地预测成交量的变化趋势。 【关键词】股票成交量;马尔科夫链;转移概率 马尔可夫过程是以俄国数学家markov的名字命名的一种随机过程模型,它在经济预测、管理决策、水文气象等领域应用广泛。许多学者也将该方法应用于股价预测并建立预测模型,但很少有人用马氏链的理论和方法来对股票成交量进行分析与预测。股价之所以产生各种各样的波浪形态,主要是由于成交量变化引起的,成交量是股价各种走势的形成原因,所说的“量在价先”即是这个道理,成交量往往能先于股价预示出形态的未来发展方向或运行区间。所以如果我们理解了成交量各种变化过程及其对应k线走势的本质含义,就能动态地掌握成交量的分布变动状况,预测股价的未来走势,从而找到短线或中线的操作机会。股票成交量受诸多随机因素的影响,而这种影响常使股票成交量波动很大,不容忽略。本文运用马氏链理论建立股票成交量的数学预测模型,并以此来分析与预测股票成交量的波动,希望能使投资者避免盲目和不理性的投资行为,采取科学的投资策略。 一、马尔科夫链预测原理 马尔可夫过程概述 定义1:设有随机过程{xn,n∈t},其时间集合t={0,1,2,…},状态空间e={0,1,2,…},亦即xn是时间离散和状态离散的。若对任意的整数n∈t及任意的i0,i1,…,in+1∈e,条件概率满足 p{xn+1 = in+1|x0=i0,x1=i1,…, xn=in} = p{xn+1 =in+1|xn=in} (1) 则称{ xn, n∈t}为马尔可夫链,简称马氏链。(1)式称为过程的马尔可夫性(或称无后效性)。它表示若已知系统现在的状态,则系统未来所处状态与过去所处的状态无关。定义 2: 称条件概率 pij(m,1)=p{xm+1=j|xm=i}(i,j∈e) (2) 为马氏链{xn,n∈t}在时刻m的一步转移概率,简称为转移概率.若对任意的i,j∈e,马尔可夫链{ xn,n∈t}的转移概率pij(m,1)与m无关,则称马氏链是齐次的,记pij(m,1)为pij 。 同时定义:系统在时刻m从状态i出发,经过n步后处于状态j的概率pij(m,n)=p{xm+n=j|xm=i}(i,j∈e,m≥0,n≥1)(3) 为齐次马尔可夫链{xn,n∈t}的n步转移概率。由齐次性知其与m无关,故简记为pij(n)。 定义3:齐次马尔可夫链的所有一步转移概率pij组成的矩阵p1=(pij)称为它在时刻m的一步转移概率矩阵(i,j∈e)。所有n步转移概率pij(n)组成的矩阵pn=(pij(n))为马尔可夫链的n步转移概率矩阵,其中:0≤pij(n)≤1,。 设{xn,n∈t}为齐次马尔可夫链,则: pn = p1p1(n-1) = p1n(n≥1)(4) 二、运用马尔可夫链预测马钢股份(600808)成交量变化趋势 这里,用马尔可夫链对马钢股份(600808)2007年3月16日到2007年4月22日的日成交量变化过程进行分析。(数据来源:新浪网财经频道)分析过程分以下几步:第一步,构造成交量变化的分布状态;第二步,检验马尔科夫性;第三步,马尔可夫模型的建立和预测;第四步:历史数据的预测值和实测值的误差分析。 (一)构造成交量变化的分布状态 xt是代表股票成交量大小的随机时间序列,对xt所能取到的最小值m0和最大值mn所限定的区间划分成若干小区间:(m0,m1],(m1,m2],…,(mn-1,mn],其中mi≥mi-1。再记ek=(mk-1,mk],则可视xt(t=1,2,…,n)为一个以e=ek(k=1,2,…,n)为状态空间的随机时间序列(或称随机过程)。下面根据马钢股份(600808)这只股票成交量的实际情况划分,将2007年3月16日到2007年4月22日的日成交量划分为4个区域,使每一天的成交量仅落入其中一个区域内,每一区域可作为一种状态。需要注意的是,由一个标准划分的各个状态之间应相互独立,使预测对象在某一时间只处于一种状态。 min xt = m0 = 304310 max xt = mn = 1085344 (mn-m0)/4= 195258 那么,xt是一个以e=ek(k=1,2,3,4)为状态空间的随机序列。分为4个价格区间,每一区间为一状态(如下表2)。

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫性与马尔可夫链

马尔可夫性与马尔可夫链 【教学目标】 1.掌握马尔可夫性与马尔可夫链。 2.熟练运用马尔可夫性与马尔可夫链解决具体问题。 3.亲历马尔可夫性与马尔可夫链的探索过程,体验分析归纳得出马尔可夫性与马尔可夫链,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握马尔可夫性与马尔可夫链。 难点:马尔可夫性与马尔可夫链的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习马尔可夫性与马尔可夫链,这节课的主要内容有马尔可夫性与马尔可夫链,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解马尔可夫性与马尔可夫链内容,形成初步感知。 (2)首先,我们先来学习马尔可夫性,它的具体内容是: 1n X +的随机变化规律与0X ,1X ,…1n X -的取值都没有关系,随机变量序列{}n X 的所具有的这类性质称为马尔可夫性 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例: 马尔可夫性描述了一种_____。 解析:状态序列 可以给学生一定的提示。 根据例题的解题方法,让学生自己动手练习。 练习: 序列所有可能取值的集合,被称为_____。 (3)接着,我们再来看下马尔可夫链内容,它的具体内容是:

一般地,我们称具有马尔可夫性的随机变量序列{}n X为马尔可夫链。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:请同学们查询资料,判断马尔可夫链与布朗运动是否有联系 解析:马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 根据例题的解题方法,让学生自己动手练习。 练习: 请写出马尔科夫链满足的两个假设。 三、课堂总结 (1)这节课我们主要讲了马尔可夫性与马尔可夫链 (2)它们在解题中具体怎么应用? 四、习题检测 1.请同学们写出马尔可夫性的定义。 2.请同学们写出马尔科夫链的定义。 3.请同学们写出马尔科夫性和马尔科夫链之间的联系。

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

相关文档
最新文档