塑料制品的结构设计规范

塑料制品的结构设计规范
塑料制品的结构设计规范

双林汽车部件股份有限公司

企业技术规范

塑料制品的结构设计规范

2008-10-20发布2008-10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。

§1 塑料制品设计的一般程序和原则 1.1 塑料制品设计的一般程序

1、详细了解塑料制品的功能、环境条件和载荷条件

2、选定塑料品种

3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等)

4、样品制造、进行模拟试验或实际使用条件的试验

5、制品设计、绘制正规制品图纸

6、编制文件,包括塑料制品设计说明书和技术条件等。

1.2 塑料制品设计的一般原则

1、在选料方面需考虑:(1) 塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2) 塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3) 塑料制品在成型后的收缩情况,及各向收缩率的差异。

2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。

3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。

4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。

§2 塑料制品的收缩

塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。

%1000

0?-=

L L L S

式中S ——收缩率;

L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。

影响收缩率的主要因素有:

(1) 成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。

(2) 注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。

(3) 模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。

(4) 成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。

(5) 制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。

(6) 进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。

(7) 玻璃纤维等的填充量。收缩率随填充量的增加而减小。

表2-1、表2-2、表2-3为常用塑料的成型收缩率。

§3 脱模斜度

脱模斜度:为便于脱模,塑料制品壁在出模方向上应具有倾斜角度α,其值以度数表示(参见表2-4)。

3.1 脱模斜度确定要点

(1) 制品精度要求越高,脱模斜度应越小。

(2) 尺寸大的制品,应采用较小的脱模斜度。

(3) 制品形状复杂不易脱模的,应选用较大的斜度。

(4) 制品收缩率大,斜度也应加大。

(5) 增强塑料宜选大斜度,含有自润滑剂的塑料可用小斜度。

(6) 制品壁厚大,斜度也应大。

(7) 斜度的方向。内孔以小端为准,满足图样尺寸要求,斜度向扩大方向取得;外形则以大端为准,满足图样要求,斜度向偏小方向取得。一般情况下脱模斜度。可不受制品公差带的限制,高精度塑料制品的脱模斜度则应当在公差带内。

脱模斜度α值可按表2-4选取。

由表中可以看出,塑料硬脆、刚性大的,脱模斜度要求大。

具备以下条件的型芯,可采用较小的脱模斜度:

(1) 顶出时制品刚度足够。

(2) 制品与模具钢材表面的摩擦系数较低。

(3) 型芯表面的粗糙度值小,抛光方向又与制品的脱模方向—致。

(4) 制品收缩量小,滑动摩擦力小。

3.2 制品脱模斜度设计

1、箱体与盖类制品(图2-1)

当H ≤50mm 时,S/H=1/30~1/50 当50<H ≤100mm 时,S/H ≤1/60 2、格子板形制品(图2-2)

当格子的间距P ≤4mm 时,脱模斜度α=1/10P 。格子C 尺寸越大,脱模斜度越大。

当格子高度H 超过8mm ,脱模斜度不能取太大值时,可采用图(b)的形式,使一部分进入动模一侧,从而使脱模斜度满足要求。

3、带加强筋类制品(图2-3)

)200/1~500/1(2arctg H

B A arctg

=-=α

A=(1.0~1.8)T mm ;B=(0.5~0.7)T mm 4、底筋类制品(图2-4)

)100/1~150/1(2arctg H

B A arctg

=-=α

A=(1.0~1.8)T mm ;B=(0.5~0.7)T mm 5、凸台类制品(图2-5、表2-5)

)20/1~30/1(2'arctg H

D D arctg

=-=α

高凸台制品(H >30mm )的脱模斜度: 型芯:)30/1~50/1(2'arctg H d d arctg =-=α 型腔:)50/1~100/1(2'

arctg H

D D arctg

=-=α

型芯的脱模斜度应大于型腔。 6、最小脱模斜度(表2-6)

脱模斜度影响制品的脱出情况。如果脱模斜度很小,脱模阻力增大,顶出机构就会失去作用。在一般情况下,不能小于最小脱模斜度,以防止制品留模。

§4 制品壁厚

确定合适的制品壁厚是制品设计的主要内容之一。

4.1 制品壁厚的作用

(1) 使制品具有确定的结构和一定的强度、刚度,以满足制品的使用要求。

(2) 成型时具有良好的流动状态(如壁不能过薄)以及充填和冷却效果(如壁不能太厚) (3) 合理的壁厚使制品能顺利地从模具中顶出。 (4) 满足嵌件固定及零件装配等强度的要求。 (5) 防止制品翘曲变形。

4.2 制品壁厚的设计

基本原则——均匀壁厚。即:充模、冷却收缩均匀、形状性好、尺寸精度高、生产率高。

(1) 在满足制品结构和使用要求的条件下,尽可能采用较小的壁厚。

(2) 制品壁厚的设计,要能承受顶出装置等的冲击和振动。

(3) 在制品的连接固紧处、嵌件埋入处、塑料熔体在孔窗的汇合(熔接痕)处,要具有足够的厚度。

(4) 保证贮存、搬运过程中强度所需的壁厚。

(5) 满足成型时熔体充模所需壁厚,既要避免充料不足或易烧焦的薄壁,又要避免熔体破裂或易产生凹陷的厚壁。

制品上相邻壁厚差的关系(薄壁:厚壁)为:

热固性塑料:压制1:3,挤塑1:5

热塑性塑料:注塑1:1.5(2)

当无法避免不均匀的壁厚时,制品壁厚设计可采用逐步过渡的形式(图2-6,图2-7),或者改制成两个制品然后再装配为一个制品(图2-8)等方法。

制品壁厚的设计可参照表2-7~表2-11。

§5 加强筋(含凸台、角撑)

5.1 加强筋的作用

(1) 在不加大制品壁厚的条件下,增强制品的强度和刚性,以节约塑料用量,减轻重量,降低成本。

(2) 可克服制品壁厚差带来的应力不均所造成的制品歪扭变形。

(3) 便于塑料熔体的流动,在塑料制品本体某些壁部过薄处为熔体的充满提供通道。

5.2 加强筋的形状及尺寸

塑料制品上加强筋和凸台的形式和应用如图2-9,图2-10所示。

加强筋尺寸参数如图2-11,图2-12所示。

凸台的形状及尺寸参数如图2-13~图2-15所示。

角撑位于制品边缘,支撑制品壁面,以增加强度及刚度,尺寸参数如图2-16所示。

5.3 加强筋的设计要点

(1) 用高度较低、数量稍多的筋代替高度较高的单一加强筋,避免厚筋底冷却收缩时产生表面凹陷(图2-17、图2-18)。当筋的背面出现凹陷影响美观时,可采用图2-19所示的装饰结构予以遮掩。

(2) 筋的布置方向最好与熔料的充填方向一致(见表2-12中示例)。

(3) 筋的根部用圆弧过渡,以避免外力作用时产生应力集中而破坏。但根部圆角半径过大则会出现凹陷。

(4) 一般不在筋上安置任何零件。

(5) 位于制品内壁的凸台不要太靠近内壁,以避免凸台局部熔体充填不足(图2-20)。

加强筋在防止制品变形、增加制品刚性方面的应用如图2-21~图2-22所示。

加强筋设计注意的问题参见表2-12。

§6 支承面

制品的支承面不能是整个底面,而应采用凸边或凸起支脚类结构,如三点支承、边框支承等,如图2-23~图2-26所示。

§7 圆角

制品的两相交平面之间尽可能以圆弧过渡,避免因锐角而造成应力集中等弊病(参见图2-27~图2-30)。制品圆角的作用有:

(1) 分散载荷,增强及充分发挥制品的机械强度。

(2) 改善塑料熔体的流动性,便于充满与脱模,消除壁部转折处的凹陷等缺陷。

(3) 便于模具的机械加工和热处理,从而提高模具的使用寿命。

§8 孔

1.8.1 制品孔的形式及成型方法

孔的形式很多,主要可分为圆形孔(图2-31、图2-32)和非圆形孔两大类。

根据孔径与孔深度的不同,孔可用下述方法成型:

(1) 一般孔、浅孔,模塑成型。

(2) 深孔,先模塑出孔的一部分深度,其余孔深用机械加工(如钻孔)获得。

(3) 小径深孔(如孔径d<1.5mm),机械加工。

(4) 小角度倾斜孔、复杂型孔,采用拼合型芯成型,避免用侧抽芯。

(5) 薄壁孔、中心距精度高的孔(孔系),采用模具冲孔,以简化塑模结构。

8.2 孔的模塑成型

1、盲孔成型(型芯一端固定,参见图2-33、图2-34)

图中,D——孔径、L——孔深

注射、传递模塑D≤1.5mm,L=D

D>1.5mm,L=(2~4)D

压缩模塑L=(2~2.5)D

2、通孔的成型(图2-35~图2-38)

3、复杂型孔的成型(图2-39)

4、孔的成型尺寸参数(表2-13~表2-15)

8.3 孔的设计要点

(1) 孔与孔的中心距应大于孔径(两者中的小孔)的2倍,孔中心至边缘的距离为孔径的3倍。热塑性和热固性塑料制品的孔心距、孔边距还可参见图2-40和表2-16。

塑料制品的结构设计规范

双林汽车部件股份有限公司 企业技术规范 塑料制品的结构设计规范 2008-10-20发布2008-10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1 塑料制品设计的一般程序和原则 1.1 塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.2 塑料制品设计的一般原则 1、在选料方面需考虑:(1) 塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2) 塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3) 塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。 §2 塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 %1000 0?-= L L L S 式中S ——收缩率; L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1) 成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3) 模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。

最新钢结构规范及图集

【国家标准】 1、GB-50017-2003、《钢结构设计规范》 2、GB50018-2002、《冷弯薄壁型钢结构技术规范》 3、GB-50205-2001、《钢结构结构施工质量验收规范》 4、GB50191-93、《构筑物抗震设计规范》 5、GBJ135-90、《高耸结构设计规范》 6、GB500046、《工业建筑防腐蚀设计规范》 7、GB8923-88、《涂装前钢材表面锈蚀等级和涂装等级》 8、GB14907-2002、《钢结构防火涂料通用技术条件》 9、GB-50009-2001、《建筑结构荷载规范》 10、GBT-50105-2001、《建筑结构制图标准》 11、GB-50045-95、《高层民用建筑设计防火规范》(2001年修订版) 12、GB-50187-93、《工业企业总平面设计规范》 【行业标准】 1、JGJ138-2001/J130-2001、型钢混凝土组合结构技术规程 2、JGJ7-1991、网架结构设计与施工规程 3、JGJ61-2003/J258-2003、网壳结构技术规程 4、JGJ99-1998、高层民用建筑钢结构技术规程(正修订) 5、JGJ82-91、钢结构高强度螺栓连接的设计、施工及验收规程 6、JGJ81-2002/J218-2002、建筑钢结构焊接技术规程 7、DL/T5085-1999、钢-混凝土组合结构设计规程 8、JCJ01-89、钢管混凝土结构设计与施工规程 9、YB9238-92、钢-混凝土组合楼盖结构设计与施工规程 10、YB9082-1997、钢骨混凝土结构技术规程 11、YBJ216-88、压型金属钢板设计施工规程(正修订) 12、YB/T9256-96、钢结构、管道涂装技术规程 13、YB9081-97、冶金建筑抗震设计规范 14、CECS102:2002、门式刚架轻型房屋钢结构技术规程 15、CECS77:96、钢结构加固技术规范 16、YB9257-96、钢结构检测评定及加固技术规范 17、CECS28:90、钢管混凝土结构设计与施工规程 18、YB9254-1995、钢结构制作安装施工规程 19、CECS159:2004、矩形钢管混凝土结构技术规程 20、CECS24:90、钢结构防火涂料应用技术规范 21、CECS158:2004、索膜结构技术规程 22、CECS23:90、钢货架结构设计规范 23、CECS78:96、塔桅钢结构施工及验收规程 24、CECS167:2004、拱形波纹钢屋盖结构技术规程 25、JGJ85-92、预应力筋用锚具、夹具和连接器应用技术规程 26、CECS、多、高层建筑钢-混凝土混合结构设计规程 27、CECS、热轧H型钢构件技术规程 28、CECS、钢结构住宅建筑设计技术规程 29、CECS、建筑拱形钢结构技术规程 30、CECS、钢龙骨结构技术规程

包装结构设计完整

一、包装 1.包装的含义 包装,常备单纯地理解为盛装商品的容器,有时也被理解为包装商品的过程。 美国包装学会对于包装的定义:包装是符合产品的需求,依据最佳的成本,便于货物的转送、流通、交易、储存于贩卖而实施的统筹整体系统的准备工作。 日本对包装的定义是:包装便于物品的输送及保管,并维护商品的价值,保持商品的状态而适当的材料或容器对物品所实施的技术及实施的状态。 中国;包装是在为流通过程中保护产品、方便贮存、促进销售,按一定的技术方法而采用的容器、材料和辅助物等总的名称。包装的目的是保护产品、方便贮存、促进销售。 2包装的功能 包装的功能是指,包装所具有的保护装物,使其不致损坏的能力与效率。包装的功能的作用对象并不是单一的,有针对装物,有的则是为了消费者。 a,容装功能。 b,计量功能 c,保护功能。保护功能是包装的基本功能。包装的保护功能主要体现在两个方面;一是保卫功能,保卫功能是指包装必须具有保持装物不受外力的侵犯,并且具有维持与昂装的能力。具体就是说包装具备防震动、防冲击、防折裂、防挤压、防辐射、防盗窃等能力:二是贮存功能,包装具有储存、保质的能力。 d,方便功能。是指包装具有使装物在保护、贮存等方面的便利,从而提高物品的流通效率。 具体表现在五个方面;一是方便运输,二是方便储存,(易堆放,可以减少仓储的费用,提高仓储效率)三是方便销售(适当的销售包装,有利于在橱窗、货架上列和销售)四是方便使用,五是方便处理(包装材料必须符合环保要求,便于使用后的处理) e,促销功能。是指包装具有吸引消费者、促进销售的能力。 f,社会功能。包装系统是生产系统与社会发生联系的重要媒介,反映着当代生产、技术发展水平,以及消费趋势和消费水平。 3包装分类 a按包装的目的分。可分为销售包装和运输包装(工业包装)。销售包装是以销售为主要目的的包装,与装物一起到达消费者手中,具有防护、美化和宣传产品,促进销售的作用。销售包装的容量相对较小,造型精美,在结构上注重使用、方便,设计上追求和强化心理效应;运输包装又称工业包装,使用于工业用品或一些产品在运输时使用的包装。以运输、贮存为主要目的,具有保障产品安全,方便储运装卸,加速交换的作用。运输包装一般容量较大,相对于销售包装更注重包装的强度、防震等功能及实用方面的要求,对于外观装饰设计比较不注重。 b按包装的相对位置分。可分为包装和外包装。包装是指商品的部包装,目的在于保护商品,是为了容物单件分量盛装和满足美化要求所设计的包装。外包装是指容物及其包装的再包装,是贮运、携带或进一步保护商品而设计的包装。 c按包装材料分。包装材料多种多样,总体上可以根据材料的硬度分为软包装和硬包装。软包装是指在充填或取出容物后,容器形状可发生改变的包装,这类用的材料一般是由纸、纤维制品、塑料薄膜或符合材料制成的;硬包装是指充填或取出容物后,包装形状基本不发生变形的包装,这类包装的材料一般是由金属、木材、玻璃、压缩包装、器及硬质塑料等制成,具有较高的强度和硬度。

塑料制品的结构设计规范

塑料制品的结构设 计规范 1

双林汽车部件股份有限公司 企业技术规范 塑料制品的结构设计规范 -10-20发布 -10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。§1 塑料制品设计的一般程序和原则 1.1 塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案, 绘制制品草图( 形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件, 包括塑料制品设计说明书和技术条件等。 1.2 塑料制品设计的一般原则 1、在选料方面需考虑: (1) 塑料的物理机械性能, 如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等; (2) 塑料的成型工艺性, 如流动性、结晶速率, 对成型温度、压力的敏感性等; (3) 塑料制品在成型后的收缩情况, 及各向收缩率的差异。 2、在制品形状方面: 能满足使用要求, 有利于充模、排气、补缩, 同时能适应高效冷却硬化( 热塑性塑料制品) 或快速受热固化( 热固性塑料制品) 等。 3、在模具方面: 应考虑它的总体结构, 特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺, 以便使制品具有较好的经济性。 4、在成本方面: 要考虑注射制品的利润率、年产量、原料价格、使用寿

命和更换期限, 尽可能降低成本。 §2 塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象, 收缩的大小用收缩率表示。 %1000 0?-= L L L S 式中S ——收缩率; L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1) 成型压力。型腔内的压力越大, 成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高, 塑料的膨胀系数增大, 塑料制品的收缩率增大。但温度升高熔料的密度增大, 收缩率反又减小。两者同时作用的结果一般是, 收缩率随温度的升高而减小。 (3) 模具温度。一般情况是, 模具温度越高, 收缩率增大的趋势越明显。 (4) 成型时间。成型时保压时间一长, 补料充分, 收缩率便小。与此同时, 塑料的冻结取向要加大, 制品的内应力亦大, 收缩率也就增大。成型的冷却时间一长, 塑料的固化便充分, 收缩率亦小。 (5) 制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加, 而非结晶型塑料中, 收缩率的变化又分下面几种情况: ABS 和聚碳酸酯等的收缩率不受壁厚的影响; 聚乙烯、 丙烯腈—苯乙烯、 丙烯酸类等塑料的收缩率随壁厚的增加而增加; 硬质聚氯乙烯的收缩率随壁厚的增加而减小。

注塑产品结构设计规范

注塑产品结构设计规范 1.目的 旨在规范注塑产品结构设计,使公司注塑产品设计有明确的、统一的要求,从而保证产品质量。 2.适用范围 适用于本公司所有注塑产品结构设计。 3.规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款,其最新版本适用于本规范。 产品3D建模设计规范 产品标记作业指导书 4.定义无 5.内容 5.1厚度设计 5.1.1 壁厚 Wall Thickness 5.1.1.1 最小壁厚 就传统注射成形而言,实用的最小壁厚在0.55到1.00mm之间。如果要采用更薄的壁厚,却又缺乏实际的经验,可以借助CAE作科学的决定。 5.1.1.2 壁厚变化 产品设计中壁厚不均带来的麻烦比任何其它问题设计带来者都要严重。这些麻烦包括了雾斑、喷流痕、气痕、焦痕、缩痕和缩孔、短射、熔接痕、迟滞痕、应力痕、翘曲变形以及周期时间长等。这些麻烦都可用CAE以直接或间接的方式预测。 设计高收缩率的结晶性注塑成型品时,设计者应将壁厚变化限制在10%以內。就低收缩率的非结晶性塑料而言,容许壁厚变化可到25%。厚度需在公称厚度的50%或67%或75%之间作一抉择。 下面是某一产品的壁厚变化引起的其它注塑参数变化的比较: 当壁厚改变时,阶梯式的断然变化应当避免,从厚到薄应以斜坡式的缓冲带过渡,该过渡区的长度以厚壁厚度的3倍为宜。看下图

5.1.1.3 掏空厚壁 Coring Out Thick Section 掏空厚壁以消除缩痕 差[Poor] 改善[Improved]

5.2 转角设计 5.2.1转角半径Corner Radius 尖锐的转角应力集中。塑料中,如尼龙和聚碳酸酯者,是对V字型刻痕敏感的,较之不敏感的塑料,如ABS和聚乙烯者,成型时会在内圆角上产生高的应力。 当一90°转角的内圆角半径小于公称厚度的25%时,角落就会有高的应力集中。内圆角的半径增加到公称厚度的75%时,二壁相交处就能进而强化。可接受的平均内圆角半径是公称厚度的50%。 内圆角半径图表Fillet Radius 5.2.2 转角设计实例 上图及中图中根部尖角,易开裂根部园角,开裂问题解决

包装结构设计(第三版)部分习题答案

1-1.举例说明包装结构、造型与装潢设计之间的关系。 答:三者具有一定的关联性,如折叠纸盒设计中,不是在结构图上随意的设计图案、文字、商标等,而是要考虑装潢的各要素与结构的各要素,然后按一定方式结合。 三者具有共同的目的性,如折叠纸盒设计中,其结构具有容装性和保护性,装潢具有显示性,造型具有陈列性,三者结合具有方便、促销售等功能; 三者具有相辅相成的综合性,如折叠纸盒设计中,不同的结构,不同的造型,不同的装潢对于产品的销售影响是不同的,必须三者有机的组合才能达到最好的效果。 2-3.什么是内折、外折与对折 答:纸盒折叠成型后,纸板底层为盒内角的两个边,而面层为外角的两个边,则为内折,反之为外折;如果纸板180°折叠后,纸板两底层相对,则为内对折,反之为外对折。 2-4.在瓦楞纸箱设计中如何选择楞向 答:盘式盒盒体的瓦楞楞向应与纸盒长度方向平行,02类纸箱与纸箱高度纵向平行;只有一组压痕线的瓦楞纸箱,瓦楞楞向应与该组压痕线垂直,瓦楞衬件一般是垂直瓦楞。 2-5.在折叠纸盒设计中如何选择纸板纹向 答:纸板纹向一般可以通过目视观察纸中纤维排列方向进行确定,也可以同时用水湿纸板使其发生弯曲,与弯曲轴向平行的方向即为纸板纵向。 2-6.纸包装制造尺寸为什么不能用LxBxH表示 答:制造尺寸指生产尺寸,即在结构设计图上标注的尺寸,就直角六面体包装容器类来说,还不止一组数据,因此不能用LxBxH表示。 4-1.为什么粘贴纸盒制造尺寸计算公式与折叠纸盒有所不同 答:粘贴纸盒纸材选用由短纤维草浆制造的非耐折纸板,其耐折性能较差,折叠时极易在压痕处发生断裂,所以其制造尺寸就等于内尺寸,而折叠纸盒利用的耐折纸板,其纸页两面均有足够的长纤维产生以必要的耐折性能和足够的弯曲强度,使其在折叠后不会沿压痕处断裂,故其制造尺寸不等于内尺寸。 6-1.塑料容器的选材原则是什么/ 6-2.注射、压制和压铸成型容器的结构设计要素有哪些 6-3.容器壁厚过大和过小有何不利影响 6-4.为提高中空容器的强度和刚度,设计时可采用哪些方法 6-5.为什么说中空容器的肩部形状十分重要怎样设计较为合理 6-6.塑料容器的外形设计需注意哪些与包装生产线相关的问题 6-7.简述造成塑件成型误差的主要因素。 6-8.真空成型容器的壁厚分布有何规律是何原因 7-1.在压制法生产中,为什么随着开模时间的延长,玻璃瓶罐内表面脱模斜度逐渐增大,而外表面脱模斜度逐渐减小 7-2.在异型瓶设计中,为什么拉应力作用区壁厚取大值,压应力作用区壁厚取小值 7-3.螺纹瓶口的种类及特点是什么 7-4.塞形瓶口的设计要求是什么

塑料制品的结构设计(DOC51页)

第一章 塑料制品的结构设计 塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1.1 塑料制品设计的一般程序和原则 1.1.1 塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.1.2 塑料制品设计的一般原则 1、在选料方面需考虑:(1) 塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2) 塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3) 塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。 §1.2 塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 %1000 0?-= L L L S 式中S ——收缩率; L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。

影响收缩率的主要因素有: (1) 成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3) 模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。 (4) 成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。 (5) 制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。 (6) 进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。 (7) 玻璃纤维等的填充量。收缩率随填充量的增加而减小。 表2-1、表2-2、表2-3为常用塑料的成型收缩率。

塑料产品设计规范

塑料产品设计规范 塑料制品设计特点﹕ 塑料产品的设计与其它材料如钢,铜,铝,木材等的设计有些是类似的;但是,由于塑料材料组成的多样性,结构﹑形状的多变性,使得它比起其它材料有更理想的设计特性;特别是它的形状设计,材料选择,制造方法选择,更是其它大部分材料无可比拟的.因为其它的大部分材料,其设计者在外形或制造上,都受到相当的限制,有些材料只能利用弯曲﹑熔接等方式来成形.当然,塑料材料选择的多样性,也使得设计工作变得更为困难,如我们所知,目前已经有一万种以上的不同塑料被应用过,虽然其中只有数百种被广泛应用,但是,塑料材料的形成并不是由单一材料所构成,而由一群材料族所组合而成的,其中每一种材料又有其特性,这使得材料的选择,应用更为困难. 塑料制品设计原则﹕ 1.依成品所要求的机能决定其形状﹐尺寸﹐外观﹐材料 2.设计的成品必须符合模塑原则﹐既模具制作容易﹐成形及后加工容易﹐但仍保持成品的机能 塑料制品设计程序: 为了确保所设计的产品能够合理而经济,在产品设计的初期,在外观设计者﹐机构工程师,制图员,模具制造者,成形厂以及材料供应厂之间的紧密合作是必须的,因为没有一个设计者,能够同时拥有如此广泛的知识和经验,而从不同的事业观点所获得的建议,将是使产品合理化的基本前提;除此之外, 一个合理的设计考虑程序也是必须的;以下将就设计的一般程序作出说明: 一.确定产品的功能需求,外观. 在产品设计的初始阶段,设计者必须列出对该产品的目标使用条件和功能要求;然后根据实际的考虑,决定设计因子的范围,以避免在稍后的产品发展阶段造成可能的时间和费用的漏失.下表为产品设计的核对表,它将有助于确认各种的设计因子. 产品设计的核对表 一般数据: 1.产品的功能? 2.产品的组合操作方式? 3.产品的组合是否是可以靠着塑料的应用来简化? 4.在制造和组合上是否可能更为经济有效? 5.所需要的公差? 6.空间限制的考虑? 7.界定产品使用寿命? 8.产品重量的考虑? 9.有否承认的规格? 10.是否已经有相类似的应用存在? 结构考虑: 1.使用负载的状态? 2.使用负载的大小? 3.使用负载的期限? 4.变形的容许量? 环境: 1.使用在什么温度环境? 2.化学物品或溶剂的使用或接触? 3.温度环境? 4.在该种环境的使用期限? 外观: 1.外形 2.颜色 3.表面加工如咬花,喷漆等. 经济因素: 1.产品预估价格? 2.目前所设计产品的价格? 3.降低成本的可能性? 二.绘制预备性的设计图: 当产品的功能需求,外观被确定以后,设计者可以根据选定的塑料材料性质,开始绘制预备性的产品图,以作为先期估价,检讨以及原则模型的制作.

塑料产品结构设计准则

产品结构设计准则--壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。

产品结构设计工程师必备之结构篇

结构篇 塑料的外观要求:产品表面应平整、饱满、光滑,过渡自然,不得有碰、划伤以及缩孔等缺陷。产品厚度应均匀一致,无翘曲变形、飞边、毛刺、缺料、水丝、流痕、熔接痕及其它影响性能的注塑缺陷。毛边、浇口应全部清除、修整。产品色泽应均匀一致,表面无明显色差。颜色为本色的制件应与原材料颜色基本一致,且均匀; ?需配颜色的制件应符合色板要求。 ?上、下壳外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面 ?壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽量 ?使产品:面壳>底壳。 ?一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, ?一般选0.5%,底壳成型缩水较小,所以缩水率选择较小,一般选0.4%。 结构设计的一般原则:力求使制品结构简单,易于成型;壁厚均匀;保证强度和刚度;根据所要求的功能决定其形状尺寸外观及材料,当制品外观要求较高时,应先通过外观造型在设计内部结构。 尽量将制品设计成回转体或对称形状,这种形状结构工艺性好,能承受较大的力,模具设计时易保证温度平衡,制品不以产生翘曲等变形。应考虑塑料的流动性,收缩性及其他特性,在满足使用要求的前提下制件的所有转角尽可能设计成圆角或用圆弧过渡。 塑料件设计要点 开模方向和分型线 每个塑料产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响; 开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 脱模斜度 脱模斜度的要点 脱模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。此外,成型的方式,壁厚和塑料的选择也在考虑之列。一般来讲,对模塑产品的任何一个侧壁,都需有一定量的脱模斜度,以便产品从模具中取出。脱模斜度的大小可在0.2°至数度间变化,视周围条件而定,一般以0.5°至1°间比较理想。具体选择脱模斜度时应注意以下几点: a. 取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得,外形以大端为

塑胶产品结构设计常识

塑胶产品结构设计小 常识 第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料选择 1.2 、壳体厚度 1.3 、零件厚度设计实例 2、脱模斜度 2.1 、脱模斜度要点 3、加强筋 3.1 、加强筋与壁厚的关系 3.2 、加强筋设计实例 4、柱和孔的问题 4.1 、柱子的问题 4.2 、孔的问题 4.3 、“减胶”的问题 5、螺丝柱的设计 6、止口的设计

6.1 、止口的作用 6.2 、壳体止口的设计需要注意的事项

6.3 、面壳与底壳断差的要求 7、卡扣的设计 7.1 、卡扣设计的关键点 7.2 、常见卡扣设计 8、装饰件的设计 8.1 、装饰件的设计注意事项 8.2 、电镀件装饰斜边角度的选取 8.3 、电镀塑胶件的设计 9、按键的设计 9.1 按键() 大小及相对距离要求 10、旋钮的设计 10.1 旋钮() 大小尺寸要求 10.2 两旋钮() 之间的距离 10.3 旋钮() 与对应装配件的设计间隙 11、胶塞的设计 12、镜片的设计 12.1 镜片()的通用材料 12.2 镜片()与面壳的设计间隙 13、触摸屏与塑胶面壳配合位置的设计 13.1 、触摸屏相对应位置塑胶面壳的设计注意事项

第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料的选取 a. :高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受 可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、支架)等。还 有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。目 前常用奇美757、777D 等。 b. :流动性好,强度不错,价格适中。适用于作高刚性、高冲击韧性的制件, 如框架、壳体等。常用材料代号:拜尔T85 、T65 。 c. :高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、按键、传 动机架、镜片等。常用材料代号如:帝人L1250Y 、2405、2605 。 d. 具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、 较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、传动齿轮、 蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44 。 e. 坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。受冲击 力较大的关键齿轮,需添加填充物。材料代号如:3003G30 。 f. 有极好的透光性,在光的加速老化240 小时后仍可透过92% 的太阳光,室 外十年仍有89% ,紫外线达78.5% 。机械强度较高,有一定的耐寒性、耐 腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求 的透明结构件,如镜片、遥控窗、导光件等。常用材料代号如:三菱001。 1.2 壳体的厚度 a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小

缓冲包装与结构设计

1.课程设计目的与任务 课程设计的目的 (1)通过缓冲包装与结构设计课程设计,使同学们对指定产品的缓冲包装设计过程和设计方法有一个全面的了解,熟练掌握缓冲包装设计六步法; (2)对于产品的缓冲衬垫和外包装箱的结构进行设计,掌握各种箱型结构设计的方法。为毕业设计和以后走向工作岗位打下良好的基础。 课程设计的任务 为格力空调KFR-72LW设计出合理缓冲衬垫以及外包装箱。要适合国内运输环境的要求,存贮时间为30——100天。 2.产品介绍 产品名称:格力空调 型号:KFR-72LW 室内机竟重:40kg 产地:深圳珠海 价格:5999元 销售范围:全国各地 尺寸:宽*高*深mm(500*1720*300)图2-1 格力空调的外形图 产品机械性能: 3. 流通环境 a.外观工艺、检查:机柜表面喷涂均匀、无破损; b.操作及维修安全、方便,标牌、标记:应平整清晰。 c.部件排列合理、整齐;,布放平整;接插件牢固; 进出线符合工程需要;具备抗震措施。 流通的基本环节 包装件在运输流通中所经历的一切外部因素统称为流通环境条件。包装技术就是

要确保产品由一地向另一地运送时不受经济上和功能上的意外损失。对产品可能遭遇的条件作考察与评价,是运输包装设计中的重要内容。流通过程的基本环节有:装卸搬运环节、运输环节、贮存环节。 (1)装卸搬运环节 在装卸搬运环节中,由于格力KFR-72LW空调销售遍及全国乃至全球任何地方,其销售范围非常的广泛,所以既可能有短流程运输也可能包括较长流程的运输。如果流程越长,中转环节越多,装卸搬运次数就越多,所以对此商品的包装件造成的损害就越大。装卸作业中既可能有人工装卸也有机械装卸,所以要中和考虑到抛掷、堆垛倒塌、起吊脱落、装卸机的突然启动和过急的升降都会造成产品的跌落损害。 (2) 运输环节 产品的主要运输方式铁路和公路运输。由于产品销往全国各地,既有长途运输又有短途运输。一般产品从出厂到发货火车站使用汽车运输,从发货站到全国各地的代理商使用火车运输,而从各地代理商到零售商和从零售商到消费者手中多使用汽车运输。汽车运输的冲击,主要取决于路面状况,车辆的启动和制动,货物重量及装载稳定性。汽车运输振动加速度的大小也与路面状况、行驶速度、车型和载重量有关,但主要因素为公路的起伏和不平。汽车运输是包装件的共振频率一般小于25HZ,实验测得,汽车运输发生二次共振时其基频为~,二次共振频率范围为~18HZ,共振加速度增大为外界激励的18倍。汽车运输的随机振动加速度垂直方向最大,汽车运输振动能量绝大部分分布在0~200HZ,其中能量最集中处于0~50HZ频带内。汽车运输随机振动功率谱密度在2HZ和10HZ左右各有一个较大峰值。通常2HZ出的峰值为全频带内最大值,所以公路运输包装件的固有频率应避开这两个频率值。铁路运输时产生的冲击有两种。一种是车轮滚过钢轨接逢时的垂直冲击,在普通路轨上为80~120次/分,加速度最高为1g;另一种是火车在挂钩撞合时产生的水平冲击,加速度可达2~4g。若速度为h时作溜放挂钩,车体撞合瞬间可能产生18g 的冲击加速度。火车驶过钢轨时受到冲击,以正常速度70km/h驶过钢轨时,垂直方向加速度峰值为5~8g。 (3) 贮存环节 在贮存环节中,贮存是商品流通链中重要的一环。贮存方法、堆码重量、堆码高度、贮存周期、贮存地点、贮存环境等,会直接影响产品的流通安全性。在贮存时,为节省占地面积、常需将货物堆高,堆码后底部货物包装件将承受上部货物的重压。这种重载压力会导致包装容器变形,影响包装外观及其动态保护性能。一般情况下,空调的堆码层数为一层.存贮时间为30——100天。 确定跌落高度H (1)图表法:

产品结构设计等方面的checklist

模具的checklist表: 产品名称模具编号材料收缩率 序号内容自检确认 1与客户交流清楚外观面位置及外观要求如镜面,皮纹,亚光等。 2清楚产品的安装方向,产品的出模方向及它们之间的关系。 3产品在出模方向无不合理结构。 4壁厚合理,壁厚均匀,没有过薄,过厚及壁厚突变。 5圆角齐全,所有外观面倒圆角(特殊要求除外),所有非外观面倒圆角,非外观面圆角足够大。且圆角处壁厚均匀,无漏掉的圆角。 6脱模斜度齐全,正确,无放反的情况,脱模斜度足够大,已用DRAFTCHECK命令进行检查。7透明件,皮纹处理的外观面,插穿面脱模斜度足够大,满足标准。 8透明件已考虑外观效果,可见结构,并与客户进行交流。 9需贴膜的件已经考虑到膜在实际安装方向的定位, 10电镀件装配考虑到镀层厚度和装配间隙, 11一面用插接,一面用卡爪的结构已考虑到装配过程中是否有与外观干涉,是否有造成外观面破坏的情况,卡爪是否易断 12加强筋高度,宽度,脱模斜度结构及工艺均合理。 13外观件检查产品结构如壁厚,加强筋(尤其是横在制品侧壁的筋考虑与侧壁的防缩)、螺钉柱等不会引起缩水,已采取防缩措施。 14产品变形,收缩等注塑缺陷轻微,且已与客户协商,得到客户的书面认可。 15需出斜顶,滑块,抽芯的结构活动距离及空间足够,结构能否简化。 16产品无引起模具壁薄,尖角等不合理结构。 17带嵌件的产品考虑嵌件在模具中的牢固固定,内桶底的嵌件要求将嵌件和包嵌件的胶位合并到一起作为模具嵌件。 18与客户交流清楚分型面的位置,外观面滑块,抽芯允许的夹线位置。 19备份产品已检查所有修模报告及更改记录并进行了更改,重要装配尺寸进行了样件的实际测绘验证。 笔记本的CHECKLIST DesignCheckListBySub-Assy. 1.U-Case 1-1上下盖嵌合部份 1-1-1上下盖PL是否Match 1-1-2Lip是否完成,是否符合外观要求(修饰沟) 1-1-3侧壁之TAPER/与下盖是否配合/考虑到开模 1-1-4上下盖之配合卡勾共几处,是否位置match 1-1-5卡勾嵌合深度多少 1-1-6卡勾两侧有无夹持Rib,拆拔时是否易断裂 1-1-7卡勾是否造成侧壁缩水(如果太厚) 1-1-8公模内面形状(如各处高度). 1-1-10PL切口处是否有刀口产生(全周Check) 1-2BOSS 1-2-1上下盖BOSS孔位是否相合 1-2-2BOSS尺寸是否标准化,内缘有没有倒角

塑胶件结构设计规范

塑胶零件结构设计规范
摘要 随着公司的不断发展和产品的增加,为了造型的需要产品结构件中塑料零件用 的越来越多。那么在具体设计塑料零件的结构时需要考虑哪些方面的问题?怎样合理地设计 塑料零件的结构?如何选择塑料零件的材料?壁厚选择多少合适?等等。 本文对这些具体问 题进行了详细的总结。希望对大家在今后的设计中有所帮助并希望大家一起来补充完善。 关键词 塑料零件、壁厚、脱模斜度、加强筋、材料选择 1、零件的形状应尽量简单、合理、便于成型 1.1 在保证使用要求前提下,力求简单、便于脱模,尽量避免或减少抽芯机构,如采用下 图例中(b)的结构,不仅可大大简化模具结构,便于成型,且能提高生产效率。
1.2 利用转换区的方法来防止突然的递变。

1.3 利用肋及浮凸物和铸空法使设计更合理。
1.4 转角处用圆弧过渡。

1.5 尽量让浮凸物与外壁或肋相连。
1.6 如果肋本身即与外壁间隔相当远,则最好加上角板。
2、零件的壁厚确定应合理 塑料零件的壁厚取决于塑件的使用要求, 太薄会造成制品的强度和刚度不足, 受力后容 易产生翘曲变形 , 成型时流动阻力大 , 大型复杂的零件就难以充满型腔。 反之, 壁厚过大, 不但浪费材料,而且加长成型周期,降低生产率,还容易产生气泡、缩孔、翘曲等疵病。因 此制件设计时确定零件壁厚应注意以下几点: 2.1 在满足使用要求的前提下,尽量减小壁厚; 2.2 零件的各部位壁厚尽量均匀, 以减小内应力和变形。 不均匀的壁厚会造成严重的翘曲 及尺寸控制的问题; 2.3 承受紧固力部位必须保证压缩强度; 2.4 避免过厚部位产生缩孔和凹陷; 2.5 成型顶出时能承受冲击力的冲击。

产品结构设计经验

塑胶产品结构设计注意事项 目录 第一章塑胶结构设计规范 1、材料及厚度 1.1、材料选择 1.2、壳体厚度 1.3、零件厚度设计实例 2、脱模斜度 2.1、脱模斜度要点 3、加强筋 3.1、加强筋与壁厚的关系 3.2、加强筋设计实例 4、柱和孔的问题 4.1、柱子的问题 4.2、孔的问题 4.3、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1、止口的作用 6.2、壳体止口的设计需要注意的事项 6.3、面壳与底壳断差的要求 7、卡扣的设计 7.1、卡扣设计的关键点 7.2、常见卡扣设计 7.3、

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支 架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、 导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、 PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸 水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳 光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐

【塑料橡胶制品】塑料结构件设计规范

(塑料橡胶材料)塑料结构 件设计规范

塑料制品的结构设计 塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1.1塑料制品设计的一般程序和原则 1.1.1塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.1.2塑料制品设计的一般原则 1、在选料方面需考虑:(1)塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2)塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3)塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。

§1.2塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 式中S——收缩率; L0——室温时的模具尺寸; L——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1)成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2)注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3)模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。 (4)成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。 (5)制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。 (6)进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。 (7)玻璃纤维等的填充量。收缩率随填充量的增加而减小。 表2-1、表2-2、表2-3为常用塑料的成型收缩率。

电子产品结构设计的标准及原则

电子产品结构设计的标准及原则 一、壁厚设计原则 塑胶材料基本设计守则壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm 为上限从经济角度来看过厚的产品不但增加物料成本 延长生产周期增加生产成本。从产品设计角度来看过厚的产品增加产生气孔的可能性大大削弱产品的刚性及强度。 模具的温度都比塑材的熔融温度低,当塑材刚从唧嘴中进入模具时,由于模具的温度更低,在模具表面会形成一层结晶层,约有0.2MM,造成能通过胶料的空间非常小,需要非常大的注塑压力,很有可能造成无法填满,现在有一些薄壁注塑技术就是应此而生的。最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题 二、筋位设计原则 加强筋的作用加强筋在塑胶部件上是不可或缺的功能部份。加强筋增加产品的刚性和强度而无需大幅增加产品切面面积对一些经常受到压力、扭力、弯曲的塑胶产品尤其适用。此外,加强筋更可充当内部流道助模腔充填,对帮助塑料流入部件的支节部份很大的作用。设计原则加强筋一般被放在塑胶产品的非接触面其伸展方向,应跟随产品最大应力和最大偏移量的方向选择加强筋的位置,亦受制於一些生产上的考虑如模腔充填、缩水及脱模等 三、柱位设计原则 1.支柱突出胶料壁厚是用以装配产品、隔开物件及支撑承托其他零件之用。 2.空心的支柱可以用来嵌入件、收紧螺丝等。 四、止口设计原则 反叉骨设计的一般尺寸 A、止口与反止口息息相关 配合使用。反止口的作用与止口相反,反止口是防止B壳朝外变形,同时防止A壳朝内缩。 B、反止口是做在母止口的那个壳上。 C、设计反止口时要注意离公扣单边8.0MM 至少6.0MM,因为扣位要变形 五、卡扣设计原则原理

包装功能和包结构设计原则

包装功能和包装结构设计原则 纸箱包装要素的确定 在做商品包装纸箱设计时,设计师首先碰到这几个问题: 1.一个纸箱内装商品数量与单箱重量究竟多少为宜?如何来确定? 2.依据什么确定纸箱产品的内部排列方式,如何选择最好的排列组合? 3.所设计的箱体长宽高尺寸是否有利于增强纸箱强度和节省原材料? 纸箱内装产品的数量、重量、排列,纸箱内外尺寸,以及瓦楞纸板材料规格等要素,这些都是首要的考虑内容,因为它们最终决定了包装纸箱的制造、容纳、储运、使用的效率、经济性和总体功能。 单箱重量 根据国际贸易惯例,作为消费品运输包装的瓦楞纸箱的单箱重量一般不超过20kg为宜,最大25kg。主要考虑到搬运工或店员的操作方便,不容易导致人体损伤等因素。我国国家标准对人工搬运的单件包装箱最大重量规定为18kg。据此,一般消费商品的瓦楞纸箱货物的单件重量限定为20kg当属比较合理。 当然,大中型工业产品的缓冲运输包装纸箱不应受此限制。 由内装产品的数量乘以产品单位重量可计算得到包装货物净重,整个纸箱货物重量(毛重)当然还要包含纸箱本身材料和隔衬材料的重量(皮重)。 需要说明的是,按贸易惯例规定单箱重量不大于20kg为宜。但若设计纸箱的单箱重量过小也不明智,因为小的纸箱所容纳的产品数少,材料相对耗用率高,又经历与大箱差不多的制造过程,小箱的生产、使用、包装的总体效率不如大箱。所以,只要有可能,应尽量接近20kg为好,以发挥最大功能。 内容物的数量 纸箱内装产品的数量主要由纸箱最大允许重量除以产品的单位重量来计算确定。 由于要顾及内部产品的长、宽、高三个方向的排列(它决定了纸箱的综合尺寸),所以,内装物数量也不是可随意选择或确定的。设计时一般可考虑几个不同的数量方案,然后根据既合乎重量限定,又有利于排列方式可灵活调整的原则来确定。 具体来说,内装物品件数应该选择分解因子较多的数值,这样有利于长宽高尺寸的调整。举例来说,7、11、13、17、19、23、29、41、43、47……都不宜选择,因为这些数分解因子只有1和其自身,没有别的更多排列法。相反地,如选12件,12=1×2×2×3,就有12×1×1、6×2×1、4×3×1、3×4×1、3×2×2、6×1×2等许多种可用的长宽高排列方式。而如选10件,10=1×2×5,可用的长宽高排列方式就比12要少得多。所以,在相差不太大的几个数值之间,一般应该选择可分解因子较多的数值。市场上的商品数量传统组合以12(一打)或其倍数用得比较多,显然有利于流通环节的模数化与标准化。 内容物的排列方式 指产品在纸箱内部的长宽高三个方向上的具体排列数。 实际上,在确定内装物数量的时候,已经考虑到产品的内部排列了。这里除了数的选择外,还涉及到纸箱的结构强度、用料量等问题。 长宽高方向排列,首先要考虑到箱体外部尺寸应合乎根据人体工学原理得出的限度。 根据纸箱强度试验,在同样周边长下,瓦楞纸箱的长宽比在1.2~1.6之间,其抗压强度为最好。同样综合尺寸

相关文档
最新文档