高等数学 高等代数习题集

高等数学 高等代数习题集
高等数学 高等代数习题集

第一章 多项式

§1.1一元多项式的定义和运算

1.设

),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是

(6) 222)()()(x xh x xg x f +=,

那么

.0)()()(===x h x g x f

2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h

3.证明:

!)

)...(1()1(!)

1)...(1()1(!2)1(1n n x x n n x x x x x x n

n

---=+---+--+

-

§1.2 多项式的整除性

1.求

)(x f 被)(x g 除所得的商式和余式:

( i ) ;13)(,14)(234--=--=x x x g x x x f (ii)

;23)(,13)(3235+-=-+-=x x x g x x x x f

2.证明:k x f x )(|必要且只要).(|x f x

3.令

()()()x g x g x f x f 2121,,),(都是数域

F

上的多项式,其中

()0

1≠x f 且

()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g

4.实数q p m ,,

满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++

5.设F 是一个数域,.F a ∈证明:a x -整除.n n

a x -

6.考虑有理数域上多项式

()()

()()

()(),121211

n

k

n k n

k x x x x x x f ++++++=-++

这里k 和n 都是非负整数.证明:

()()()

.11|1

n k 1+++++-x x f x x k

7.证明:1-d

x

整除1-n x 必要且只要d 整除.n

§1.3 多项式的最大公因式

1. 计算以下各组多项式的最大公因式: ( i ) ()();32103,34323234-++=---+=x x x x g x x x x x f

(ii)

()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=

2. 设

()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()

x f 和

()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个

最大公因式.

3.

()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F

中的数,并且

0≠-bc ad

证明:

()()()()()()).,(),(x g x f x dg x cf x bg x af =++

4. 证明: (i )h g f ),(是

fh 和gh 的最大公因式;

(ii )),,,,(),)(,(212121212211g g f g g f f f g f g f =

此处

h g f ,,等都是][x F 的多项式。

5. 设()()22,242234234---+=---+=x x x x x g x x x x x f 都是有理数域Q 上的多

项式。求()()][,x Q x v x u

∈使得

()()()()()()).,(x g x f x v x g x u x f =+

6. 设1),(=g f ,令n 是任意正整数,证明:1),(=n g f 由此进一步证明,对于任意正整数n m ,,

都有1),(=n m

g f

.

7. 设1)

,(=g f 证明:

1),(),(),(=+=+=+g f fg g f g g f f .

8. 证明:对于任意正整数n 都有),(),(n n n

g f g f =.

9. 证明:若是

)(x f 与)(x g 互素,并且)(x f 与)(x g 的次数都大于0,那么定理3.3.2里的)

(x u 与)(x v 可以如此选取,使得)(x u 的次数低于)(x g 的次数,)(x v 的次数低于)(x f 的次数,并且这样

的)(x u 与)(x v 是唯一的。

10. 决定k ,使24)6(2

++++k x k x

与k x k x 2)2(2+++的最大公因式是一次的。

11. 证明:如果1))(),((=x g x f

那么对于任意正整数m ,

()()()1,=m

m

x g x f

12. 设

)(x f ,)(x g 是数域P 上的多项式,)(x f 与)(x g 的最小公倍式指的是][x P 中满足以下条

件的一个多项式)(x m :

()

a )(|)(x m x f 且)(|)(x m x g ;

()b 如果][)(x P x h ∈且)(|)(),(|)(x h x g x h x f ,那么)(|)(x h x m .

()i 证明:][x P 中任意两个多项式都有最小公倍式,并且除了可能的零次因式的差别外,是唯一的。

()ii 设)

(x f ,

)(x g 都是最高次项系数是1的多项式,令[])(),(x g x f 表示)(x f 和)(x g 的最高次项

系数是1的那个最小公倍式,证明

()()()()()()()[]x g x f x g x f x g x f ,,=

13. 设)()(|)(1x f x f x g n 并且1))(),((=x f x g i ,1,,2,1-=n i 证明:)(|)(x f x g n .

14. 设

][)(,),(),(21x P x f x f x f n ∈ 证明:

()i ()()()()()()()()()()()().11,,,,,,,,12121-≤≤=+n k x f x f x f x f x f x f x f x f n k k n ()ii )(,),(),(21x f x f x f n 互素的充要条件是存在多项式][)(,),(),(21x P x u x u x u n ∈ 使得

()()()()()()12211=++x u x f x u x f x u x f n n

15. 设

][)(,),(1x P x f x f n ∈ ,令

()()()()(){}.1],[11n i x F x g x g x f x g x f I i n n ≤≤∈+=

比照定理1.4.2,证明:)(,

),(1x f x f n 有最大公因式.

[提示:如果)(,),(1x f x f n 不全为零,取)(x d 是I 中次数最低的一个多项式,则)(x d 就是)(,),(1x f x f n 的一个最大公因式.]

§1.4 多项式的分解

1. 在有理数域上分解以下多项式为不可约多项式的乘积:

()i ;132+x ().12223+--x x x ii

2. 分别在复数域,实数域,有理数域上分解多项式14

+x 为不可约因式的乘积.

3. 证明:

)(|)(22x f x g 当且仅当)(|)(x f x g .

4.

()i 求 ()1222345-++--=x x x x x x f 在][x Q 内的典型分解式;

()ii 求()61416161022345-+-+-=x x x x x x f 在][x R 内的典型分解式

5.证明:数域P 上一个次数大于零的多项式)(x f 是][x P 中某一不可约多项式的幂的充分且必要条件是

对于任意][)(x P x g ∈,或者1))(),((=x g x f

,或者存在一个正整数m 使得)(|)(x g x f m .

6.设

)(x p 是][x P 中一个次数大于零的多项式.如果对于任意][)(),(x F x g x f ∈只要

)()(|)(x g x f x p 就有)(|)(x f x p 或)(|)(x g x p 那么)(x p 不可约.

§1.5 重因式

1. 证明下列关于多项式的导数的公式:

()i ()()()()();x g x f x g x f '+'='+ ()ii ()()()()()()().x g x f x g x f x g x f '+'='

2.

)(x p 是)(x f 的导数)(x f '的1-k 重因式.证明:

()i

)(x p 未必是)(x f 的k 重因式;

()ii

)(x p 是)(x f 的k 重因式的充分且必要条件是)(|)(x f x p .

3. 证明有理系数多项式

()!

!212n x x x x f n

+++=

没有重因式.

4.b a ,应该满足什么条件,下列的有理系数多项式才能有重因式?

()i ;33b ax x ++

()ii .44b ax x ++

5. 证明:数域P 上的一个n 次多项式

)(x f 能被它的导数整除的充分且必要条件是

()()

n

b x a x f -=,

这里的b a ,是P 中的数

§1.6 多项式函数 多项式的根

1.设

1532)(345+--=x x x x f ,求

)

2(),3(-f f .

2.数环R 的一个数c 说是][)(x R x f ∈的一个k 重根,如果)(x f 可以被k c x )(-整除,但不能被

1)(+-k c x 整除.判断5是不是多项式

5057422243)(235+++-=x x x x x f

的根.如果是的话,是几重根?

3.设d x c x b x a x x x

+-+-+-=-+-)2()2()2(5322323

求d c b a ,,, [提示:应用综合除法.]

4.将下列多项式

)(x f 表成a x -的多项式.

)(i 1,)(5==a x x f ;

)(ii 2,32)(24-=+-=a x x x f .

5.求一个次数小于4的多项式

)(x f ,使

2)5(,0)4(,1)3(,3)2(==-==f f f f

6.求一个2次多项式,使它在ππ

,2

,

0=x

处与函数x sin 有相同的值.

7.令)(),(x g x f 是两个多项式,并且)()(33x g x f +可以被12

++x x 整除.

证明

.0)1()1(==g f

8.令c 是一个复数,并且是][x Q 中一个非零多项式的根,令

}0)(|][)({=∈=c f x Q x f J

证明:)(i 在

J

中存在唯一的最高次项系数是1的多项式

)(x p ,使得J

中每一多项式

)(x f 都可以写成

)()(x q x p 的形式,这里][)(x Q x q ∈. )(ii )(x p 在][x Q 中不可约.

如果32+=c

,求上述的)(x p

[提示:取

)(x p 是J

中次数最低的、最高次项系数是1的多项式.]

9.设][x C 中多项式0)(≠x f 且)(|)(n x f x f )(|)(n

x f x f ,n 是一个大于1的整数.

证明:

)(x f 的根只能是零或单位根.

[提示:如果c 是

)(x f 的根,那么 ,,,3

2

n n n c c c 都是)(x f 的根.]

§1.7 复数和实数域上多项式

1.设n 次多项式

n n n n a x a x a x a x f ++++=--11

10)( 的根是n ααα,,,21 .求 )(i 以n ca ca ca ,,,21 为根的多项式,这里c 是一个数;

)(ii 以n

ααα1

,

,1

,

1

2

1 (假定n ααα,,,21 都不等于零)为根的多项式.

2.设

)(x f 是一个多项式,用)(x f 表示把)(x f 的系数分别换成它们的共轭数后所得多项式.证明:

)(i 若是g )(x |f )(x ,那么)(|)(x f x g ;

)(ii 若是)(x d 是)(x f 和)(x f 的一个最大公因式,并且)(x d 的最高次项系数是1,那么)(x d 是一个实

系数多项式).

3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 4.在复数和实数域上,分解2-n

x

为不可约因式的乘积.

5.证明:数域F 上任意一个不可约多项式在复数域内没有重根. §1.8 有理数域上多项式

1.证明以下多项式在有理数域上不可约:

)(i 108234-+-x x x ; )(ii ;66182245+++x x x )(iii 32234-+-x x x ;

)(iv 136++x x .

2.利用艾森斯坦判断法,证明:若是

t p p p ,,,21 是t 个不相同的素数而n 是一个大于1的整数,那么

n

t

p p p 21是一个无理数.

3.设

)(x f 是一个整系数多项式.证明:若是)0(f 和)1(f 都是奇数,那么)(x f 不能有整数根.

4.求以下多项式的有理根:

)(i 1415623-+-x x x ; )(ii 157424---x x x ; )

(iii 321

2252345--+-

-x x x x x .

§1.9多元多项式

1.写出一个数域F 上三元三次多项式的一般形式. 2.设

),,(1n x x f 是一个r 次齐次多项式.t 是任意数.证明

),,(),,(11n r n x x f t tx tx f =.

3.设

),,(1n x x f 是数域F 上一个n 元齐次多项式,证明:如果

),,(),,(),,(111n n n x x h x x g x x f =,则h g ,也是n 元齐次多项式.

4.把多项式xyz z y x

3333

-++写成两个多项式的乘积.

5.设F 是一个数域.

],,[,1n x x F g f ∈是F 上n 元多项式.如果存在],,[1n x x F h ∈使得

gh f =,那么就说g 是f 的一个因式.或者说g 整除

f

.

)(i 证明,每一多项式f

都可以被零次多项式c 和cf 整除,0,≠∈c F c .

)(ii ],[1n x x F f ∈说是不可约的,如果除了)(i 中那两种类型的因式外,f 没有其它的因式.证明,在

],[y x F 里,多项式y x y x y x -+2,,,都不可约.

)(iii 举一反例证明,当2≥n 时,类拟于一元多项式的带余除法不成立.

)(iv ],,[,1n x x F g f ∈说是互素的,如果除了零次多项式外,它们没有次数大于零的公共因式.证明

],[,y x F y x ∈是互素的多项式.能否找到],[),(),,(y x F y x v y x u ∈使得1),(),(=+y x yv y x xu ?

§1.10 对称多项式

1.写出某一数环R 上三元三次对称多项式的一般形式.

2.令],,,[21n x x x R 是数环R 上n 元多项式环,S 是由一切n 元对称多项式所组成的

],,[1n x x R 的子集.证明:存在],,[1n x x R 到S 的一个双射.[提示:利用对称多项式的基本定理,建

立],,[1n x x R 到S 的一个双射]

3.把下列n 元对称多项式表成初等对称多项式的多项式:

)

(i ∑2

31x

x ;)

(ii ∑4

x

;)

(iii ∑3

2221x

x x

4.证明:如果一个三次多项式c bx ax x +++23

的一个根的平方等于其余两个根的平方和,那么

这个多项式的系数满足以下关系:

2324)22(2)2(c ab a b a a +-=-

5.设n ααα,,,21 是某一数域F上多项式

n n n n a x a x a x ++++--111

在复数域内的全部根.证明:n αα,,2 的每一个对称多项式都可以表成F上关于1α的多项式.[提示:只需证明n αα,,2 的初等对称多项式可以表成F上关于1α的多项式即可.]

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

高等数学下试题及参考答案

高等数学下试题及参考 答案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

华南农业大学期末考试试卷(A 卷 ) 2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy =

2 .求极限(,)(0,0)lim x y →= ( ) A .14 B .12- C .14- D .12 3.直线:3 27 x y z L = =-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤ ,则D σ= ( ) A .33()2 b a π- B .332()3 b a π- C .334()3 b a π - D . 3 33()2 b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1 1 21n n ∞ =-∑ D .n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特 解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22 {(,):1,1}D x y x y x y =+≤+≥。

武汉大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞ -+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共 16分) 4.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 5. ) ( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 6. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1) -二阶可导且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 7. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且 →=0 ()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在 =0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足 =- 1(1)9y 的 解. 四、 解答题(本大题10分) 14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01, 且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵 坐标之和,求此曲线方程. 五、解答题(本大题10分) 15. 过坐标原点作曲线x y ln =的切线,该切线与曲线 x y ln =及x 轴围成平面图形D. (1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所 得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分) 16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的 [,]∈01q ,1 ()()≥??q f x d x q f x dx . 17. 设函数)(x f 在[]π,0上连续,且 )(0 =?π x d x f , cos )(0 =? π dx x x f .证明:在()π,0内至少存在两个 不同的点21,ξξ,使.0)()(21==ξξf f (提示:设 ?= x dx x f x F 0 )()()

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分) 1.曲线???=+=0 12x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z . 2.直线35422:1z y x L =--=-+与直线?? ???+=+-==t z t y t x L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{. 4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0. 5.设周期函数在一个周期内的表达式为???≤<+≤<-=, 0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π +. 6.全微分方程0d d =+y x x y 的通解为 C xy =. 7.写出微分方程x e y y y =-'+''2的特解的形式x axe y =*. 二、解答题(共18分 每小题6分) 1.求过点)1,2,1(-且垂直于直线???=+-+=-+-0 2032z y x z y x 的平面方程. 解:设所求平面的法向量为n ,则{}3,2,11 11121=--=k j i n (4分) 所求平面方程为 032=++z y x (6分) 2.将积分???Ω v z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面 )(222y x z +-=及22y x z +=所围成的区域. 解: πθ20 ,10 ,2 :2 ≤≤≤≤-≤≤Ωr r z r (3分)

???Ωv z y x f d ),,(???-=221020d ),sin ,cos (d d r r z z r r f r r θθθπ (6分) 3.计算二重积分??+-=D y x y x e I d d )(22,其中闭区域.4:22≤+y x D 解 ??-=2020d d 2r r e I r πθ??-- =-20220)(d d 212r e r πθ?-?-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分) 1.设v ue z =,而22y x u +=,xy v =,求z d . 解:)2(232y y x x e y ue x e x v v z x u u z x z xy v v ++=?+?=?????+?????=?? (3分) )2(223xy x y e x ue y e y v v z y u u z y z xy v v ++=?+?=?????+?????=?? (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分) 2.函数),(y x z z =由方程0=-xyz e z 所确定,求y z x z ????,. 解:令xyz e z y x F z -=),,(, (2分) 则 ,yz F x -= ,xz F y -= ,xy e F z z -= (5分) xy e yz F F x z z z x -=-=??, xy e xz F F y z z z y -=-=??. (7分) 3.计算曲线积分 ?+-L y x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有 向弧段. 解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林 公式 ????+--=+-OA D L y x x y y x y x x y d d d d 2d d (5分) ππ=-? =022 (7分) 4.设曲线积分?++L x y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题) 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) .d )1(22x x x ? +求 2、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

历年高等数学期末考试试题

2008-2009学年第一学期期末试题 一、填空题(每题5分,共30分) 1.曲线1ln()y x e x =+的斜渐近线方程是________________________ 2.若函数)(x y y =由2cos()1x y e xy e +-=-确定,则在点(0,1)处的法线方程是________ 3.设()f x 连续,且21 40 ()x f t dt x -=? ,则(8)______f = 4.积分 20 sin n xdx π =? ___________________ 5.微分方程044=+'+''y y y 的通解为_____________ 6 .曲边三角形y = 0,1y x ==绕x 轴旋转所得的旋转体体积为_________ 二.选择题(每题3分,共15分) 1.当0x +→ ) () A 1- () B () C 1 () D 1-2. 若1()(21)f x x x ??=-???? ,则()f x 在( )处不连续 ()A 3x = ()B 2x = ()C 12x = ()D 13 x = 3.若()sin cos f x x x x =+,则( ) ()A (0)f 是极大值,()2f π是极小值, ()B (0)f 是极小值,()2f π 是极大值 ()C (0)f 是极大值,()2f π 也是极大值 ()D (0)f 是极小值,()2 f π 也是极小值 4.设线性无关的函数123,,y y y 都是二阶非齐次线性方程()()()y p x y q x y f x '''++=的解, 12,c c 是任意常数,则该方程的通解为( ) ()A 11223c y c y y ++, ()B 1122123()c y c y c c y +-+, ()C 1122123(1)c y c y c c y +---, ()D 1122123(1)c y c y c c y ++--, 5.极限2 1 33lim ( )n n i i n n n →∞=-∑可表示为( ) ()A 2 2 13x dx -? ()B 1 2 03(31)x dx -? ()C 2 2 1 (31)x dx --? () D 1 20 x dx ?

高等数学下册期末考试

高等数学 A( 下册 ) 期末考试试题 大题一二三四五六七 小题 1 2 3 4 5 得分 一、填空题:(本题共 5 小题,每小题 4 分,满分 20 分,把答案直接填在题中 横线上) 1 、已知向量、满足,,,则. 2 、设,则. 3 、曲面在点处的切平面方程为. 4 、设是周期为的周期函数,它在上的表达式为,则 的傅里叶级数 在处收敛于,在处收敛于. 5 、设为连接与两点的直线段,则. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题 纸写上:姓名、学号、班级. 二、解下列各题:(本题共 5 小题,每小题 7 分,满分 35 分) 1 、求曲线在点处的切线及法平面方程. 2 、求由曲面及所围成的立体体积. 3 、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4 、设,其中具有二阶连续偏导数,求.

5 、计算曲面积分其中是球面被平面截出的顶部. 三、(本题满分 9 分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值. (本题满分 10 分) 计算曲线积分, 其中为常数,为由点至原点的上半圆周. 四、(本题满分 10 分) 求幂级数的收敛域及和函数. 五、(本题满分 10 分) 计算曲面积分, 其中为曲面的上侧. 六、(本题满分 6 分) 设为连续函数,,,其中是由曲 面与所围成的闭区域,求. ------------------------------------- 备注:①考试时间为 2 小时; ②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。 高等数学 A( 下册 ) 期末考试试题【 A 卷】 参考解答与评分标准 2009 年 6 月

(完整word版)大一高数期末考试试题.docx

2011 学年第一学期 《高等数学( 2-1 )》期末模拟试卷 专业班级 姓名 学号 开课系室考试日期 高等数学 2010 年 1 月11 日 页号一二三四五六总分得分 阅卷人 注意事项 1.请在试卷正面答题,反面及附页可作草稿纸; 2.答题时请注意书写清楚,保持卷面清洁; 3.本试卷共五道大题,满分100 分;试卷本请勿撕开,否则作废.

本页满分 36 分 本 页 得 一.填空题(共 5 小题,每小题 4 分,共计 20 分) 分 1 lim( e x x) x 2 . 1. x 0 1 x 2005 e x e x dx x 1 2. 1 . x y t 2 dy 3.设函数 y y( x) 由方程 e dt x x 0 1 确定,则 dx x tf (t)dt f (x) 4. 设 f x 1 ,则 f x 可导,且 1 , f (0) . 5.微分方程 y 4 y 4 y 的通解为 . 二.选择题(共 4 小题,每小题 4 分,共计 16 分) . f ( x) ln x x k 1.设常数 k e 0 ,则函数 在 ( 0, (A) 3 个; (B) 2 个 ; (C) 1 2. 微分方程 y 4y 3cos2 x 的特解形式为( ( A ) y Acos2 x ; ( B ) y ( C ) y Ax cos2 x Bx sin 2x ; ( D ) y * 3.下列结论不一定成立的是( ) . ) 内零点的个数为( 个 ; (D) 0 个 . ) . Ax cos2x ; A sin 2x . ) . d b x dx ( A )若 c, d a,b , 则必有 f x dx f ; c a b x dx 0 (B )若 f (x) 0 在 a,b f 上可积 , 则 a ; a T T ( C )若 f x 是周期为 T 的连续函数 , 则对任意常数 a 都有 a f x dx x t dt (D )若可积函数 t f f x 为奇函数 , 则 0 也为奇函数 . 1 f 1 e x x 1 4. 设 2 3e x , 则 x 0 是 f ( x) 的( ). (A) 连续点 ; (B) 可去间断点 ; (C) 跳跃间断点 ; (D) 无穷间断点 . f x dx ; 三.计算题(共 5 小题,每小题 6 分,共计 30 分)

2016年下半年《高等数学(下)》期末考试试卷及答案

2016年下半年《高等数学(下)》期末考试试卷及答案 (河南工程学院) 1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在 点( x 0, f(x0) )处的法线的斜率等于()(本题3.0分) A、 B、 C、 D、 2. ( 单选题) 无穷小量是(本题 3.0分) A、比0稍大一点的一个数 B、一个很小很小的数 C、以0为极限的一个变量 D、数0 3. ( 单选题) 设函数,则其间断点的个数是()。 (本题3.0分) A、0 B、 1

C、 2 D、 3 4. ( 单选题) 设则(本题3.0分) A、 B、 C、 D、 5. ( 单选题) 极限 (本题3.0分) A、-2 B、0 C、 2 D、 1 6. ( 单选题) 设则(本题3.0分) A、 B、 C、 D、 7. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题3.0分)

A、-1 B、0 C、 1 D、无定义 8. ( 单选题) 若,则f(x)=()。(本题3.0分) A、 B、 C、 D、 9. ( 单选题) 微分方程是一阶线性齐次方程。 (本题3.0分) A、正确 B、错误 10. ( 单选题) 曲线在点处的切线方程为(本题3.0分) A、 B、 C、 D、 11. ( 单选题) 极限(本题3.0分)

A、 1 B、-1 C、0 D、不存在 12. ( 单选题) 极限(本题3.0分) A、-2 B、0 C、 2 D、 1 13. ( 单选题) 设,则( )。 (本题3.0分) A、 B、6x C、 6 D、0 14. ( 单选题) 极限 (本题3.0分)

关于大学高等数学期末考试试题与答案

关于大学高等数学期末考 试试题与答案 Last revision on 21 December 2020

(一)填空题(每题2分,共16分) 1 、函数ln(5)y x =+-的定义域为 . 2、2()12x e f x x a ??=??+? 000x x x <=> ,若0lim ()x f x →存在,则a = . 3、已知 30lim(1)m x x x e →+=,那么m = . 4、函数21()1x f x x k ?-?=-??? 11x x ≠= ,在(),-∞+∞内连续,则k = . 5、曲线x y e =在0x =处的切线方程为 . 6、()F x dx '=? . 7、sec xdx =? . 8、20cos x d tdt dx ??=? ???? . (二)单项选择(每题2分,共12分。在每小题给出的选项中,选出正确答案) 1、下列各式中,不成立的是( )。 A 、lim 0x x e →+∞= B 、lim 0x x e →-∞= C 、21 lim 1x x e →∞= D 、1lim 1x x e →∞= 2、下列变化过程中,( )为无穷小量。 A 、()sin 0x x x → B 、()cos x x x →∞ C 、()0sin x x x → D 、()cos x x x →∞ 3、0lim ()x x f x →存在是)(x f 在0x 处连续的( )条件。 A 、充分 B 、必要 C 、充要 D 、无关 4、函数3y x =在区间[]0,1上满足拉格朗日中值定理的条件,则ξ=( )。 A 、 B 、

5、若曲线()y f x =在区间(),a b 内有()0f x '<,()0f x ''>,则曲线在此区间内 ( )。 A 、单增上凹 B 、单增下凹 C 、单减上凹 D 、单减下凹 6、下列积分正确的是( ). A 、1 12111dx x x --=-? B 、 122π-==?? C 、22cos xdx ππ-=?0 D 、2220 sin 2sin 2xdx xdx πππ-==?? (三)计算题(每题7分,共 56分) 1、求下列极限 (1 )2x → (2)lim (arctan )2x x x π →∞?- 2、求下列导数与微分 (1)x x y cos ln ln sin +=,求dy ; (2)2tan (1)x y x =+,求 dx dy ; (3)ln(12)y x =+,求(0)y '' 3、计算下列积分 (1 ); (2 ); (3)10arctan x xdx ?. (四)应用题(每题8分,共16分) 1. 求ln(1)y x x =-+的单调区间与极值. 2. 求由抛物线21y x +=与直线1y x =+所围成的图形的面积. 参考答案 一、填空题(每空2分,共16分) 1. ()3,5 2. 2 3. 3 4. 2 5. 10x y -+= 6. ()F x C + 7. sec tan x x C ++ln 8.2cos x

高等数学二期末考试试题

华北科技学院12级《电子商务专业》高等数学二期末考试试题 一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项 是符合题目要求的,把所选项前的字母填在题后的括号内。 1、 .设函数25x y e =+,则'y = A.2x e B.22x e C. 225x e + D.25x e + 2、设y x =+-33,则y '等于( ) A --34x B --32x C 34x - D -+-334x 3、设f x x ()cos =2,则f '()0等于( ) A -2 B -1 C 0 D 2 4. 曲线y x =3的拐点坐标是( ) A (-1,-1) B (0,0) C (1,1) D (2,8) 5、sin xdx ?等于( ) A cos x B -cos x C cos x C + D -+cos x C 6、已知()3x f x x e =+,则'(0)f = A. 1 B. 2 C. 3 D. 4 7、下列函数在(,)-∞+∞内单调增加的是 A.y x = B.y x =- C. 2y x = D.sin y x = 8、1 20x dx =? A.1- B. 0 C. 13 D. 1 9、已知2x 是()f x 的一个原函数,则()f x = A.2 3 x C + B.2x C.2x D. 2 10. 已知事件A 的概率P (A )=0.6,则A 的对立事件A 的概率P A ()等于( ) A. 0.3 B. 0.4 C. 0.6 D. 0.7

二、填空题:11~20小题,每小题4分,共40分。把答案填写在题中横线上。 11、lim()x x x →-+=13 2____________________。 12、lim()x x x →∞-=13____________________。 13、函数y x =+ln()12的驻点为x =____________________。 14、设函数y e x =2,则y "()0=____________________。 15、曲线y x e x =+在点(0,1)处的切线斜率k =____________________。 16、()12 +=?x dx ____________________。 17、2031lim 1 x x x x →+-=+ 。 18、设函数20,()02,x x a f x x ≤?+=?>? 点0x =处连续,则a = 。 19、函数2 x y e =的极值点为x = 。 20、曲线3y x x =-在点(1,0)处的切线方程为y = 。 三、解答题:21~24小题,共20分。解答应写出推理、演算步骤。 21、(本题满分5分) 计算lim x x x x →-+-122321

2019最新高等数学(下册)期末考试试题(含答案)YM

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.已知过去几年产量和利润的数据如下: 解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f (x )=ax +b ,求[] 621()i i i u y ax b ==-+∑的最小值,即求解方程组 6662111661 1,6.i i i i i i i i i i i a x b x y x a x b y =====?+=????+=??∑∑∑∑∑ 把(x i ,y i )代入方程组,得 29834402240034026320a b a b +=??+=? 解得 a =0.884, b =-5.894 即 y =0.884x -5.894, 当x =120时,y =100.186(310元). 2.求下列伯努利方程的通解: 2(1)(cos sin );y y y x x '+=- 解:令121z y y --==,则有

d d (12)(12)(cos sin )sin cos d d z z z x x z x x x x +-=--?-=- (1)d (1)d e (sin cos )e d e e (sin cos )d e sin x x x x x z x x x c x x x c c x ----????=-+???? ??=-+=-???? 1e sin x c x y ?=- 即为原方程通解. 411(2)(12)33 y y x y '+=-. 解:令3d 21d z z y z x x -=?-=-. d d e 21e (21)e d x x x z x c x x c -????==--+-+???? ? 3(e 21)1x y c x ?--= 即为原方程通解. 3.证明:22 d d x x y y x y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数. 证:22x P x y =+,22 y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且. ()2 222??-==??+P Q xy y x x y ,(x ,y )∈G 因此22 d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分. 由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++??==+??++?? 知()()221ln ,2 u x y x y =+. 4.应用格林公式计算下列积分: (1)()()d d 24356+-++-?x y x y x y Γ, 其中 L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界; (2)()()222d d cos 2sin e sin 2e x x L x y x y x xy x y x x y ++--?,其中L 为正向星形线()22 23330x y a a +=>;

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

相关文档
最新文档