高一物理动力学两类基本问题

高一物理动力学两类基本问题
高一物理动力学两类基本问题

孙恒芳教你学物理-----动力学的两类基本问题专题

【考点自清】

一、两类动力学问题

牛顿第二定律确定了运动和力的关系,使我们能够把物体的受力情况与运动情况联系起来。

利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向。

1、已知受力情况求运动情况

已知物体的受力情况,根据牛顿第二定律,可以求出物体的运动情况;已知物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位移,也就可以求解物体的运动情况。

可用程序图表示如下:

2、已知物体的运动情况求物体的受力情况

根据物体的运动情况,由运动学公式可以求出加速度,再根据牛顿第二定律可确定物体的受力情况,从而求出未知的力,或与力相关的某些物理量。如动摩擦因数、劲度系数、力的方向等。

可用程序图表示如下:

二、解答两类动力学问题的基本方法及步骤

1.基本方法

⑴明确题目中给出的物理现象和物理过程的特点,如果是比较复杂的问题,应该明确整个物理现象是由几个物理过程组成的,找出相邻过程的联系点,再分

别研究每一个物理过程.

⑵根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.图中应注明力、速度、加速度的符号和方向.对每一个力都应明确施力物体和受力物体,以免分析力时有所遗漏或无中生有.

⑶应用牛顿运动定律和运动学公式求解,通常先用表示物理量的符号运算,解出所求物理量的表达式来,然后将已知物理量的数值及单位代入,通过运算求结果.应事先将已知物理量的单位都统一采用国际单位制中的单位.

⑷分析流程图

两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:

2、应用牛顿第二定律的解题步骤

(1)明确研究对象。根据问题的需要和解题的方便,选出被研究的物体。

(2)分析物体的受力情况和运动情况,画好受力分析图,明确物体的运动性质和运动过程。

(3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向。

(4)求合外力F合。

(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论。

特别提醒:

①物体的运动情况是由所受的力及物体运动的初始状态共同决定的。

②无论是哪种情况,联系力和运动的“桥梁”是加速度。

【重点精析】

一、动力学基本问题分析

【例1】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,

如图所示。

(1)当杆在水平方向上固定时,调节风力的大小,使

小球在杆上匀速运动,这时所受风力为小球所受重力的

0.5倍,求小球与杆的动摩擦因数;

(2)保持小球所受风力不变,使杆与水平方向间夹角

为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少。(sin 37°=0.6,cos 37°=0.8)

【变式练习1】如右图所示,质量M=10kg的木

楔ABC静置于粗糙水平地面上,滑动摩擦系数

μ=0.02.在木楔的倾角θ=30°的斜面上,有一质量

m=1.0kg的物块由静止开始沿斜面下滑.当滑行位移

s=1.4m时,其速度v=1.4m/s。在这过程中木楔没有滑

动,求地面对木楔的静摩擦力的大小和方向以及地面对木楔的支持力(取g=10m/s2).

【互动探究】字母演算最后为Mg+mg+masinθ,又说明了什么呢?

二、多过程问题分析

复杂过程的处理方法——程序法

按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法。用程序法解题的基本思路是:

1、划分出题目中有多少个不同的过程或多少个不同的状态。

2、对各个过程或各个状态进行具体分析,得出正确的结果。

3、前一个过程的结束就是后一个过程的开始,两个过程的分界点是关键。

【例2】质量m=30 kg的电动自行车,在F=180 N的水平向左的牵引力的作用下,沿水平面从静止开始运动.自行车运动中受到的摩擦力F′=150 N.在开始运动后的第5 s末撤消牵引力F.求从开始运动到最后停止电动自行车总共通过的路程.

【变式练习2】一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4 s 内通过8 m的距离,此后关闭发动机,汽车又运动了2 s停止,已知汽车的质量m=2×103 kg,汽车运动过程中所受阻力大小不变,求:

(1)关闭发动机时汽车的速度大小;

(2)汽车运动过程中所受到的阻力大小;

(3)汽车牵引力的大小.

【例3】质量为m=2kg的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F1=6N的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F2=2N的水平推力。已知物体与地面间的动摩擦因数μ=0.1,取g=10m/s2,问:

(1)木块在奇数秒和偶数秒内各做什么运动?

(2)经过多长时间,木块位移的大小等于40.25m?

说明:(1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定律求加速度,再根据运动规律求运动情况.

(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.

三、“等时圆”模型的基本规律及应用

1、等时圆模型(如图所示)

2、等时圆规律:

⑴小球从圆的顶端沿光滑弦轨道静止滑下,滑到弦轨道与圆的交点的时间相等。(如图a)

⑵小球从圆上的各个位置沿光滑弦轨道静止滑下,滑到圆的底端的时间相等。(如图b)

⑶沿不同的弦轨道运动的时间相等,都等于小球沿竖直直径(d)自由落体

的时间,即

3、等时性的证明

设某一条弦与水平方向的夹角为α,圆的直径为d(如右图)。

根据物体沿光滑弦作初速度为零的匀加速直线运动,加速度为

a=gsinα,位移为s=dsinα,所以运动时间为

即沿各条弦运动具有等时性,运动时间与弦的倾角、长短无关。

【例4】如图,通过空间任一点A可作无限多个斜面,若将若干

个小物体从点A分别沿这些倾角各不相同的光滑斜面同时滑下,那

么在同一时刻这些小物体所在位置所构成的面是()

A.球面B.抛物面C.水平面D.无法确定

【解析】由“等时圆”可知,同一时刻这些小物体应在同一“等时圆”上,所以A正确。

【变式练习3】如图,位于竖直平面内的固定光滑圆轨

道与水平面相切于M点,与竖直墙相切于点A,竖直墙上

另一点B与M的连线和水平面的夹角为600,C是圆环轨

道的圆心,D是圆环上与M靠得很近的一点(DM远小于

CM)。已知在同一时刻:a、b两球分别由A、B两点从静

止开始沿光滑倾斜直轨道运动到M点;c球由C点自由下

落到M点;d球从D点静止出发沿圆环运动到M点。则()

A.a球最先到达M点 B.b球最先到达M点

C.c球最先到达M点 D.d球最先到达M点

【例4】如图a所示,在同一竖直线上有A、B两点,相距为h,B点离地高度为H,现在要在地面上寻找一点P,使得从A、B两点分别向点P安放的光滑木板,满足物体从静止开始分别由A和B沿木板下滑到P点的时间相等,求O、P两点之间的距离。

【变式练习4】如图是一倾角为α的输送带,A处为原料输入口,为避免粉尘飞扬,在A与输送带间建立一管道(假使光滑),使原料从A处以最短的时间到达输送带上,则管道与竖直方向的夹角应为多大?

【同步作业】

1、静止在水平地面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小。

2、消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60kg、训练有素的消防队员从七楼(即离地面18m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200kg,消防队员着地的速度不能大于6m/s,手和腿对杆的最大压力为1800N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:

(1)消防队员下滑过程中的最大速度;

(2)消防队员下滑过程中杆对地面的最大压力;

(3)消防队员下滑的最短的时间.

高一物理运动学专题复习-参考模板

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-12。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

(完整版)动力学的两类基本问题

动力学的两类基本问题 一、基础知识 1、动力学有两类问题: ⑴是已知物体的受力情况分析运动情况; ⑵是已知运动情况分析受力情况,程序如下图所示。 2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等). 3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力). 其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。 解题步骤 (1)确定研究对象; (2)分析受力情况和运动情况,画示意图(受力和运动过程); (3)用牛顿第二定律或运动学公式求加速度; (4)用运动学公式或牛顿第二定律求所求量。 例1. 一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。求物体4s 末的速度和4s 内的位移。 例2. 滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30°的山 坡,从刚上坡即开始计时,至3.8s 末,滑雪者速度变为0。如果雪 橇与人的总质量为m=80kg ,求雪橇与山坡之间的摩擦力为多少? g=10m/s 2 . 运动学公式 a (桥梁) 运动情况:如v 、t 、x 等 受力情况:如F 、m 、μ m F a v = v o +at x= v o t + at 2 21v 2- v o 2 =2ax

二、练习 1、如图所示,木块的质量m=2 kg,与地面间的动摩擦因数μ=0.2,木块在拉力F=10 N作用下,在水平地面上从静止开始向右运动,运动5.2 m后撤去外 力F.已知力F与水平方向的夹角θ=37°(sin 37°=0.6,cos 37°= 0.8,g取10 m/s2).求: (1)撤去外力前,木块受到的摩擦力大小; (2)刚撤去外力时,木块运动的速度; (3)撤去外力后,木块还能滑行的距离为多少? (1)2.8N(2)5.2m/s (3)6.76m 2、如图所示,一个放置在水平台面上的木块,其质量为2 kg,受到一个斜向下的、与水平方向成37°角的推力F=10 N 的作用,使木块从静止开始运动,4 s 后撤去推力,若木块与水平面间的动摩擦因数为 0.1.(取g=10 m/s2)求: (1)撤去推力时木块的速度为多大? (2)撤去推力到停止运动过程中木块 的加速度为多大? (3)木块在水平面上运动的总位移为多少? 3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体 与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后 多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取 10 m/s2)

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高一物理动力学两类基本问题

高一物理动力学两类基 本问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

孙恒芳教你学物理-----动力学的两类基本问题专题 【考点自清】 牛顿第二定律确定了运动和力的关系,使我们能够把物体的受力情况与运动情况联系起来。 利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向。 已知物体的受力情况,根据牛顿第二定律,可以求出物体的运动情况;已知物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位移,也就可以求解物体的运动情况。 可用程序图表示如下: ? 根据物体的运动情况,由运动学公式可以求出加速度,再根据牛顿第二定律可确定物体的受力情况,从而求出未知的力,或与力相关的某些物理量。如动摩擦因数、劲度系数、力的方向等。 可用程序图表示如下: ? 1.基本方法 ⑴明确题目中给出的物理现象和物理过程的特点,如果是比较复杂的问题,应该明确整个物理现象是由几个物理过程组成的,找出相邻过程的联系点,再分别研究每一个物理过程. ⑵根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.图中应注明力、速度、加速度的符号和方向.对每一个力都应明确施力物体和受力物体,以免分析力时有所遗漏或无中生有.

⑶应用牛顿运动定律和运动学公式求解,通常先用表示物理量的符号运算,解出所求物理量的表达式来,然后将已知物理量的数值及单位代入,通过运算求结果.应事先将已知物理量的单位都统一采用国际单位制中的单位. ⑷分析流程图 两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下: ? (1)明确研究对象。根据问题的需要和解题的方便,选出被研究的物体。 (2)分析物体的受力情况和运动情况,画好受力分析图,明确物体的运动性质和运动过程。 (3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向。 (4)求合外力F合。 (5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论。 特别提醒: ①物体的运动情况是由所受的力及物体运动的初始状态共同决定的。 ②无论是哪种情况,联系力和运动的“桥梁”是加速度。 【重点精析】 【例1】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆 直径,如图所示。 (1)当杆在水平方向上固定时,调节风力的大小, 使小球在杆上匀速运动,这时所受风力为小球所受重 力的倍,求小球与杆的动摩擦因数; (2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少。(sin37°=,cos37°=【变式练习1】如右图所示,质量M=10kg的木 楔ABC静置于粗糙水平地面上,滑动摩擦系数 μ=.在木楔的倾角θ=30°的斜面上,有一质量m=的 物块由静止开始沿斜面下滑.当滑行位移s=时,其 速度v=s。在这过程中木楔没有滑动,求地面对木楔 的静摩擦力的大小和方向以及地面对木楔的支持力

动力学的两类基本问题(讲课用正式版)

牛顿第二定律的应用—动力学的两类基本问题 用牛顿第二定律解动力学的两类基本问题 1、已知物体的受力情况确定物体的运动情况 根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。【重点提示】物体的运动情况是由受力情况和初始状态(初速度的大小和方向)共同决定的. 2、已知物体的运动情况确定物体的受力情况 根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。 求解以上两类动力学问题的思路,可用如下所示的框图来表示: 第一类 第二类 在匀变速直线运动的公式中有五个物理量,其中有四个矢量。运动学和动力学中公共的物理量是加速度a。在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a。 【重点提示】以上两类问题中a是联结运动学公式和牛顿第二定律的桥梁。 3、注意点: ①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键. ②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.

二、由受力情况求解运动学物理量 规律方法 1.明确研究对象,根据问题的需要和解题的方便,选出被研究的物体. 2.全面分析研究对象的受力情况,并画出物体受力示意图,确定出物体做什么运动(定性). 3.根据力的合成法则或正交分解法求出合外力(大小、方向),列出牛顿第二定律方程式,求出物体的加速度.(常以加速度方向为正方向) 4.结合题中给出的物体运动的初始条件,选择合适的运动学公式求出所需的运动学量. 例1.如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小; (2)物体在t =2.0s 时速度v 的大小. (3) 物体开始运动后t = 2.0 s 内通过的位移x . 变式一:地面上放一木箱,质量为10kg ,用50N 的力与水平方向成37°角拉木箱,使木箱从静止开始沿水平面做匀加速直线运动,假设水平面光滑,(取g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)求物块运动的加速度的大小 (2)求物块速度达到s m v /0.4 时移动的位移 例2.如图7所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 图7

高一物理运动学专题复习精编版

高一物理运动学专题复 习精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

高 一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即 V =S/t ,单位:m /s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运 动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a=t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运动的物体,加速度方向与速度方向相同;减速直线运动的物体,加速度方向与速度方向相反。 *速度、速度变化、加速度的关系:

高中物理《运动学》练习题

高中物理《运动学》练习题 一、选择题 1.下列说法中正确的是() A .匀速运动就是匀速直线运动 B .对于匀速直线运动来说,路程就是位移 C .物体的位移越大,平均速度一定越大 D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大 2.关于速度的说法正确的是() A .速度与位移成正比 B .平均速率等于平均速度的大小 C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度 D .瞬时速度就是运动物体在一段较短时间内的平均速度 3.物体沿一条直线运动,下列说法正确的是() A .物体在某时刻的速度为3m/s ,则物体在1s 内一定走3m B .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3m C .物体在某段时间内的平均速度是3m/s ,则物体在1s 内的位移一定是3m D .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s 4.关于平均速度的下列说法中,物理含义正确的是() A .汽车在出发后10s 内的平均速度是5m/s B .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5m C .汽车经过两路标之间的平均速度是5m/s D .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则() A .76km/h 是平均速度 B .76km/h 是瞬时速度 C .600m/s 是瞬时速度 D .600m/s 是平均速度 6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是() A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v + 7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是() A .物体A 的运动是以10m/s 的速度匀速运动 B .物体B 的运动是先以5m /s 的速度与A 同方向 C .物体B 在最初3s 内位移是10m D .物体B 在最初3s 内路程是10m 8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则() A .1=t s 时,质点离原点的距离最大 B .2=t s 时,质点离原点的距离最大 C .2=t s 时,质点回到原点 D .4=t s 时,质点回到原点 9.如图所示,能正确表示物体做匀速直线运动的图象是() 10.质点做匀加速直线运动,加速度大小为2 m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()

高中物理动力学精心整理题目

动力学专题训练 20XX 年4月30日 【第1题】一个质量为2kg 的物体,在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15N 和20N 的两个力而其余力保持不变,则此后该物体运动的说法中正确的是( ) A .一定做匀变速直线运动,加速度大小可能是5m/s 2 B .可能做匀减速直线运动,加速度大小是2m/s 2 C .一定做匀变速运动,加速度大小可能是15m/s 2 D .可能做匀速圆周运动,向心加速度大小可能是5m/s 2 【第2题】如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg 的物体A 处于静止状态。若将一个质量为3kg 的物体B 竖直向下轻放在A 上的 一瞬间,则B 对A 的压力大小为(g=10m/s 2)( ) A.30N B. 0 C. 15N D. 12N 【第3题】在真空中上、下两个区域均为竖直向下的匀强电场,其电场线分布如图所示,有一带负电的微粒,从上边区域沿平行电场线方向以速度v0匀速下落,并进入下边区域(该区域的电场足够广),在下图所示的速度一时间图象中,符合粒子在电场内运动情况的是(以v0 方向为正方向)( ) v

【第4题】如图所示,足够长的水平传送带以速度v 沿顺时针方向运动,传送带的右端与光滑曲面的底部平滑连接,曲面上的A 点距离底部的高度h =0.45 m .一小物块从A 点静止滑下,再滑上传送带,经过一段时间又返回曲面.g 取10 m/s2,则下列说法正确的是( ) A .若v =1 m/s ,则小物块能回到A 点 B .若v =2 m/s ,则小物块能回到A 点 C .若v =5 m/s ,则小物块能回到A 点 D .无论v 等于多少,小物块均能回到A 点 【第5题】一质点在xoy 平面内从o 点开始运动的轨迹如图所示则质点的速度( ) A .若x 方向始终匀速,则y 方向先加速后减速 B .若x 方向始终匀速,则y 方向先减速后加速 C .若y 方向始终匀速,则x 方向先减速后加速 D .若y 方向始终匀速,则x 方向先加速后减速 【第6题】在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向 里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,则( ) A .如果油滴带正电,则油滴从M 点运动到N 点 B .如果油滴带正电,则油滴从N 点运动到M 点 C .如果电场方向水平向右,则油滴从N 点运动到M 点 D .如果电场方向水平向左,则油滴从N 点运动到M 点 【第7题】当t=0时,甲乙两车从相距70Km 的两地开始相向行驶,它们的v-t 图像如图所示,忽略汽车

动力学的两类基本问题

动力学的两类基本问题 Revised as of 23 November 2020

动力学的两类基本问题 一、基础知识 1、动力学有两类问题: ⑴是已知物体的受力情况分析运动情况; ⑵是已知运动情况分析受力情况,程序如下图所示。 2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等). 3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力). 其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。 解题步骤 (1)确定研究对象; (2)分析受力情况和运动情况,画示意图(受力和运动过程); (3)用牛顿第二定律或运动学公式求加速度; (4)用运动学公式或牛顿第二定律求所求量。 例1.一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为。求物体4s 末的速度和4s 内的位移。 例2.滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30° 的山坡,从刚上坡即开始计时,至末,滑雪者速度变为 运动学公 a (桥运动情况:如受力情况:如m F a v=v o +at x=v o t+ at 2 2 1 v 2-v o 2=2ax

0。如果雪橇与人的总质量为m=80kg,求雪橇与山坡之间的摩擦力为多少 g=10m/s2. 二、练习 1、如图所示,木块的质量m=2 kg,与地面间的动摩擦 因数μ=,木块在拉力F=10N作用下,在水平地面上从 静止开始向右运动,运动5.2 m后撤去外力F.已知力F 与水平方向的夹角θ=37°(sin37°=,cos37°=,g取10 m/s2).求: (1)撤去外力前,木块受到的摩擦力大小; (2)刚撤去外力时,木块运动的速度; (3)撤去外力后,木块还能滑行的距离为多少 (1)(2)5.2m/s(3)6.76m 2、如图所示,一个放置在水平台面上的木块,其质量为2kg,受到一个斜向下的、与水平方向成37°角的推力F=10N的作用,使木块从静止开始运动,4s后撤去推力,若木块与水平面间的动摩擦因数为.(取g=10m/s2)求: (1)撤去推力时木块的速度为多大 (2)撤去推力到停止运动过程中木块 的加速度为多大 (3)木块在水平面上运动的总位移为多少 3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1kg的物体,物 体与斜面间动摩擦因数μ=,物体受到沿平行于斜面向上的轻细绳的拉力F=的作用,从静止开始运动,经2s绳子突然断了,求绳断后多长 时间物体速度大小达到22 m/s(sin37°=,g取10 m/s2) 4、如图所示,有一足够长的斜面,倾角α=37°,一小物块 从斜面顶端A处由静止下滑,到B处后,受一与小物块重 力大小相等的水平向右的恒力作用,小物块最终停在C点(C点未画出).若AB长为 2.25

高中物理力学公式

高中物理力学公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、力学 1、f = k x :胡克定律 (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料 有关) 2、 G = mg :重力 (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、θcos 2212221F F F F F ++=合 : 求F 1、F 2的合力的公式 2221F F F +=合 : 两个分力垂直时 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反 向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 4、摩擦力的公式: (1 )f = N :滑动摩擦力 (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也 可以小于G 。 ②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关。 (2 ) 0 f 静 f m (f m 为最大静摩擦力) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 说明:①摩擦力可以与运动方向相同,也可以与运动方 向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作 用。 5、F=G 221r m m : 万有引力(适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = ×10-11 N ·m 2 / kg 2 (1)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力 加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高 度)) a 、 F 万=F 向 万有引力=向心力 即 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 ③ 行星或卫星做匀速圆周运动的角速度: ,轨道半径越大,角速度越小。 ④行星或卫星做匀速圆周运动的周期: ,轨道半径越大,周期越大。 ⑤行星或卫星做匀速圆周运动的轨道半径: ,周期越大,轨道半径越大。 ⑥行星或卫星做匀速圆周运动的向心加速度:2 r GM a =,轨道半径越大,向心加速度越小。 ⑦地球或天体重力加速度随高度的变化:22)('h R GM r GM g +== 特别地,在天体或地球表面:20R GM g = 022) ('g h R R g += 23 24GT r M π=

重点高中物理运动学专题

重点高中物理运动学专题

————————————————————————————————作者:————————————————————————————————日期:

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾 经研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的 包络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧, V A =V B +V AB ,在AB连线上

第2节 牛顿第二定律 两类动力学问题(教案)

第2节牛顿第二定律两类动力学问题 一、教学目标 1.物理知识方面的要求: (1)加深理解牛顿第二定律的物理意义及提高公式的运用能力 (2)熟练掌握牛顿第二定律的应用方法 2.通过例题分析、讨论、练习使学生掌握应用牛顿定律解决力学问题的方法,培养学生的审题能力、分析综合能力和运用数学工具的能力。 3.训练学生解题规范、画图分析、完善步骤的能力。 二、重点、难点分析 1.重点内容是选好例题,讲清应用牛顿第二定律解决的两类力学问题及解决这类问题的基本方法。2.应用牛顿第二定律解题重要的是分析过程、建立图景;抓住运动情况、受力情况和初始条件;依据定律列方程求解。但学生往往存在重结论、轻过程,习惯于套公式得结果,所以培养学生良好的解题习惯、建立思路、掌握方法是难点。 动力学的两类基本问题 (1)已知受力情况求运动情况. 根据牛顿第二定律,已知物体的受力情况,可以求出物体的加速度;再知道物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位置,也就求出了物体的运动情况 (2)已知运动情况求受力情况. 根据物体的运动情况,由运动学公式可以求出加速度,再根据牛顿第二定律可确定物体的合外力,从而求出未知力,或与力相关的某些量,如动摩擦因数、劲度系数、力的方向等.

(3)两类动力学问题的解题思路图解: (4)两类动力学问题的解题步骤: (一)已知物体的受力情况,求解物体的运动情况 【例题1】如图所示,质量m=2kg的物体静止在光滑的水平地面上,现对物体施加大小F=10N与水平方向夹角θ=370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=0.6,cos370=0.8取g=10m/s2,求物体5s末的速度及5s内的位移。 问:a、本题属于那一类动力学问题? B、物体受到那些力的作用?这些力关系如何? C、判定物体应作什么运动?

动力学的两类基本问题

4.6用牛顿运动定律解决问题(一) 【学习目标】 知识与技能 1.知道应用牛顿运动定律解决的两类主要问题。 2.掌握应用牛顿运动定律解决问题的基本思路和方法。 过程与方法 1.通过实例感受研究力和运动关系的重要性。 2.帮助学生学会运用实例总结归纳一般问题的解题规律的能力。 情感态度与价值观 1.初步认识牛顿运动定律对社会发展的影响。 2.初步建立应用科学知识的意识。 【学习重点】应用牛顿运动定律解决问题的基本思路和方法。 【学习难点】物体的受力分析及运动状态分析,解题方法的灵活选择和运用。正交分解法的应用。 【学习过程】 一、自主学习 1、理解牛顿第一定律的含义 揭示了力与运动的关系,力不是维持物体运动的原因,而是。 对于牛顿第一定律,你还有哪一些理解? 2、理解牛顿第二定律是力与运动联系的桥梁 牛顿第二定律确定了_______________的关系,使我们能够把物体的___________情况和_________情况联系起来。 类型一:从受力确定运动情况 如果已知物体的受力情况,可以由牛顿第二定律求出物体的___________,再通过__________就可以确定物体的运动情况。 类型二:从运动情况确定受力 如果已知物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的___________。 3、能运用牛顿第三定律分析物体之间的相互作用 物体之间的作用力和反作用力总是 当一个物体的受力不容易分析的时候,我们能不能分析对它施加力的物体? 分析的时候应该注意什么问题? 跟踪练习 1.一个静止在水平面上的木箱,质量为2 kg,在水平拉力F=6 N的作用下从静止开始运动,已知木箱与水平面间滑动摩擦力是4N,求物体2 s末的速度及2 s内的位移。(g取10 m/s2)

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

两类动力学问题

牛顿运动定律的应用——两类动力学问题 一、引入 本单元应以牛顿第二定律为核心,要求学生熟练掌握之.然而,关于物体的“惯性”和作用力与反作用力关系及判断,学生也是极易出错的,因此也要求熟练掌握. 二、教学过程 1.加深对牛顿第二定律的理解 ①对定律中三个关键字的理解 “受”———是指物体所受的力,而非该物体对其他物体所施加的力。 “合”———是指物体所受的所有外力的合力,而非某一分力或某些分力的合力 “外”———是指物体所受的外力,而非内力(即物体内部各部分间的相互作用力,如一列火车各车厢间的拉力)。 ②牛顿第二定律确定了三个关系 大小关系:a ∝ m F ,加速度的大小与物体所受的合外力成正比,与物体的质量成反比. 方向关系:加速度的方向与合外力的方向相同. 单位关系:F =kma 中,只有当公式两边的物理量均取国际单位制中的单位时,比例系数k 才等于 1,公式才可简化为 F 合=ma 。

③牛顿第二定律反映了加速度和力的五条性质 、m和a都是相对于同一物体而言的. 同体性——F 合 矢量性——牛顿第二定律是一个矢量式,求解时应先规定正方向.独立性——作用在物体上的每个力都将独立地产生各自的加速度,合外力的加速度即是这些加速度的矢量和. 同时性——加速度随着合外力的变化而同时变化. 瞬时性——牛顿第二定律是一个瞬时关系式,它描述了合外力作用的瞬时效果.如果合外力时刻变化,则牛顿第二定律反映的是某一时刻加速度与力之间的瞬时关系. ④力、加速度和速度的关系 关于力、加速度和速度的关系,正确的结论是:加速度随力的变化而变化,但力(或加速度)和速度并没有直接的关系,其变化规律需根据具体情况分析。例如,在简谐运动中,回复力、加速度最大时,振子的速度为零;而回复力、加速度为零时,振子的速度最大.2.什么样的问题是“牛顿第二定律”的应用问题(即物理问题的归类) 凡是求瞬时力及其作用效果的问题;判断质点的运动性质的问题(除根据质点运动规律判断外)都属“牛顿第二定律”的应用问题.动力学的两类基本问题即: ①由受力情况判断物体的运动状态;②由运动情况判断的受力情况

动力学的两类基本问题_专题训练

动力学的两类基本问题 姓名: 【基础导学】两类动力学问题的解题思路图解 【典例剖析】已知受力求运动 例题1:如图,质量为m=2kg 的物体静止在水平地面上,物体与水平面间的动摩擦因数u=0. 5。现对物体施加大小F=10N 、与水平方向夹角θ=37°的斜向上的拉力,经5s 撤去拉力。求物体通过的总位移。(g 取10m/s 2) ) 针对训练1-1:为了安全,在高速公路上行驶的汽车之间应保持必要的距离.已知某段高速公路的最高限速v=108 km/h,假设前方车辆突然停止,后面车辆司机从发现这一情况起,经操纵刹车到汽车开始减速经历的时间(即反应时间)t=0.50 s,刹车时汽车受到的阻力大小为汽车重力的0.50倍.该段高速公路上以最高限速行驶的汽车,至少应保持的距离为多大?(取g=10 m/s2) 针对训练1-2:质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数μ=0.2,力F 作用了5s ,求物块在5s 内的位移及它在5s 末的速度。(g =10m/s 2 ,sin37°=0.6,cos37°=0.8)

F 针对训练1-3:如图所示,楼梯口一倾斜的天花板与水平面成θ=37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F =10 N ,刷子的质量为m =0.5 kg ,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L =4 m .sin 37°=0.6,cos 37°=0.8,g 取10 m/s2.试求:工人把刷子从天花板底端推到顶端所用的时间. 已知运动求受力 例2: 如图所示,质量为0.5kg 的物体在与水平面成300 角的拉力F 作用下,沿水平桌面向右做直线运动,经过0.5m 的距离速度由0.6m/s 变为0.4m/s ,已知物体与桌面间的动摩擦 因数μ=0.1,求作用力F 的大小。(g =10m/s 2 ) 针对训练2-1:质量为2kg 的物体放在水平地面上,在大小为5N 的倾斜拉力的作用下,物体由静止开始做匀加速直线运动,6s 末的速度为1.8m/s ,已知拉力与水平方 向成37度角斜向上,则物体和地面之间的动摩擦因数为多少?(g=10m/s2) 针对训练2-2:一位滑雪者如果以v 0=30m/s 的初速度沿直线冲上一倾角为300 的山坡,从冲坡开始计时,至4s 末,雪橇速度变为零。如果雪橇与人的质量为m =80kg ,求滑雪人受 到的阻力是多少。(g 取10m/s 2 ) 针对训练2-3:在某一旅游景区,建有一山坡滑草运动项目. 该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m =80 kg ,他从静止开始匀加速下滑,在时间t =5 s 内沿斜面滑下的位移x =50 m. (不计空气阻力,取g =10 m/s 2 ,结果保留2位有效数字)问: (1)游客连同滑草装置在下滑过程中受到的摩擦力F 为多大? (2)滑草装置与草皮之间的动摩擦因数μ为多大?

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

相关文档
最新文档