气辅注射成型原理及工艺

气辅注射成型原理及工艺
气辅注射成型原理及工艺

来源于:注塑塑胶网https://www.360docs.net/doc/6f1236837.html,

气辅注射成型原理及工艺

气辅成型是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术.

要点:1、计量管理。

2、利用气辅控制器把高压氮气直接压入到模腔内熔胶里。

3、使塑件内部膨胀而造成中空。

一、气辅成型的优点

1、降低产品的残余应力,使产品不变形。

2、解决和消除产品表面缩痕问题,应用于厚度变化大的产品。

3 、降低注塑机的锁模力,减少成型机的损耗。

4、提高注塑机的工作寿命。

5、节省塑胶原材料,节省率可达百分之三十。

6、缩短产品生产成型周期时间,提高生产效率。

7、降低模腔内的压力,使模具的损耗减少和提高模具的使用寿命。

8、对某些塑胶产品,模具可采用铝合金属材料。

9 、简化产品的繁复设计。

二、气辅成型过程

? 合模

? 射座前进

? 熔胶充填

? 气体注入

? 预塑计量(气体保压)

? 射座后退(排气卸压)

? 冷却定型

? 开模

? 顶出制件

三、气体辅助注塑周期

1、注塑期--以定量的塑化塑料充填到模腔内。(保证在充气期间,气体不会把产品表面冲破及能有一理想的充气体。)

2、充气期--可以注塑期中或后,不同时间注入气体。气体注入的压力必需大于注塑压力,以致使产品成中空状态。

3、气体保压期--当产品内部被气体充填后,气体作用于产品中空部分的压力就是保压压力,可大大减低产品的缩水及变形率

4、脱模期--随着冷却周期的完成,模具的气体压力降至大气压力,产品由模腔内顶出。

四、气辅成型所需的条件

? 注塑成型机

? 气体的来源(氮气发生器)

? 输送气体的管道

? 控制氮气有效流动的设备(氮气控制台)

? 带有气道设置的成型模具(气辅模具)

五、成型条件的设定

1、注塑机的设定

原材料的烘干温度与传统成型一致

料筒的塑化温度比传统注塑偏高

模温要求较严,冷却水路布置要使冷却效果均衡

注塑压力与传统注塑基本一致

注塑速度一般采用高速填充

2、氮气设备的设定

a、氮气发生器的压力一般设定在30MPA左右

b、氮气控制台要素的设定(延迟时间、气体压入时间、气体保持时间、气体放气时间、压力的设定、气体速率)

热塑性弹性体的注塑成型工艺

TPR/TPE热塑性弹性体的注塑成型工艺

TPR的干燥 根据材料的特性和供料情况,一般在成型前应对材料的外观和工艺性能进行检测。供应的粒料往往含有不同程度的水分、熔剂及其它易挥发的低分子物,特别是具有吸湿倾向的TPR含水量总是超过加工所允许的限度。因此,在加工前必须进行干燥处理,并测定含水量。在高温下TPR的水分含量要求在5%以下,甚至2%~3%,因此常用真空干燥箱在75℃~90℃干燥2小时。已经干燥的材料必须妥善密封保存,以防材料从空气中再吸湿而丧失干燥效果,为此采用干燥室料斗可连续地为注塑机提供干燥的热料,对简化作业、保持清洁、提高质量、增加注射速率均为有利。干燥料斗的装料量一般取注塑机每小时用料量的2.5倍。 TPR染色 以SBC为基础的TPE在颜色上优于大多数其它TPR材料。所以,它们只需要较少量的色母料就可达到某种特定的颜色效果,而且所产生的颜色比其它TPR更为纯净。一般说来,色母料的粘度应该比TPR的粘度低,这是因为TPR的熔融指数比色母料高,这将有利于分散过程,使得颜色分布更加均匀。 对于以SBS为基础的TPE,推荐采用聚苯乙烯类载色剂。 对于以较硬的SEBS为基础的TPR,推荐采用聚丙烯(PP)载色剂。 对于以较软的SEBS为基础的TPR,可采用低密度聚乙烯或乙烯醋酸乙烯共聚物。对于较软的品种,不推荐采用PP载色剂,因为复合材料的硬度将受到影响。 对于某些包胶注塑的应用,使用聚乙烯(PE)载色剂可能会对与基体的粘接力产生不利的影响。 注塑前需要清洗料筒 新购进的注塑机初用之前,或者在生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时,都需要对注塑机机筒进行清洗或拆洗。 清洗机筒一般采用加热机筒清洗法。清洗料一般用塑料原料(或塑料回收料)。对于TPR材料,可用所加工的新料置换出过渡清洗料。TPR的成型温度 在加工注塑过程中,温度的设定是否准确是制品外观和性能好坏的关键。下面是进行TPR加工注塑时温度设定的一些建议。 进料区域的温度应设定得相当低,以避免进料口堵塞并让夹带的空气逸出。当使用色母料时为了改善混合状态,应将过渡区域的温度设定

气体辅助注塑成型的原理及优点

气体辅助注塑成型的原理及优点 气体辅助注塑成型具有注射压力低、制品翘曲变形小、表面质量好以及易于加工壁厚差异较大的制品等优点,近年来发展很快。它在发达国家用于商业化的塑料制品生产差不多已有20多年。气体辅助注塑成型包括塑料熔体注射和气体(一般采用氮气)注射成型两部分。与传统的注射成型工艺相比,气体辅助注塑成型有更多的工艺参数需要确定和控制,因而对于制品设计、模具设计和成型过程的控制都有特殊的要求。 气体辅助注射成型过程首先是向模腔内进行树脂的欠料注射,然后把经过高压压缩的氮气导入熔融物料当中,气体沿着阻力最小方向流向制品的低压和高温区域。当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面。这些置换出来的物料充填制品的其余部分。当填充过程完成以后,由气体继续提供保压压力,将射出品的收缩或翘曲问题降至最低。 气体辅助注塑成型的优点: 低的注射压力使残余应力降低,从而使翘曲变形降到最低; 低的注射压力使合模力要求降低,可以使用小吨位的机台; 低的残余应力同样提高了制品的尺寸公差和稳定性; 低的注射压力可以减少或消除制品飞边的出现; 成品肉厚部分是中空的,从而减少塑料,最多可达40%; 与实心制品相比成型周期缩短,还不到发泡成型的一半; 气体辅助注塑成型使结构完整性和设计自由度大幅提高; 对一些壁厚差异较大的制品通过气辅技术可以一次成型; 降低了模腔内的压力,使模具的损耗减少,提高其工作寿命; 减少射入点,气道可以取代热流道系统从而使模具成本降低; 沿筋板和凸起根部的气体通道增加了刚度,不必考虑缩痕问题; 极好的表面光洁度,不用担心会像发泡成型所带来的漩纹现象。 运用气体辅助注塑成型技术后允许设计人员将产品设计得更加复杂,而模具制造商则能够简化模具结构。制品功能不断增加和制品组件的减少使得生产周期缩短,无须进行装配和后期修整工作。在成型CD托盘和机动车电子中心压配层板的生产中表明气体辅助注塑成型能够应用于薄壁制品的生产制造。尺寸稳定性的提高,制品残余应力的减少以及翘曲量的降低是气体辅助注塑成型技术的一个主要优点。气体辅助注塑成型技术的应用将变得越来越复杂多样。现在,可用气体辅助注塑成型技术生产质量从30g~18kg的制品。

气辅成型模具

第三单元其他塑料模具简介随着塑料产品应用的广泛和塑料成型工艺的飞速发展,人们对塑料制品的要求也越来越高。近几年来,除了注塑模以外,在其他的塑料模具方面也有了很大的发展,如压制成型模具、真空成型模具、多色注塑模、气辅成型、高光注塑模等 课题七气体辅助注射成型及实例 学习目标 通过本课题的学习,你将了解气体辅助注射成型方面的基本知 识,熟悉气体辅助注射成型的设计方法和制造特点等学习内容气辅成型原理、模具特点、辅助设备、成型工艺及特点等 家用电器部件:

电子设备部件:

家具塑料部件: 气辅技术可在家电、汽车、家具、日常用品、办公用品等几乎所 有塑料制件领域得到应用。 采用气辅技术可以减少成型的锁模力, 缩 短成型周期,减少翘曲变形。同时,由于成型所需注射压力的降低, 从而可以在较小的注塑机上成型较大的制品。 从表面上看, 气辅技术 的优势源于利用高压气体把厚壁的内部掏空;从工程力学的原理上 看,气辅技术的应用改变了材料在制品断面上的分布, 使制件刚性和 强度得以改善,承载力增加,这在汽车、飞机、船舶等交通工具的轻 量化方面显示出了巨大且诱人的应用优势和前景。 气辅技术在美、日、欧等发达国家和地区正日益得到广泛应用,短短 几年,该技术用于注塑制品成型的模具配套率已达 10% 。随着时间 的推移,在市场竞争极为激烈的情况下, 更加完善的气辅技术一定会 为更多的塑料制件制造商所接受。 气辅技术在国内的应用首先体现在 壳类制品和轿车内饰件等家电、汽车、仪器、仪表、家具等行业。气 辅技术的最大应用领域是家电产品,就日本电视机行业来说, 64cm 以上大屏幕彩电几乎 90% 以上采用气辅成型技术。目前,中国年产

气辅成型技术

气辅成型技术在注塑业中又称气体辅助住宿和中空成型,在近10年来发展起来的革新成型技术,也可说是注塑技术的第二次革命。目前该技术主要用于汽车、大型家电等大件注塑行业。 其主要原理是:先注入一定量的熔融塑胶(通常为90%-98%,以产品的总胶量而言)可通过分析计算+经验。然后再在熔融塑胶内注入高压氮气,高压氮气在熔融的塑胶内沿预设的路径形成气道(最好是和流向一致当然有特殊具体情况你决定)。使不到100%的熔融塑胶充满整个模腔,此后进入保压阶段,同时冷却,最后排气、脱模。高压氮气进入塑料后自然会穿越粘度低(温度高)和低压的部位,并中在冷却过程中利用气体高压来保压而紧贴模具壁成型。 此项技术除需传统注塑设备外,还需所体辅助注塑控制系统(新科益有MDI控制器)。 与传统的注塑成型相比,气体辅助注塑成型有下列优点: 1.减少内部的残留应力,从而减弱甚至完全消除翘曲变形状况,同时增加其机械强度和刚性。 2.成品壁厚部分的中央是中空的,可以减少原料,特别是短射和中空型的模具,塑料最多可以节约达30%。 3.减少或消除加强筋造成的表现收缩凹陷现象。 4.降低制品的收缩不均,提高制品的精密度。 5.设备耗减,大量减少锁模力,可以用小吨位的注塑机替代大吨位的注塑机。 6.利用气道来形成加强结构,提高成品的强度。 7.减少射入点。 8.缩短成期。 9.厚薄比大的制品也能通过气辅一次成型。 10。改变传统成品设计观念,能使用一体化设计来减少附属的零组件。 缺点: 1.由于所体具有压缩特征因而不容易作精确控制,加上对周围操作环境敏感,因此工艺的重复性与稳定性比传统工艺差。 2.国内技术和经验问题导致资源较浪费(废品率高)。 目前用于的产品有:汽车门把手、座椅、保险杠、门板、电视机外客、空调、冰箱、马桶........你说呢 曾做过:汽车门把手、门板、雪上摩托前罩三类7款。 气体辅助注塑成型的预注塑部分与普通注塑成型一样,主要增加了一个氮气注射和回收系统。根据注气压力产生方式的不同,目前,常用的气体注射装置有以下两种: (1)不连续压力产生法即体积控制法,如Cinpres公司的设备,它首先往汽缸中注入一定体积的气体(通常是氮气),然后采用液压装置压缩,使气体压力达到设定值时才进行注射充填。大多数的气辅注塑成型机械都采用这种方法,但该法不能保持恒定的高压力。 (2)连续压力产生法即压力控制法,如Battenfeld公司的设备,它是利用一个专用的压缩装置来产生高压气体。该法能始终或分段保持压力恒定,而且其气体压力分布可通过调控装置来选择设定。 气辅技术为许多原来无法用传统工艺注射成型的制件采用注射成型提供了可能,在汽车、家电、家具、电子、日常用品、办公自动化设备、建筑材料等几乎所有塑料制件领域已经得到了广泛地应用,并且作为一项带有挑战性的新工艺为塑料成型开辟了全新的应用领域。当前,气辅技术尤其适用于以下几方面的注塑制品: 管状、棒状制品: 如手柄、挂钩、椅子扶手、淋浴喷头等,采用中空的结构,可在不影响制品功能和使用性能的前提下,大幅度节省原材料,缩短冷却时间和生产周期。 大型平板制件: 如汽车仪表板、内饰件格栅、商用机器的外罩及抛物线形卫生天线等。通过在制件内设置内置式气道,可以显著提高制品的刚度和表面质量,减少翘曲变形和表面凹陷,且大幅度地降低锁模力,实现在较小的机器上成型较大的制件。 厚、薄壁一体的复杂结构制品: 如电视机、计算机用打印机外壳及内部支撑和外部装饰件等。这类制品通

注射成型原理

1.塑料成型的种类: A注射成型:是塑料料先在注塑机的加热料筒中受热熔融,而后由往复式螺杆将熔体推挤到闭合模具的模腔中成型的一种方法。它不仅可在高生产率下制得高精度,高质量的制品,而且可加工的塑料品种多,产量大(约为塑料总量的1/3)和用途广,因此,注塑是塑料加工中重要成型方法之一。 B挤出成型:挤出是在挤出机中通过加热,加压而使塑料以流动状态连续通过口模成型的方法。一般用于板材。管材。单丝。扁丝。薄膜。电线电缆的包覆等的成型,用途广。产量高。因此,它是塑料加中重要成型方法之一。 C发泡成型:是指发泡材料中加入适当的发泡剂,产生多孔或泡沬制品的加方式发泡制品具有相对密度小,比强度高,原料用量少及隔音,隔热等伏点,发泡材料有pvc,pe和ps等。制品有:薄膜,板材,管材,和型材等。发泡可分为化学发泡和物理发泡。 D吹塑成型:吹(胀膜)塑(或称中空吹塑)是指借助流体(压缩空气)压力将闭合模中热的热塑性塑料型坯或片材吹胀成为中空制品的一种成型方法。用这种方法生产的塑料容器。如各种瓶子,方,圆或扁桶,汽油箱等已得到广泛应用,新开发的各种工业零部件和日用制品,如双层壁箱形制品,l-环形大圆桶。码垛板。冲浪板。座椅靠背及课桌,以及汽车用的前阻流板。皮带罩。仪表板。空调通风管等,已在实践中应用,所加工的材料从是日用塑料向工程塑料方面发展。现在吹塑法已成为塑料加工中重要的成型方法之一。但吹塑过程的基本步骤是:1.熔化材料。2.将熔融树脂形成管状物或型坯。3.将中空型坯吹塑模中熔封。4.将模内型坯吹胀。5.冷却吹塑制品。6.从模中取出制品。7.修整。 E注射吹塑成型:注射吹塑是一种吹塑方法。先用注塑法将塑料制成有底型坯,然后将它移至吹塑模中吹制成中空制品。这种方法可生产用于日用品。化妆品。医药。食品等的包装容器。但其容积不应超过1l。常用的塑料有聚乙烯。聚苯乙烯和聚氯乙烯等。 F挤出吹塑成型:挤出吹塑是一种吹塑方法。与注射吹塑不同。它的型坯是用挤出法制造的。

注射成型工艺

1注射成型的原理、特点、应用 原理:将粒状或粉状的塑料从注射机的料斗送入配有加热装置的机筒中进行加热熔融塑化,使之成为粘流态的熔体,然后再注射机柱塞的压推作用下,以很高的流速通过机筒前端的喷嘴注入温度较低的闭合型腔中,经过一点时间的保压冷却定型后,开模分型即可从型腔中脱出具有一定形状和尺寸的塑料制件。 特点: 应用: 2注射成型的工艺过程 答:注射成型工艺过程包括成型前的准备,注射过程和塑件的后处理三部分。 (1)成型前的准备:原料外观的检查和工艺性能测定;原材料的染色及对料粉的造粒;对易吸湿的塑料进行充分的预热和干燥,防止产生斑纹、气泡和降解等缺陷;生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时的料筒清洗;对带有嵌件塑料制件的嵌加进行预热及对脱模困难的塑料制件选择脱模剂等。 (2)注射过程:加料、塑化、注射、冷却和脱模。注射过程又分为充模、保压、倒流、交口冻结后的冷却和脱模。 (3)塑件的后处理:退火处理、调湿处理。 3注射成型工艺参数:温度、压力、作用时间 温度控制包括料筒温度、喷嘴温度和模具温度。 料筒温度分布一般采用前高后低的原则,即料筒的加料口(后段)处温度最低,喷嘴处的温度最高。料筒后段温度应比中段、前段温度低5~10°C。对于吸湿性偏高的塑料,料筒后段温度偏高一些;对于螺杆式注射机,料筒前段温度略低于中段。螺杆式注射机料筒温度比柱塞式注射机料筒温度低10~20°C。 压力分为塑化压力和注射压力。 作用时间(只完成一次注射成型过程所需的时间)亦称成型周期。 4注射成型周期包括哪几部分? 答:注射成型周期包括(1)合模时间(2)注射时间(3)保压时间(4)模内冷却时间(5)其他时间(开模、脱模、喷涂脱模剂、安放嵌件的时间)。 合模时间是指注射之前模具闭合的时间,注射时间是指注射开始到充满模具型腔的时间,保压时间是制型腔充满后继续加压的时间,模内冷却时间是制塑件保压结束至开模以前所需要的时间,其他是是指开模,脱模,涂脱磨剂,安放嵌件的时间。 塑件的结构工艺性设计

材料成型加工与工艺学-习题解答(9-10-11)备课讲稿

材料成型加工与工艺学-习题解答(9-10- 11)

第八章注射成型 2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? (p278)注射螺杆与挤出螺杆在结构上有何区别: (a)注射螺杆长径比较小,约在10~15之间。 (b)注射螺杆压缩比较小,约在2~5之间。 (c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 (d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。 (p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。 移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。 3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因? (p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。

6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 (p298) 料温高时注射压力减小;反之,所需的注射压力加大。 8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 (p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和曲性较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质和制品的使用性能要求来决定。例如对于结晶速率较小的PET塑料,要求提高其结晶度就应选用较高的模温。

气辅注塑与水辅的技术比较

气辅注塑与水辅注塑基于相似的工艺技术,因此,其适用范围也类似。那么,这两种技术之间的差别在哪里?这两种技术各自的适用范围都在哪里? 气辅注塑成型作为一项非常成熟的技术已经在塑料加工业有了多年的应用历史,其中该技术一个最重要的应用领域就是厚壁塑件的生产,例如生产手柄及其类似产品等。板型件或其他具有局部加厚区的塑件也是气辅注塑重要的应用领域。 与之相对应的水辅注塑成型技术却是一项新技术,从德国塑料加工研究所(IKV)公布水辅注塑技术的初步成果到现在还只有六个年头,然而,这种技术一直快速发展着。水辅注塑技术发明不久,人们便利用该技术加工出一种超市手推车配件。之后,人们利用水辅注塑成型批量生产的手柄与截面积大的杆形塑件。从实际生产来看,具有功能空间或流道的塑件开始越来越多地应用水辅注塑成型技术。 巴顿菲尔以IKV完成的基础研究和其在气辅注塑技术领域的经验为基础,开发出了组合式水辅注塑成型生产系统。该生产系统由压力产生器、压力控制模块和控制装置组成。同时,适应特殊要求的专用注射器组件也被开发出来。巴顿菲尔拥有经销商标名为“Airmold”(气辅注塑)和“Aquamold”(水辅注塑)的两种产品。 水与氮气的比较优势 气辅注塑技术被用于生产杆型部件时能够减轻部件重量与周期时间。气辅注塑也有助于大幅降低或者完全消除平面塑件的壁厚区域、变形和皱缩痕迹,从而提高塑件质量。 水的导热率约为氮气的40倍,热容量是氮气的4倍。除了普通模具冷却以外,注水会引起塑件的“内部冷却”,与气体相比,冷却时间缩短达70%,塑件达到所需脱模温度要快很多。同时,水也是一种不可压缩和价廉的介质。 用水来代替氮气将使模腔内表面质量更好。除了可以加工更大的部件以外,水辅注塑形成更均匀的壁厚,降低了残余壁厚。 水辅注塑与气辅注塑可以被用于不同的工艺方法中。他们在机器的使用方面并无不同,但在模具设计与工艺控制上有所区别。水辅注塑是类似气辅注塑的两步过程:首先模腔部分完全地被熔体填充;在第二步中,注射水形成空腔。 水辅注塑设备的特点 水辅注塑设备的设计必须满足与气辅注塑相近的条件。这是因为多数工艺技术是以气辅注塑为基础。但是,水辅注塑也有其自身的特点。从塑件上看,除排水与排除氮气相比更为复杂,需要通过重力以及通入压缩气体完成塑件的“排水”。为了防止腐蚀,水一定不能与模具表面接触。 水辅注塑需要极高的注水能力确保壁厚分布均匀以及高的表面质量。为此,巴顿菲尔开发出了合适的压力控制模式。供水装置在极高的流速下运转,可以达到350bar的压力。为了把水注入到熔体中,必须利用截面积比气辅注塑大的注射组件,这对于水以足够速度渗透到熔体中是必不可少的。 巴顿菲尔的水辅注塑压力生成装置被设计成独立式装置,能同时向多台注塑机提供压力。通过Unilog B4移动控制装置对水压调控组件进行控制,一般来说,它们也可以被用在其他制造商出品的机器上。 气辅与水辅的经济性对比 为了对塑件的经济生产做出正确决策,巴顿菲尔与科隆理工大学合作,利用实验性模具比较了以下5种工艺: 传统注塑 短射出气辅注塑 全射出气辅注塑 短射出水辅注塑 全射出水辅注塑 为了获得有意义的结果,有必要利用在所有工艺中都采易于处理的材料。然而,原材料制造商刚刚开始优化水辅注塑用材料。当由水辅注塑进行塑料加工时,一些材料易于形成泡沫、缩孔或侧槽。另外,还有一些材料会因为水的原因引起开裂、起泡与不可复制的性能。在一些玻纤填充材料中,玻纤可能会被洗掉,导致粗糙的内表面。因此,本实验选择了以下三种材料: 拜耳的PA66 Durethan BKV 30GH 杜邦的PBT Crastin T803 帝斯曼的PP。 塑件是在巴顿菲尔TM 4500/2800 Unilog B4注塑机上进行加工的。该塑机锁模力为4500kN,装备有用于气辅与水辅注塑模式的界面。水辅注塑模具一般比气辅模具要贵,其原因是制造模具所用的钢材不同。水辅注塑模具所用的钢材质量更高(坚固的镀镍层或氮化钛涂层对于保护水辅注塑模具不受腐蚀是必不可少的)。

注塑工艺过程

第八章注塑成型过程 及注塑模具计算机辅助设计中的流变学问题 1.注塑成型过程的流变分析 1.1注塑成型过程简介 注塑成型,又称注射模塑,是热塑性塑料制品重要的成型方法。可用于生产形状结构复杂,尺寸精确,用途不同的制品,产量约占塑料制品总量的30%。近年来,热固性塑料,越来越多的橡胶制品,带有金属嵌件的塑料制品也采用注射成型法生产。精密注射成型,气辅注射成型,多台注射机共注射及注射成型过程的全自动控制等为注射成型工艺发展的新领域。 注塑成型的主要设备是柱塞式或螺杆式往复注射机,以及根据制品要求设计的注射模具。塑化好的熔体靠螺杆或柱塞的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品(见图8-1)。 图8-1 典型注射成型设备示意图 注塑过程是循环往复、连续进行的。全部注塑过程由一个主循环和两个辅助工序组成,见图8-2。 图8-2 注塑过程循环示意图 与该过程相对应,一个循环中模腔内物料承受的压力随时间或温度的变化曲线如图8-3所示。图中各段时间的总和为一个注塑成型周期。 图8-3 典型注塑周期的程序图 1-柱塞前进时间;2-合模时间;3-开模时间;4-残余压力; a-静置时间;b-充模时间;c-保压时间;d-倒流时间;e-封口时间; f-封口后冷却时间

要得到令人满意的注塑制品,除掌握准确的时间程序外,还要借助于流变学理论,掌握模腔内的物料填充情况,即掌握流道和模腔内的压力变化程序和温度变化程序。 目前已经能够运用流变学和传热学理论,采用计算机辅助设计方法,数值计算模具设计中遇到的一些与流道设计、传热管路设计有关的问题,数字模拟流道和模腔内的物料填充图和压力、温度场分布图,为模具设计提供有价值的资料。 但是由于各种模具内流道形状复杂,模具温度不稳定,物料注射速度高,非牛顿流动性突出,流动过程间歇,所以对这样一个复杂的注射过程要求得其精确解几乎是不可能的。 下面首先运用流变学基本方程,结合若干经验公式,对注模过程中模腔内压力的变化进行分析,说明一些有意义的现象;然后介绍注射模具计算机辅助设计中的流变学方法。 一般螺杆式往复注射机及模具的功能区段可分为三段:塑化段,注射段,充模段。 塑化段同螺杆挤出机,物料在其中熔融、塑化、压缩并向前输送。 注射段由喷嘴、主流道、分流道、浇口组成,物料在其中的流动如同在毛细管流变仪中的流动。 充模段是关键,熔体由浇口进入模腔,发生复杂的三维流动以及不稳定传热、相变、固化等过程,流动情况十分复杂。 为简便起见,选择几何形状最简单的圆盘形模具和管式流道入口进行研究。 1.2 简化假定和基本方程 圆盘形模具和管式流道入口示意图见图8-4。设盘形模具的模腔半径为*R ,厚度为Z ,壁温保持为T 0 ,浇口在圆盘中心,半径为0R ,温度为 1T 的熔体从浇口注入模腔,并以辐射状从中心向四周流动。 图中取柱坐标系(r 、θ、z ),在圆盘中物料沿半径 r 方向流动,故r 方向为主流动方向,不同z 高度流层的流速不同,故z 方向为速度梯度方向,θ方向为中性方向。 图8-4 采用柱坐标系绘出的圆盘形模具和管式流道入口 1-温度为T 1的熔体;2-"冻结"的聚合物皮层;3-流前;4-喷嘴;

注射成型原理及设备简述

注射成型原理及设备简述 一、注射成型原理 注射成型(Injection Molding )就是利用类似注射的方式,将熔融状态(塑化后)的树脂(塑料粒子)加入到模具中,最终使树脂成为塑料制品的成型方式。 其成型原理可以参考图1、图2、图3所示。 二、注射成型设备 注射成型是将热塑性或热固性塑料制成各种塑料制件的主要成型方法之一,它是在注射成型机上实现这个生产过程的,注射成型机是注射成型的主要设备。 (一)注射成型机的结构组成 1. 通用型注射成型机的关键部件: 螺杆――将料筒中的塑料推送到模具中的装置,可以旋转着前、后运动, 表面有螺纹,在旋转时,其螺纹会对树脂产生极大的剪切作用, 促进树脂进入熔融状态,同时可以根据螺杆前后运动的距离, 确定需要加入到模具中的树脂的量(这个量的确定称为计量)。 图1 树脂在料筒中呈熔融状态 ① 料筒 ②螺杆 ③ 熔融状态的树脂 ④ 模具 ⑤模具型腔 图2 树脂在螺杆的推动下注入模具型腔 图3 冷却成型后模具打开,从模具中取出制品

料筒――将树脂由塑料粒子状态转变为熔融状态的装置,附有大量的高 温加热装置,内部有螺杆,外部有一个料斗用来加入树脂。 2. 通用型注射成型机的基本组成 (参见图4) (二)注射成型机的基本分类 1. 按注射、塑化方式分类 (1)柱塞式注射成型机 通过柱塞依次将落入料筒的颗粒状塑料推向料筒前端的塑化室,依靠料筒外加热器提供的热量使塑料塑化,然后,呈熔融状态的树脂被柱塞注射到模具型腔中成型。这是早期的注射成型机类型,现在已经很少见。 (2)螺杆式注射成型机 和柱塞式注射成型机的工作原理基本相同,只是树脂的熔融塑化由螺杆 图4 通用型注射成型机组成简图 注射装置:① 驱动装置 ② 料斗 ③ 塑化部件 合模装置:④ 固定模板 ⑤ 移动模板 ⑥ 制品顶出装置 ⑦ 驱动装置 控制装置

气体辅助注塑成型技术

1 气体辅助注塑成型是通过把高压气体引入到制件的厚壁部位,在注塑件内部产生中空截面,完全充填过程、实现气体保压、消除制品缩痕的一项新颖的塑料成型技术。传统注塑工艺不能将厚壁和薄壁结合在一起成型,而且制件残余应力大,易翘曲变形,表面时有缩痕。新发展的气辅技术通过把厚壁的内部掏空,成功地生产出厚壁、偏壁制品,而且制品外观表面性质优异,内应力低。轻质高强。现已开发成功气辅产品结构和模具设计包括浇注系统、进气方式和气道分布设计技术,气辅注塑工艺设计技术,气辅注塑工艺设计技术,气辅注塑过程计算机仿真技术,气辅注塑产品缺陷诊断与排除技术,气辅工艺专用料技术。 电视机、家电、汽车、家具、日常用品、办公用品、玩具等为塑料成型开辟了全新的应用领域,气辅注塑技术特别适用于管道状制品、厚壁、偏壁(不同厚度截面组成的制件)和大型扁平结构零件。 气体辅助装置:包括氮气发生和增压系统,压力控制单元和进气元件。投资约40--200万元(视规模和对设备要求的档次不同而不同)。气辅工艺能完全与传统注塑工艺(注塑成型机)衔接。 减轻制品重量(省料)可高40%,缩短成型周期(省时达30%,消除缩痕,提高成品率;降低注塑压力达60%,可用小吨位注塑机生产大制件,降低操作成本;模具寿命延长、制造成本降低,还可采用如粗根、厚筋、连接板等更稳固的结构,增加了模具设计自由度。通常6-18个月可收回增加的设备成本(具 体经济效益随制件而议)。 2 气体辅助注塑系统,这个先进的系统和技术,是把氮气经由分段压力控制系统直接注射入模腔内的塑化塑料裹,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。 应用气体辅助注塑技术,有以下优点: 1)节省塑胶原料,节省率可高达50%。 2)缩短产品生产周期时间。 3)降低注塑机的锁模压力,可高达60%。 4)提高注塑机的工作寿命。 5)降低模腔内的压力,使模具的损耗减少和提高模具的工作寿命。 6)对某些塑胶产品,模具可采用铝质金属材料。 7)降低产品的内应力。 8)解决和消除产品表面缩痕问题。 9)简化产品繁琐的设计。 10)降低注塑机的耗电量。 11)降低注塑机和开发模具的投资成本。 12)降低生产成本。 气体辅助注塑技术,可应用于各种塑胶产品上,如电视机或音响外壳、汽车塑料产品、家私、浴室、橱具、 家庭电器和日常用品、各类型塑胶盒和玩具等等。 气体辅助注塑技术在注塑行业中必定被受广泛应用。

注塑机工作原理及构造.docx

第一章注塑机工作原理及构造 一、注塑机工作原理 注塑成型机简称注塑机,其机械部分主要由注塑部件和合模部件组成。注塑部件主要由料筒和螺杆及注射油缸组成示意如图 1-19 所示。 注塑成型是用塑性的热物理性质,把物料第一节注塑机工作原理 图 1-19注塑成型原理图 1-模具2-喷嘴3-料筒4-螺杆5-加热圈6-料斗7 -油马达8-注射油缸9-储料室 10-制件11-顶杆 从料斗加入料筒内,料筒外由加热圈加热,使物料熔融。在料筒内装有在外动力油马达作用下驱动旋转的螺杆。物料在螺杆的作用下,沿着螺槽向前输送并压实。物料在外加热和螺杆剪切的双重作用下逐渐的塑化、熔融和均化。当螺杆旋转时,物料在螺槽摩擦力及剪切力的作用下把已熔融的物料推到螺杆的头部,与此同 时,螺杆在物料的反作用力作用下向后退,使螺杆头部形成储料空间,完成塑化 过程。然后,螺杆在注射油缸活塞杆推力的作用下,以高速、高压,将储料室的 熔融料通过喷嘴注射到模具的型腔中。型腔中的容料经过保压、冷却、固化定型后,模具在合模机构的作用下,开启模具,并通过顶出装置把定型好的制件从模 具顶出落下。 塑料从固体料经料斗加入到料筒中,经过塑化熔融阶段,直到注射、保压、冷却、启模、顶出制品落下等过程,全是按着严格地自动化工作程序操作的,如图1-20 所示。 闭模注射座前进注射保压 制品顶出启模冷却 退回塑化塑化退回固定塑化注射座动作选择 图 1-20注塑机工作程序框图

第二节注塑机组成 注塑机根据注塑成型工艺要求是一个机电一体化很强的机种,主要由注塑部件、合模部件、机身、液压系统、加热系统、冷却系统、电气控制系统、加料装置等组成,如图1-21 所示。 注塑部件 合模部件 机身 注 塑 液压系统机 冷却系统 润滑系统 螺杆 料筒 塑化装置 螺杆头 注射座 喷嘴 注射油缸 螺杆驱动装置 注射座油缸 合模装置 调模装置 制品顶出装置 泵、油马达、阀 蓄能器、冷却器、过滤装置 管路、压力表 入料口冷却、模具冷却 润滑装置、分配器 动作程序控制;料筒温度控制;泵电机控制 电器控制系统 安全保护;故障监测、报警;显示系统 加料装置 机械手 图 1-21注塑机组成示图 第二节注塑机结构 注塑机总体结构 公司目前主力机型为HTFX系列,该机型主要可分为注射部分(01

注射成型工艺过程

注射成型工艺过程—注射成型过程 各种注塑机完成注射成型的动作程序可能不完全相同,但其成型的基本过程还就是相同的。现以螺杆式注塑机为例予以说明。从料斗落入料筒中的塑料,随着螺杆的转动沿着螺杆向前输送。在这一输送过程中,物料被逐渐压实,物料中的气体由加料口排除。 在料筒外加热与螺杆剪切热的作用下,物料实现其物理状态的变化,最后呈黏流态,并建立起一定的压力。当螺杆头部的熔料压力达到能克服注射油缸活塞退回时的阻力(所谓背压)时,螺杆便开始向后退,进行所谓计量。与此同时,料筒前端与螺杆头部熔料逐渐增多,当达到所需要的注射量时(即螺杆退回到一定位置时),计量装置撞击限位开关,螺杆即停止转动与后退。至此,预塑完毕。同时,合模油缸中的压力油推动合模机构动作,移动模板使模具闭合。继而,注射座前移,注射油缸充入压力油,使油缸活塞带动螺杆按要求的压力与速度将熔料注入到模腔内。当熔料充满模腔后,螺杆仍对熔料保持一定的压力,即所谓进行保压,以防止模腔中熔料的反流,并向模腔内补充因制品冷却收缩所需要的物料。模腔中的熔料经过冷却,由黏流态回复到玻璃态,从而定型,获得一定的尺寸精度与表面粗糙度。当完全冷却定型后,模具打开,在顶出机构的作用下,将制件脱出,从而完成一个注射成型过程,参瞧下图。

图注射成型过程 1—合模注射;2—保压;3—螺杆预塑、制品顶出 按照习惯,我们把一个注射成型过程称为一个工作循环,而该循环由合模算起,为了明了起见,我们用下面工艺流程图表示。 合模→注射→保压(螺杆预塑)→冷却→开模→顶出制品→合模 注射成型过程包括加料、加热塑化、闭模、加压注射、保压、冷却定型、启模、制件取出等工序。其中,加热塑化、加压射、冷却定型就是注射过程中三个基本步骤。 ①加料。每次加料量应尽量保持一定,以保证塑化均匀一致,减少注射成型压力传递的波动。 ②塑化。塑料在进入模腔之前要达到规定的成型温度,提供足够数量

气辅注射成型及设计要点

气辅注射成型及设计要点 晓黎吴崇峰屈春起(天津科技大学天津300222) 摘要:概述了气辅注射成型过程中材料的选择、气道及模具的设计 关键词:气辅注射气道模具设计 气辅注射成型GRIM( Gas-Assisted Injection Mold-ing)为一种新型的注射成型工艺,近几年已在国外得到广泛的应用,国内的使用也越来越多。其原理是利用压力相对低的惰性气体(氮气因为价廉安全又兼具冷却剂的作用而被常用,压力为0.5一300 MPa)代替传统模塑过程中型腔内的部分树脂来保压,以达到制品成型性能更加优良的目的。 1气辅注射成型的优点 气辅注射成型克服了传统注射成型和发泡成型的局限性,具有以下优点: 1.1制件性能良好 (1)消除气孔和凹陷在制件不同壁厚连接处所设的加强筋和凸台中合理开设气道,欠料注射后气体导入,补偿了因熔体在冷却过程中的收缩,避免气孔和凹陷的产生。 (2)减少内应力和翘曲变形在制件冷却过程中,从气体喷嘴到料流末端形成连续气体通道,无压力损失,各处气压一致,因而降低了残余应力,防止制件翘曲变形。 (3)增加制件的强度制件上中空的加强筋和凸台的设计,使强度重量比比同类实心制件高出大约5,制件的惯性矩工大幅度提高,从而提高制件使用强度。 (4)提高设计的灵活性气辅注射可用来成型壁厚不均的制品,使原来必须分为几个部分单独成型的制品实现一次成型,便于制件的装配。例如国外一家公司原来生产的以几十个金属零件为主体、形状复杂的汽车门板,通过GAI M技术并采用塑料合金材料实现了一次成型。 1.2 成本低 (1)节约原材料气辅注射成型在制品较厚部位形成空腔,可减少成品重量达10%一50% (2)降低设备费用气辅注射较普通注射成型需要较小的注射压力和锁模力(可节省25%一50%),同时节约能量达30% (3)相对缩短成型周期由于去除了较厚部位芯料,缩短冷却时间可达50%正是基于这些优点,气辅注射适用于成型大型平板状制品如桌面、门、板等;大型柜体如家用电器壳体、电视机壳、办公机械壳体等;结构部件如底座、汽车仪表板、保险杠、汽车大前灯罩等汽车内外饰件。 2 成型材料的选择 理论上讲,所有能用于常规注射成型方法的热塑性塑料均适用于气辅注射成型,包括一些填充树脂和增强塑料。一些流动性非常好,难以填充的塑料如热塑性聚氨酷成型时会有一定困难;粘度高的树脂所需气体压力高,技术上也有难度;玻璃纤维增强材料对设备有一定的磨损。 在气辅成型过程中,由于制件的成型壁厚和表面缺陷在很大程度上由原料性能决定,改变过程参数对其影响并不很大,因此成型原料的选择极为重要。表1是用于气辅注射成型的常用塑料。 PA(聚酰胺)和PBT(聚对苯二甲酸丁二酸酯)具有独特的结晶稳定性,尤其适合用于气辅注射成型;PA6,PA66和PP也经常被用于气辅成型;一些部分结晶型树脂,成型时内部靠近气道一侧由于冷却速率相对较慢,无明显无定型边界层产生,但外侧因为模壁的陕速冷却会产生无定型边界层,从而影响制品质量;对于玻璃纤维增强塑料,在模壁处会产生轻微的分子定向,且在模壁下一定距离处(约距制品外表面1mm处)沿料流方向达到最大成型高强度制件可选用具有较高弹性模量的树脂,实际生产过程中应根据制件使用要求和具体成型条件选择合适的树脂材料。

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

气体辅助注塑成型技术简介

气体辅助注塑成型技术简介 气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。 气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。成型者希望以低制造成本生产高质量的产品。在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。 1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低; 2、减少锁模压力:低的注射压力使合模力降低,可以

使用小吨位机台; 3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性; 4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%; 5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半; 6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高; 7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型; 8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命; 9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低; 10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴; 第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央; 第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;

塑料注射成型工艺中成型零部件

塑料注射成型工艺中成型零部件 摘要随着塑料制品在日常生活中的广泛利用,人们对塑料制品的质量与数量要求日趋提高,而国内塑料制造行业所掌握的技术普遍相对落后,要提高我国塑料行业的整体竞争力,对成型模具的研究与改进是必须的。实际上塑料注射所用的模具(简称注射模一一实现注射成型工艺的重要工艺装备)成型技术已成为衡量一个国家塑料制造水平的重要标志之一。本文介绍了几种塑料成型工艺中重要模具的特点,并对不同种类凹模凸模的结构和使用条件进行探究。 关键词塑料成型;注塑机;凹模;凸模 中图分类号TS91 文献标识码A 文章编号1674-6708 (2016 )162-0149-02 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有

了长足的发展。但相比于其他如德国等制造工艺技术发达的 国家,我国的塑料工业还处于初级发展阶段,所以注塑成型 在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对合; 4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心 零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。

气辅注塑成型技术介绍

气辅注塑成型技术介绍 一、前言 气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程。由于气体具有高效的压力传递性,可使气道内部各处的压力保持一致,因而可消除内部应力,防止制品变形,同时可大幅度降低模腔内的压力,因此在成型过程中不需要很高的锁模力,除此之外,气辅注塑还具有减轻制品重量、消除缩痕、提高生产效率、提高制品设计自由度等优点。近年来,在家电、汽车、家具等行业,气辅注塑得到越来越广泛的应用,前景看好。科龙集团于98年引进一套气辅设备用于生产电冰箱、空调器的注塑件。 現應用比較廣泛的是英國Cinpres的气体輔助系統, 現在已經和香港气体輔助注塑有限公司(GIL)合并, 現公司名稱為CGI. 目前有TCL, 東江, 格力(珠海), 新加坡富裕,神龍汽車(武漢)應用此技術. 二、气辅设备 气辅设备包括气辅控制单元和氮气发生装置。它是独立于注塑机外的另一套系统,其与注塑机的唯一接口是注射信号连接线。注塑机将一个注射信号注射开始或螺杆位置传递给气辅控制单元之后,便开始一个注气过程,等下一个注射过程开始时给出另一个注射信号,开始另一个循环,如此反复进行。 气辅注塑所使用的气体必须是隋性气体(通常为氮气),气体最高压力为35MPa,特殊者可达70MPa,氮气纯度≥98%。 气辅控制单元是控制注气时间和注气压力的装置,它具有多组气路设计,可同时控制多台注塑机的气辅生产,气辅控制单元设有气体回收功能,尽可能降低气体耗用量。 今后气辅设备的发展趋势是将气辅控制单元内置于注塑机内,作为注塑机的一项新功能。三、气辅工艺控制 1.注气参数 气辅控制单元是控制各阶段气体压力大小的装置,气辅参数只有两个值:注气时间(秒)和注气压力(MPa)。 2.气辅注塑过程是在模具内注入塑胶熔体的同时注入高压气体,熔体与气体之间存在着复杂的两相作用,因此工艺参数控制显得相当重要,下面就讨论一下各参数的控制方法:a.注射量 气辅注塑是采用所谓的“短射”方法(short size),即先在模腔内注入一定量的料(通常为满射时的70-95%),然后再注入气体,实现全充满过程。熔胶注射量与模具气道大小及模腔结构关系最大。气道截面越大,气体越易穿透,掏空率越高,适宜于采用较大的“短射率”。这时如果使用过多料量,则很容易发生熔料堆积,料多的地方会出现缩痕。如果料太少,则会导致吹穿。 如果气道与流料方向完全一致,那么最有利于气体的穿透,气道的掏空率最大。因此在模具设计时尽可能将气道与流料方向保持一致。 b.注射速度及保压 在保证制品表现不出现缺陷的情况下,尽可能使用较高的注射速度,使熔料尽快充填模腔,这时熔料温度仍保持较高,有利于气体的穿透及充模。气体在推动熔料充满模腔后仍保持一定的压力,相当于传统注塑中的保压阶段,因此一般讲气辅注塑工艺可省却用注塑机来保压的过程。但有些制品由于结构原因仍需使用一定的注塑保压来保证产品表现的质量。但不可

相关文档
最新文档