Electricmagnetic duality for chiral gauge theories with anomaly cancellation

Electricmagnetic duality for chiral gauge theories with anomaly cancellation
Electricmagnetic duality for chiral gauge theories with anomaly cancellation

CERN-PH-TH/2008-172

KUL-TF-08/15

MPP-2008-97

Electric/Magnetic Duality for Chiral Gauge Theories with Anomaly Cancellation Jan De Rydt 1,2,Torsten T.Schmidt 3,Mario Trigiante 4,Antoine Van Proeyen 1and Marco Zagermann 31Instituut voor Theoretische Fysica,Katholieke Universiteit Leuven,Celestijnenlaan 200D B-3001Leuven,Belgium 2Physics Department,Theory Unit,CERN,CH 1211,Geneva 23,Switzerland 3Max-Planck-Institut f¨u r Physik,F¨o hringer Ring 6,80805M¨u nchen,Germany 4Dipartimento di Fisica &INFN,Sezione di Torino,Politecnico di Torino C.so Duca degli Abruzzi,24,I-10129Torino,Italy Abstract We show that 4D gauge theories with Green-Schwarz anomaly cancellation and possible generalized Chern-Simons terms admit a formulation that is manifestly covariant with respect to electric/magnetic

duality transformations.This generalizes previous work on the symplectically covariant formulation of anomaly-free gauge theories as they typically occur in extended supergravity,and now also includes general theories with (pseudo-)anomalous gauge interactions as they may occur in global or local N =1supersymmetry.This generalization is achieved by relaxing the linear constraint on the embedding tensor so as to allow for a symmetric 3-tensor related to electric and/or magnetic quantum anomalies in these theories.Apart from electric and magnetic gauge ?elds,the resulting Lagrangians also feature two-form ?elds and can accommodate various unusual duality frames as they often appear,e.g.,in string compacti?cations with background ?uxes.

e-mails:{Jan.DeRydt,Antoine.VanProeyen }@fys.kuleuven.be,{schto,zagerman }@mppmu.mpg.de,

mario.trigiante@to.infn.it

a r X i v :0808.2130v 1 [h e p -t h ] 15 A u g 2008

Contents

1Introduction3

2Anomalies,generalized Chern-Simons terms and gauged shift symmetries in N=1supersymmetry7

3The embedding tensor and the symplectically covariant formalism9

3.1Electric/magnetic duality and the conventional gauging (10)

3.2The symplectically covariant gauging (12)

3.2.1Constraints on the embedding tensor (13)

3.2.2Gauge transformations (15)

3.2.3The kinetic Lagrangian (17)

3.2.4Topological terms for the B-?eld and a new constraint (18)

3.2.5Generalized Chern-Simons terms (18)

3.2.6Variation of the total action (19)

4Gauge invariance of the e?ective action with anomalies22

4.1Symplectically covariant anomalies (22)

4.2The new constraint (23)

4.3New antisymmetric tensors (24)

4.4Result (26)

4.5Purely electric gaugings (26)

4.6On-shell covariance of GμνM (27)

5A simple nontrivial example29 6Conclusions31

1Introduction

In?eld theories with chiral gauge interactions,the requirement of anomaly-freedom imposes a number of nontrivial constraints on the possible gauge quantum numbers of the chiral fermions.The strongest requirements are obtained if one demands that all anomalous one-loop diagrams due to chiral fermions simply add up to zero.

These constraints on the fermionic spectrum can be somewhat relaxed if some of the anomalous one-loop contributions are instead cancelled by classical gauge-variances of cer-tain terms in the tree-level action.The prime example for this is the Green-Schwarz mech-anism[1].In its four-dimensional incarnation,it uses the gauge variance of Peccei-Quinn terms of the form a F∧F,with a(x)being an axionic scalar?eld and F some vector?eld strengths,under gauged shift symmetries of the form a(x)→a(x)+cΛ(x),whereΛ(x)is the local gauge parameter and c a constant.Gauge variances of this form may cancel mixed Abelian/non-Abelian as well as cubic Abelian gauge anomalies in the quantum e?ective ac-tion.The Abelian gauge bosons that implement the gauged shift symmetries of the axions via St¨u ckelberg-type gauge couplings correspond to the anomalous Abelian gauge groups and gain a mass due to their St¨u ckelberg couplings.If their masses are low enough,these pseudo-anomalous gauge bosons might be observable and could possibly play the r?o le of a particular type of Z -boson.The phenomenology of such St¨u ckelberg Z -extensions of the Standard Model was studied in various works[2,3,4,5,6,7,8,9,10],which were in part inspired by intersecting brane models in type II orientifolds,where the operation of a4D Green-Schwarz mechanism is quite generic[11].1

In[18,19],however,it has recently been pointed out that in these orientifold compacti?ca-tions,the Green-Schwarz mechanism is often not su?cient to cancel all quantum anomalies.2 In particular,the cancellation of mixed Abelian anomalies between anomalous and non-anomalous Abelian factors in general needs an additional ingredient,so-called generalized Chern-Simons terms(GCS terms),in the classical action.GCS terms are of the schematic form A∧A∧dA and A∧A∧A∧A,where the vector?elds A are not all the same.It is quite obvious that GCS terms are not gauge invariant,and it is precisely this gauge variance that can be used in some cases to cancel possible left-over gauge variances from quantum anomalies and Peccei-Quinn terms.Interestingly,these GCS terms indeed do occur quite generically in the above-mentioned orientifold compacti?cations[18].Phenomenologically, they provide extra trilinear(and quartic)couplings between anomalous and non-anomalous gauge bosons,which,given a low St¨u ckelberg mass scale,may lead to Z -bosons with possibly observable new characteristic signals[18,19].

In[25],it is shown how models with all three ingredients(each of which individually

1For more details on intersecting brane models,see,e.g.the reviews[12,13,14,15,16,17]and references therein.

2See also[20,21,22,23,24].

breaks gauge symmetry):

(i)anomalous fermionic spectra,

(ii)Peccei-Quinn terms with gauged axionic shift symmetries,

(iii)generalized Chern-Simons terms,

can be compatible with global and local N=1supersymmetry.This compatibility is non-trivial,because a violation of gauge symmetries usually also triggers a violation of the on-shell supersymmetry,as is best seen by recalling that in the Wess-Zumino gauge the preserved su-persymmetry is a combination of the original superspace supersymmetry and a gauge trans-formation.Due to the presence of the quantum gauge anomalies,one therefore also has to take into account the corresponding supersymmetry anomalies of the quantum e?ective ac-tion,as they have been determined by Brandt for N=1supergravity in[26,27].A recent application of the theories studied in[25]to globally supersymmetric models with interesting phenomenology appeared in[28].

While in[18,25]the general interplay of all the above three ingredients is discussed,it should be emphasized that not all three ingredients necessarily need to be present in a gauge invariant theory.This is obvious from the original St¨u ckelberg Z -models[3,4,5,6,7,8,9,10], which do not have GCS terms.However,one can also construct purely classical theories,in which only the last two ingredients(ii)and(iii),i.e.the gauged shift symmetries and the GCS terms,are present and the fermionic spectrum is either absent or non-anomalous.In fact,it was in such a context that GCS terms were?rst discussed in the literature.More concretely,their possibility was?rst discovered in extended gauged supergravity theories[29], which are automatically free of quantum anomalies due to the incompatibility of chiral gauge interactions with extended4D supersymmetry.The ensuing papers[30,31,32,33,34,35, 36,37,38,39]likewise remained focused on–or were inspired by–the structures found in extended supergravity.Recently,axionic gaugings and GCS terms were also considered in the context of global N=1supersymmetry in[40].In all these cases,the absence of quantum anomalies restricts the form of the possible gauged axionic shift symmetries.

Another very important example in this context is the work[41],which combines classi-cally gauge invariant local Lagrangians that may also include Peccei-Quinn and GCS terms with the concept of electric/magnetic duality transformations.In four spacetime dimen-sions,a?eld theory with n Abelian vector potentials and no charged matter?elds admits reparametrizations in the form of electic/magnetic duality transformations.Those transfor-mations that leave the set of?eld equations and Bianchi identities invariant are the rigid(or global)symmetries of the theory and form the global symmetry group G rigid.In section3.2, we will discuss how,in general,G rigid is contained in the direct product of the symplectic

duality transformations that act on the vector?elds and the isometry group of the scalar manifold of the chiral multiplets:G rigid?Sp(2n,R)×Iso(M scalar).

Note,however,that the Lagrangians that encode the?eld equations are in general not invariant under such rigid symmetry transformations,as the latter may involve nontrivial mixing of?eld equations and Bianchi identities.Moreover,the?elds before and after a symmetry transformation are,in general,not related by a local?eld transformation.

In order to gauge a rigid symmetry in the standard way(i.e.,in order to introduce charges for some of the?elds),one needs to be able to go to a symplectic duality frame in which the symmetry leaves the action invariant.This automatically implies that the symmetry is also implemented by local?eld transformations.This would then allow the introduction of minimal couplings and covariant?eld strengths for the electric vector potentials in the Lagrangian in the usual way.This standard procedure obviously singles out certain duality frames and breaks the original duality covariance.

In[41],it was shown how one can nevertheless reformulate4D gauge theories in such a way as to maintain,formally,the full duality covariance of the original ungauged theory.In order to do so,the authors consider electric and magnetic gauge potentials(AμΛ,AμΛ)(Λ= 1,...,n)at the same time and combine them into a2n-plet,AμM(M=1,...,2n)of vector potentials.Introducing then also a set of antisymmetric tensor?elds,an intricate system of gauge invariances can be implemented,which ensures that the number of propagating degrees of freedom is the same as before.The coupling of the electric and magnetic vector potentials to charged?elds is then encoded in the so-called embedding tensorΘMα=(ΘΛα,ΘΛα), which enters the covariant derivatives of matter?elds,φ,schematically,

(?μ?AμMΘMαδα)φ.(1.1)

Here,α=1,...,dim(G rigid)labels the generators of the rigid symmetry group,G rigid,acting asδαφon the matter?elds.In general,the gauge group also acts on the vector?elds via (2n×2n)-matrices,

(X M)N P≡X MN P≡ΘMα(tα)N P,(1.2)

where the(tα)N P are in the fundamental representation of Sp(2n,R).

The embedding tensor has to satisfy a quadratic constraint in order to ensure the closure of the gauge algebra inside the algebra of G rigid.In[41],this fundamental constraint is supplemented by one additional constraint linear in the embedding tensor,which can be written in terms of the above-mentioned tensor X MN P,as

X(MN Q?P)Q=0,(1.3) where?P Q is the symplectic metric of Sp(2n,R).This constraint is sometimes called the

“representation constraint”,as it suppresses a representation of the rigid symmetry group in the tensor X MN P.Together with the quadratic constraint,it ensures mutual locality of all physical?elds that are present in the action.3The full physical meaning of this additional constraint,however,always remained a bit obscure,and was inferred in[41]from identities that are known to be valid in N=8or N=2supergravity.

In this paper,we propose a physical interpretation of this representation constraint and recognize it as the condition for the absence of quantum anomalies.Quantum anomalies are automatically absent in extended4D supergravity theories,and so it is no surprise,that the internal consistency of N=8or N=2supergravity always hinted at the validity of the constraint(1.3).

We then go one step further and show that if quantum anomalies proportional to a constant,totally symmetric tensor,4d MNP,are present,the representation constraint(1.3) has to be relaxed to

X(MN Q?P)Q=d MNP,with d MNP=ΘMαΘNβΘPγdαβγ,(1.4)

to allow for a gauge invariant quantum e?ective action.Here dαβγis a symmetric tensor that will be de?ned by the anomalies.We show explicitly how the framework of[41]has to be modi?ed in such a situation and that the resulting gauge variance of the classical Lagrangian precisely gives the negative of the consistent quantum anomaly encoded in d MNP.

Our work can thus be viewed as a generalization of[41]to theories with quantum anoma-lies or,equivalently,as the covariantization of[18,25]with respect to electric/magnetic du-ality transformations,and includes situations in which pseudo-anomalous gauge interactions are mediated by magnetic vector potentials.While already interesting in itself,our results promise to be very useful for the description of?ux compacti?cations with chiral fermionic spectra,as e.g.in intersecting brane models on orientifolds with?uxes,because?ux com-pacti?cations often give4D theories which appear naturally in unusual duality frames and contain two-form?elds.

The outline of this paper is as follows.In section2,we brie?y recapitulate the results of [25],adapted to the notation of[41].Section3then gives the symplectically covariant frame-work of[41]in a more general treatment without using the representation constraint(1.3). In section4we show how the formalism of[41]has to be modi?ed in order to accommodate quantum anomalies involving the relaxed representation constraint(1.4).We?esh out our results with a simple nontrivial example in section5and conclude in section6.

3A subtlety arises for generatorsδ

that have a trivial action on the vector?elds,i.e.,(tα)M N=0.In that

α

case the mutual locality of the corresponding electric/magnetic components of the embedding tensor should be imposed as an independent quadratic constraint.

4The tensor d

is the one that de?nes the consistent anomaly in the form given in equation(3.61).As MNP

the gauge symmetry in the matter sector is implemented by minimal couplings to the gauge potentials dressed with an embedding tensor,as can be seen from(1.1),the tensor d MNP must be of the form(1.4).

2Anomalies,generalized Chern-Simons terms and gauged shift symmetries in N=1supersymmetry

In this section,we summarize the results of[25]which will later motivate our proposed generalization(1.4)of the original constraint(1.3).

In a generic low energy e?ective?eld theory,the kinetic and the theta angle terms of vector?elds,AμΛ,appear with scalar?eld dependent coe?cients5,

L g.k.=1

4

e IΛΣ(z,ˉz)FμνΛFμνΣ?

1

8

RΛΣ(z,ˉz)εμνρσFμνΛFρσΣ.(2.1)

Here,FμνΛ≡2?[μAν]Λ+XΣ?ΛAμΣAν?denotes the non-Abelian?eld strengths with XΣ?Λ=X[Σ?]Λbeing the structure constants of the gauge group.We use the metric signa-ture(?+++)and work with realε0123=1.As usual,e denotes the vierbein determinant. The second term in(2.1)is often referred to as the Peccei-Quinn term,and the functions IΛΣ(z,ˉz)and RΛΣ(z,ˉz)depend nontrivially on the scalar?elds,z i,of the theory.One can combine these functions to a complex function NΛΣ(z,ˉz)=RΛΣ(z,ˉz)+i IΛΣ(z,ˉz).In a su-persymmetric context,NΛΣ(z,ˉz)has to satisfy certain conditions,depending on the amount of supersymmetry.In N=1global and local supersymmetry,which will be the subject of the remainder of this section,NΛΣ=NΛΣ(ˉz)simply has to be antiholomorphic in the complex scalars of the chiral multiplets.

If,under a gauge transformation with gauge parameterΛ?(x),acting on the?eld strengths asδ(Λ)FΛμν=ΛΞF?μνX?ΞΛ,some of the z i transform nontrivially,this may induce a corre-sponding gauge transformation of NΛΣ(ˉz).In case this transformation is of the form of a symmetric product of two adjoint representations of the gauge group,

δ(Λ)NΛΣ=Λ?δ?NΛΣ,δ?NΛΣ=X?ΛΓNΣΓ+X?ΣΓNΛΓ,(2.2)

the kinetic term(2.1)is obviously gauge invariant.This is what was assumed in the action of general matter-coupled supergravity in[42].6

If,however,one takes into account also other terms in the(quantum)e?ective action,a

5To compare notations between this paper,ref.[25]and ref.[41],note that the vector?elds were denoted as WμA in[25],and are here and in[41]denoted as AμΛ(upper greek letters are electric indices).In[25], the kinetic matrix for the vector multiplets is,as in most of the N=1literature,denoted as f AB,which corresponds to?i N?ΛΣin this paper.The structure constants f AB C of[25]correspond to the XΛΣ?=fΛΣ?here,and the axionic shift tensors C AB,C of[25]are now called XΛΣ?=XΛ(Σ?)=CΣ?,Λ.To compare formulae of[41]to those here and in[25],the Levi-Civita symbolεμνρσappears in covariant equations with opposite sign(butε0123=1is valid in both cases due to another orientation of the spacetime directions).

6This construction of general matter-couplings has been reviewed in[43].There,the possibility(2.3)was already mentioned,but the extra terms necessary for its consistency were not considered.

more general transformation rule for NΛΣ(ˉz)may be allowed:

δ?NΛΣ=?X?ΛΣ+X?ΛΓNΣΓ+X?ΣΓNΛΓ.(2.3)

Here,X?ΛΣis a constant real tensor symmetric in the last two indices,which can be recog-nized as a natural generalization in the context of symplectic duality transformations[40,25]. Closure of the gauge algebra requires the constraint

X?ΛΣXΓΞ?+2XΣ[Ξ?XΓ]Λ?+2XΛ[Ξ?XΓ]Σ?=0.(2.4) If X?ΛΣis non-zero,this leads to a non-gauge invariance of the Peccei-Quinn term in L g.k.:

δ(Λ)L g.k.=1

8

εμνρσX?ΛΣΛ?FμνΛFρσΣ.(2.5)

For rigid parameters,Λ?=const.,this is just a total derivative,but for local gauge parame-ters,Λ?(x),it is obviously not.

In order to understand how this broken invariance can be restored,it is convenient to split the coe?cients X?ΛΣinto a sum,

X?ΛΣ=X(s)

?ΛΣ+X(m)

?ΛΣ

,X(s)

?ΛΣ

=X(?ΛΣ),X(m)

(?ΛΣ)

=0,(2.6)

where X(s)

?ΛΣis completely symmetric,and X(m)

?ΛΣ

denotes the part of mixed symmetry.Terms

of the form(2.5)may then in principle be cancelled by the following two mechanisms,or a combination thereof:

(i)As was?rst realized in a similar context in N=2supergravity in[29](see also the sys-

tematic analysis[30]),the gauge variation due to a non-vanishing mixed part,X(m)

?ΛΣ

=0, may be cancelled by adding a generalized Chern-Simons term(GCS term)that contains

a cubic and a quartic part in the vector?elds,

L GCS=1

3

X(CS)

?ΛΣ

εμνρσ

Aμ?AνΛ?ρAΣσ+

3

8

XΓΞΣAμ?AνΛAρΓAσΞ

.(2.7)

This term depends on a constant tensor X(CS)

?ΛΣ

,which has the same mixed symmetry

structure as X(m)

?ΛΣ.The cancellation occurs provided the tensors X(m)

?ΛΣ

and X(CS)

?ΛΣ

are,

in fact,the same.It was?rst shown in[40]that such a term can exist in rigid N=1 supersymmetry without quantum anomalies.

(ii)If the chiral fermion spectrum is anomalous under the gauge group,the anomalous triangle diagrams lead to a non-gauge invariance of the quantum e?ective actionΓfor

the gauge symmetry:δ(Λ)Γ=

d4xΛΛAΛof the form

AΛ=?1

4

εμνρσ

2d?ΣΛ?μAνΣ+

d?ΣΓXΛΞΣ+

3

2

d?ΣΛXΓΞΣ

AμΓAνΞ

?ρAσ?,(2.8)

with a symmetric7tensor d?ΛΣ.If

X(s)

?ΛΣ

=d?ΛΣ,(2.9) this quantum anomaly cancels the symmetric part of(2.5).This is the Green-Schwarz mechanism.

In[25],it was studied to what extent a general gauge theory of the above type(i.e., with gauged axionic shift symmetries,GCS terms and quantum gauge anomalies)can be compatible with N=1supersymmetry.The results can be summarized as follows:if one takes as one’s starting point the matter-coupled supergravity Lagrangian in eq.(5.15)of reference[43],an axionic shift symmetry with XΛΣ?=0satisfying the closure condition (2.4)can be gauged in a way consistent with N=1supersymmetry if

(i)a GCS term(2.7)with X(CS)

?ΛΣ=X(m)

?ΛΣ

is added,

(ii)an additional term bilinear in the gaugini,λΣ(x),and linear in the vector?elds is

added8:

L extra=?1

4

i Aμ?X?ΛΣˉλΛγ5γμλΣ,(2.10)

(iii)the fermions in the chiral multiplets give rise to quantum anomalies with d?ΛΣ= X(s)

?ΛΣ

.The consistent gauge anomaly,AΛis of the form(2.8).The exact result for the supersymmetry anomaly can be found in[27]or eq.(5.8)of[25].These quantum anomalies precisely cancel the classical gauge and supersymmetry variation of the new Lagrangian L old+L GCS+L extra,where L old denotes the original Lagrangian of[43].

3The embedding tensor and the symplectically covariant for-malism

In this section,we recapitulate the results of[41],which describe a symplectically covariant formulation of(classically)gauge invariant?eld theories.Correspondingly,we will assume the absence of quantum anomalies in this section.

7More precisely,the anomalies have a scheme dependence.As reviewed in[18]one can choose a scheme in which the anomaly is proportional to a symmetric d?ΛΣ.Choosing a di?erent scheme is equivalent to the choice of another GCS term(see item(i)).We will always work with a renormalization scheme in which the quantum anomaly is indeed proportional to the symmetric tensor d?ΛΣaccording to(2.8).

8A superspace expression for the sum L

GCS +L extra is known only for the case X(s)

ΛΣ?

=0,i.e.,for the case

without quantum anomalies[40].

3.1Electric/magnetic duality and the conventional gauging

In the absence of charged?elds,a gauge invariant four-dimensional Lagrangian of n Abelian vector?elds AμΛ(Λ=1,...,n)only depends on their curls FμνΛ≡2?[μAν]Λ.De?ning the dual magnetic?eld strengths

GμνΛ≡εμνρσ

?L

?FρσΛ

,(3.1)

the Bianchi identities and?eld equations read

?[μFνρ]Λ=0,(3.2)

?[μGνρ]Λ=0.(3.3)

The equations of motion(3.3)imply the existence of magnetic gauge potentials,AμΛ,via GμνΛ=2?[μAν]Λ.These magnetic gauge potentials are related to the electric vector poten-tials,AμΛ,by nonlocal?eld rede?nitions.The electric Abelian?eld strengths,FμνΛ,and their magnetic duals,GμνΛ,can be combined into a2n-plet,FμνM,such that F M=(FΛ,GΛ). This allows us to write(3.2)and(3.3)in the following compact way:

?[μFνρ]M=0.(3.4) Apparently,equation(3.4)is invariant under general linear transformations

F M→F M=S M N F N,where S M N=

UΛΣZΛΣ

WΛΣVΛΣ

,(3.5)

but only for symplectic matrices S M N∈Sp(2n,R)a relation of the type(3.1)is possible. The admissible rotations S M N thus form the group Sp(2n,R):

S T?S=?,(3.6)

with the symplectic metric,?MN,given by

?MN=

0?ΛΣ

?ΛΣ0

=

0δΣ

Λ

?δΛ

Σ

.(3.7)

We de?ne?MN via?MN?NP=?δM P.Note that the components of?MN should not be written as?ΛΣetc.,as these are di?erent from(3.7).

Starting with a kinetic Lagrangian of the form(2.1),an electric/magnetic duality trans-formation leads to a new Lagrangian,L (F ),which is of a similar form,but with a new gauge

kinetic function

NΛΣ→N ΛΣ=(V N+W)Λ?

(U+Z N)?1

?

Σ

.(3.8)

The subset of Sp(2n,R)symmetries(of?eld equations and Bianchi identities)for which the Lagrangian remains unchanged in the sense that L (F (F))=L(F)and(3.8)is imple-mented by transformations of the?elds on which N depends,are invariances of the action. In a di?erent duality frame,the Lagrangian might have a di?erent set of invariances.

From the spacetime point of view,these are all rigid(“global”)symmetries.Sometimes these global symmetries can be turned into local(“gauge”)symmetries.For the conventional gaugings one has to restrict to the transformations that leave the Lagrangian invariant,which implies that ZΛΣin the matrices S M N of(3.5)has to vanish.In the context of symplectically covariant gaugings[41],however,this restriction can be lifted,and we will come back to these in section3.2.The standard way to perform a gauging of a symmetry of interest is therefore to?rst switch to a symplectic duality frame in which the symmetries of interest act on FμνM=(FμνΛ,GμνΛ)by lower block triangular matrices(i.e.those with Z=0)such that they become(as rigid symmetries)invariances of the action.

The gauging requires the introduction of gauge covariant derivatives and?eld strengths and can be implemented solely with the electric vector?elds Aμ?and the corresponding electric gauge parametersΛ?.The gaugeable symplectic transformation,S,must be of the in?nitesimal form

S M N=δM N?Λ?S?M N.(3.9)

According to our de?nition(3.5),these in?nitesimal symplectic transformations act on the ?eld strengths by multiplication with the matrices SΛM N from the left.Following the con-ventions of[41],however,we will use matrices X?M N to describe the in?nitesimal symplectic action via multiplication from the right:

δFμνM=F μνM?FμνM=?Λ?FμνN X?N M,i.e.X?N M=S?M N.(3.10) For standard electric gaugings,we then have

δ

FΛμν

GμνΛ

=?Λ?

X?ΞΛ0

X?ΛΞX?ΞΛ

FΞμν

GμνΞ

,(3.11)

where X?ΣΛ=?X?ΛΣ=f?ΣΛare the structure constants of the gauge algebra,and XΣΞΓ= XΣ(ΞΓ)give rise to the axionic shifts mentioned in section2(compare(3.8)with(2.3)for the particular choice of S given in(3.9)).

The gauging then proceeds in the usual way by introducing covariant derivatives(?μ?AμΛδΛ), where theδΛare the gauge generators in a suitable representation of the matter?elds.One

also introduces covariant?eld strengths and possibly GCS terms as described in section2.As we assume the absence of quantum anomalies in this section,we have to require X(ΛΣΓ)=0.

3.2The symplectically covariant gauging

We will now turn to the more general gauging of symmetries.The group that will be gauged is a subgroup of the rigid symmetry group.What we mean by the rigid symmetry group is a bit more subtle in N=1supergravity(or theories without supergravity)than in extended supergravities.This is due to the fact that in extended supergravities the vectors are super-symmetrically related to scalar?elds,and therefore their rigid symmetries are connected to the symmetries of scalar manifolds.

In N=1supersymmetry,the rigid symmetry group,G rigid,is a subset of the product of the symplectic duality transformations that act on the vector?elds and the isometry group of the scalar manifold of the chiral multiplets:G rigid?Sp(2n,R)×Iso(M scalar).The relevant isometries are those that respect the K¨a hler structure(i.e.generated by holomorphic Killing vectors)and that also leave the superpotential invariant(in supergravity,the superpotential should transform according to the K¨a hler transformations).Elements(g1,g2)of Sp(2n,R)×Iso(M scalar)that are compatible with(3.8)in the sense that the symplectic action(3.8)of g1on the matrix N is induced by the isometry g2on the scalar manifold,are rigid(“global”) symmetries provided they also leave the rest of the theory(deriving from scalar potentials, etc.)invariant[44].The rigid symmetry group,G rigid,is thus a subgroup of Sp(2n,R)×Iso(M scalar).9

The generators of G rigid will be denoted byδα,α=1,...,dim(G rigid).These generators act on the di?erent?elds of the theory either via Killing vectorsδα=Kα=K iα?

?φi

de?ning in?nitesimal isometries on the scalar manifold,or with certain matrix representations10,e.g.δαφi=?φj(tα)j i.

On the?eld strengths FμνM=(FμνΛ,GμνΛ),these rigid symmetries must act by multi-plication with in?nitesimal symplectic matrices11(tα)M P,i.e.,we have

(tα)[M P?N]P=0.(3.12) In order to gauge a subgroup,G local?G rigid,the2n-dimensional vector space spanned by the vector?elds AμM has to be projected onto the Lie algebra of G local,which is formally done with the so-called embedding tensorΘMα=(ΘΛα,ΘΛα).Equivalently,ΘMαcompletely

9Note that this may include cases where either the symplectic transformation g

1

or the isometry g2is trivial.Another special case is when the isometry g2is non-trivial,but N does not transform under it,as happens,e.g,when N=i is constant.G rigid is in general a genuine subgroup of Sp(2n,R)×Iso(M scalar), even in the latter case of constant N.

10The structure constants de?ned by[δ

α,δβ]=fαβγδγlead for the matrices to[tα,tβ]=?fαβγtγ.

11These matrices might be trivial,e.g.,for Abelian symmetry groups that only act on the scalars(and/or the fermions)and that do not give rise to axionic shifts of the kinetic matrix NΛΣ.

determines the gauge group G local via the decomposition of the gauge group generators,which we will denote by?X M,into the generators of the rigid invariance group G rigid:

?X

M

≡ΘMαδα.(3.13) The gauge generators?X M enter the gauge covariant derivatives of matter?elds,

Dμ=?μ?AμM?X M=?μ?AμΛΘΛαδα?AμΛΘΛαδα,(3.14) where the generatorsδαare meant to either act as representation matrices on the fermions or as Killing vectors on the scalar?elds,as mentioned above.On the?eld strengths of the vector potentials,the generatorsδαact by multiplication with the matrices(tα)N P,so that (3.13)is represented by matrices(X M)N P whose elements we denote as X MN P,see(1.2), and whose antisymmetric part in the lower indices appears in the?eld strengths

FμνM=2?[μAν]M+X[NP]M AμN AνP,X NP M=ΘNα(tα)P M.(3.15) The symplectic property(3.12)implies

X M[N Q?P]Q=0,X MQ[N?P]Q=0.(3.16) In the remainder of this paper,the symmetrized contraction X(MN Q?P)Q will play an im-portant r?o le.We therefore give this tensor a special name and denote it by D MNP:

D MNP≡X(MN Q?P)Q.(3.17) Note that this is really just a de?nition and no new https://www.360docs.net/doc/6e2710923.html,ing the de?nition(3.17), one can check that

2X(MN)Q?RQ+X RM Q?NQ=3D MNR,

i.e.X(MN)P=1

2?P R X RM Q?NQ+3

2

D MNR?RP.(3.18)

3.2.1Constraints on the embedding tensor

The embedding tensorΘMαhas to satisfy a number of consistency conditions.Closure of the gauge algebra and locality require,respectively,the quadratic constraints

closure:fαβγΘMαΘNβ=(tα)N PΘMαΘPγ,(3.19)

locality:?MNΘMαΘNβ=0?ΘΛ[αΘΛβ]=0,(3.20)

where f αβγare the structure constants of the rigid invariance group G rigid ,see footnote 10.Another constraint,besides (3.19)and (3.20),was inferred in [41]from supersymmetry constraints in N =8supergravity

D MNR ≡X (MN Q ?R )Q =0.(3.21)

This constraint eliminates some of the representations of the rigid symmetry group and is therefore sometimes called the “representation constraint”.As we pointed out in the introduction,one can show that the locality constraint is not independent of (3.19)and (3.21),apart from speci?c cases where (t α)M N has a trivial action on the vector ?elds.

However,we will neither use the locality constraint (3.20)nor the representation con-straint (3.21).We will,instead,need another constraint in section 3.2.4,whose meaning we will discuss in section 4.Before coming to that new constraint,we thus only use the closure constraint (3.19).This constraint re?ects the invariance of the embedding tensor under G local and it implies for the matrices X M the relation

[X M ,X N ]=?X MN P X P .(3.22)

This clearly shows that the gauge group generators commute into each other with ‘structure constants’given by X [MN ]P .However,note that X MN P in general also contains a non-trivial symmetric part,X (MN )P .The antisymmetry of the left hand side of (3.22)only requires that the contraction X (MN )P ΘP αvanishes,as is also directly visible from (3.19).Therefore one has

X (MN )P ΘP α=0

→X (MN )P X P Q R =0.(3.23)

Writing (3.22)explicitly gives

X MQ P X NP R ?X NQ P X MP R +X MN P X P Q R =0.(3.24)Antisymmetrizing in [MNQ ],we can split the second factor of each term into the antisym-metric and symmetric part,X MN P =X [MN ]P +X (MN )P ,and this gives a violation of the Jacobi identity for X [MN ]P as

X [MN ]P X [QP ]R +X [QM ]P X [NP ]R +X [NQ ]P X [MP ]R

=?13 X [MN ]P X (QP )R +X [QM ]P X (NP )R +X [NQ ]P X (MP )R .(3.25)

Other relevant consequences of (3.24)can be obtained by (anti)symmetrizing in MQ .This

gives,using also(3.23),the two equations

X(MQ)P X NP R?X NQ P X(MP)R?X NM P X(QP)R=0,

X[MQ]P X NP R?X NQ P X[MP]R+X NM P X[QP]R=0.(3.26) 3.2.2Gauge transformations

The violation of the Jacobi identity(3.25)is the prize one has to pay for the symplectically covariant treatment in which both electric and magnetic vector potentials appear at the same time.In order to compensate for this violation and in order to make sure that the number of propagating degrees of freedom is the same as before,one imposes an additional gauge invariance in addition to the usual non-Abelian transformation?μΛM+X[P Q]M AμPΛQ and extends the gauge transformation of the vector potentials to

δAμM=DμΛM?X(NP)MΞμNP,DμΛM=?μΛM+X P Q M AμPΛQ,(3.27)

where we introduced the covariant derivative DμΛM,and new vector-like gauge parame-tersΞμNP,symmetric in the upper indices.The extra terms X(P Q)M AμPΛQ and theΞ-transformations contained in(3.27)allow one to gauge away the vector?elds that correspond to the directions in which the Jacobi identity is violated,i.e.,directions in the kernel of the embedding tensor(see(3.23)).

It is important to notice that the modi?ed gauge transformations(3.27)still close on the gauge?elds and thus form a Lie algebra.Indeed,if we split(3.27)into two parts,

δAμM=δ(Λ)AμM+δ(Ξ)AμM,(3.28)

the commutation relations are

[δ(Λ1),δ(Λ2)]AμM=δ(Λ3)AμM+δ(Ξ3)AμM,

[δ(Λ),δ(Ξ)]AμM=[δ(Ξ1),δ(Ξ2)]AμM=0,(3.29)

with

ΛM3=X[NP]MΛN1ΛP2,

Ξ3μP N=Λ(P1DμΛN)2?Λ(P2DμΛN)1.(3.30)

To prove that the terms that are quadratic in the matrices X M in the left-hand side of(3.29) follow this rule,one uses(3.26).

Due to(3.23)and(3.27),however,the usual properties of the?eld strength

FμνM=2?[μAν]M+X[P Q]M AμP AνQ(3.31)

are changed.In particular,it will no longer ful?ll the Bianchi identity,which now must be replaced by

D[μFνρ]M=X(NP)M A[μN Fνρ]P?1

3

X(P N)M X[QR]P A[μN AνQ Aρ]R.(3.32)

Furthermore,FμνM does not transform covariantly under a gauge transformation(3.27). Instead,we have

δFμνM=2D[μδAν]M?2X(P Q)M A[μPδAν]Q

=X NQ M FμνNΛQ?2X(NP)M D[μΞν]NP?2X(P Q)M A[μPδAν]Q,(3.33)

where the covariant derivative is(both expressions are useful and related by(3.26))

X(NP)M DμΞνNP=?μ

X(NP)MΞνNP

+AμR X RQ M X(NP)QΞνNP,

DμΞνNP=?μΞνNP+X QR P AμQΞνNR+X QR N AμQΞνP R.(3.34)

Therefore,if we want to deform the original Lagrangian(2.1)and accommodate electric and magnetic gauge?elds,FμνM cannot be used to construct gauge-covariant kinetic terms.

For this reason,the authors of[41]introduced tensor?elds Bμνα,later in[45]to be described by BμνMN,symmetric in(MN),and with them modi?ed?eld strengths

HμνM=FμνM+X(NP)M BμνNP.(3.35) We will consider gauge transformations of the antisymmetric tensors of the form

δBμνNP=2D[μΞν]NP+2A[μ(NδAν]P)+?BμνNP,(3.36)

where?BμνNP depends on the gauge parameterΛQ,but we do not?x it further at this point.Together with(3.33),this then implies12

δHμνM=X NQ MΛQ HμνN+X(NP)M?BμνNP.(3.37)

12Note that F

μνN in the second line of(3.33)can be replaced by H

μν

N due to(3.23).

3.2.3The kinetic Lagrangian

The?rst step towards a gauge invariant action is to replace FμνΛin L g.k.,(2.1),by HμνΛ, which then yields the new kinetic Lagrangian

L g.k.=1

4e IΛΣHμνΛHμνΣ?1

8

RΛΣεμνρσHμνΛHρσΣ,(3.38)

where again IΛΣand RΛΣdenote,respectively,Im NΛΣand Re NΛΣ.Using

GμνΛ≡εμνρσ

?L

?HρσΛ

=RΛΓHμνΓ+

1

2

eεμνρσIΛΓHρσΓ,(3.39)

the Lagrangian and its transformations can be written as

L g.k.=?1

8

εμνρσHΛμνGρσΛ,

δL g.k.=?1

4

εμνρσGμνΛδHΛρσ

+1

8εμνρσΛQ

HΛμνX QΛΣHΣρσ?2HΛμνX QΛΣGρσΣ?GμνΛX QΛΣGρσΣ

,(3.40)

where,in the third line,we used the in?nitesimal form of(3.8):

δ(Λ)NΛΣ=ΛM

?X MΛΣ+2X M(ΛΓNΣ)Γ+NΛΓX MΓΞNΞΣ

.(3.41)

When we introduce

GμνM=

GμνΛ,GμνΛ

with GμνΛ≡HμνΛ,(3.42)

we can rewrite the second line of(3.40)in a covariant expression,and when we also use(3.37) we get

δL g.k.=εμνρσ

?1

4

GμνΛ

ΛQ X P QΛHρσP+X(NP)Λ?BρσNP

+1

8

GμνM GρσNΛQ X QM R?NR

.(3.43)

Clearly,the newly proposed form for L g.k.in(3.38)is still not gauge invariant.This should not come as a surprise because(3.41)contains a constant shift(i.e.,the term proportional to X MΛΣ),which requires the addition of extra terms to the Lagrangian as was reviewed in section2for purely electric gaugings.Also the last term on the right hand side of(3.41) gives extra contributions that are quadratic in the kinetic function.In the next steps we will see that besides GCS terms,also terms linear and quadratic in the tensor?eld are required to restore gauge invariance.We start with the discussion of the latter terms.

3.2.4Topological terms for the B-?eld and a new constraint

The second step towards gauge invariance is made by adding topological terms linear and quadratic in the tensor?eld BμνNP to the gauge kinetic term(3.38),namely

L top,B=1

4εμνρσX(NP)ΛBμνNP

FρσΛ+1

2

X(RS)ΛBρσRS

.(3.44)

Note that for pure electric gaugings X(NP)Λ=0,as we saw in(3.11).Therefore,in this case this term vanishes,implying that the tensor?elds decouple.

We recall that,up to now,only the closure constraint(3.19)has been used.We are now going to impose one new constraint:

X(NP)M?MQ X(RS)Q=0.(3.45)

We will later show that this constraint is implied by the locality constraint(3.20)and the original representation constraint of[41],i.e.(1.3),but also by the locality constraint and the modi?ed constraint(1.4)that we discussed in the introduction.The constraint thus says that

X(NP)ΛX(RS)Λ=X(NP)ΛX(RS)Λ.(3.46)

A consequence of this constraint that we will use below follows from the?rst of(3.18)and

(3.23):

X(P Q)R D MNR=0.(3.47) The variation of L top,B is

δL top,B=1

4εμνρσX(NP)Λ

HμνΛδBρσNP+BρσNPδFμνΛ

(3.48)

=1

4εμνρσX(NP)Λ

HμνΛδBρσNP+2BρσNP

DμδAνΛ?X(RS)ΛA RμδA Sν

.

3.2.5Generalized Chern-Simons terms

As in[41],we introduce a generalized Chern-Simons term of the form(these are the last two lines in what they called L top in their equation(4.3))

L GCS=εμνρσAμM AνN

1

3

X MNΛ?ρAσΛ+

1

6

X MNΛ?ρAσΛ+

1

8

X MNΛX P QΛAρP AσQ

.

(3.49)

Modulo total derivatives one can write its variation as(using(3.24)antisymmetrized in [MNQ]and the de?nition of D MNP in(3.17))

δL GCS=εμνρσ 1

2

FμνΛDρδAσΛ?1

2

FμνΛX(NP)ΛAρNδAσP

?D MNP AμMδAνN

?ρAσP+3

8

X RS P AρR AσS

.(3.50)

These variations can be combined with(3.48)to

δ(L top,B+L GCS)=εμνρσ 1

2

HμνΛDρδAσΛ+1

4

HμνΛX(NP)Λ

δBρσNP?2AρNδAσP

?D MNP AμMδAνN

?ρAσP+3

8

X RS P AρR AσS

.(3.51)

3.2.6Variation of the total action

We are now ready to discuss the symmetry variation of the total Lagrangian

L V T=L g.k.+L top,B+L GCS,(3.52)

built from(3.38),(3.44)and(3.49).We?rst check the invariance of(3.52)with respect to the Ξ-transformations.We see directly from(3.43)that the gauge-kinetic terms are invariant. The second line of(3.51)also clearly vanishes inserting(3.27)and using(3.47).This leaves us with the?rst line of(3.51),which,using(3.36)and(3.27),can be written in a symplectically covariant form:

δΞL V T=?1

2

εμνρσHμνM X(NP)Q?MQ DρΞσNP.(3.53) The B-terms in H,see(3.35),are proportional to X(RS)M and thus give a vanishing contri-bution due to our new constraint(3.45).For the F terms we can perform an integration by parts13and then(3.32)gives again only terms proportional to X(RS)M leading to the same conclusion.We therefore?nd that theΞ-variation of the total action vanishes.

We can thus further restrict to theΛM gauge transformations.According to(3.33),the

DρδAσΛ-term in(3.51)can then be replaced by1

2

ΛQ X NQΛHρσN(see again footnote12), which can then be combined with the?rst term of(3.43)to form a symplectically covariant expression(the?rst term on the right hand side of(3.54)below).Adding also the remaining terms of(3.51)and(3.43),one obtains,using(3.36),

δL V T=εμνρσ 1

4

GμνMΛQ X NQ R?MR HρσN+1

8

GμνM GρσNΛQ X QM R?NR

+1

4

(H?G)μνΛX(NP)Λ?BρσNP

?D MNP AμM DνΛN

?ρAσP+3

8

X RS P AρR AσS

.(3.54)

We observe that if the H in the?rst line was a G,eqs.(3.16)and(3.18)would allow one to write the?rst line as an expression proportional to D MNP.This leads to the?rst line in (3.55)below.The second observation is that the identity(H?G)Λ=0allows one to rewrite

13Integration by parts with the covariant derivatives is allowed as(3.24)can be read as the invariance of the tensor X and(3.16)as the invariance of?.

the second line of(3.54)in a symplectically covariant way,so that,altogether,we have

δL V T=εμνρσ 1

4

GμνMΛQ X NQ R?MR(H?G)ρσN+3

8

GμνM GρσNΛQ D QMN

?1

4

(H?G)μνM?MR X(NP)R?BρσNP

?D MNP AμM DνΛN

?ρAσP+3

8

X RS P AρR AσS

.(3.55)

By choosing

?BρσNP=?ΛN GρσP?ΛP GρσN,(3.56) the result(3.55)becomes

δL V T=εμνρσ 3

8

ΛQ D MNQ

2GμνM(H?G)ρσN+GμνM GρσN

?D MNP AμM DνΛN

?ρAσP+3

8

X RS P AρR AσS

,(3.57)

which is then proportional to D MNP,and hence zero when the original representation con-straint(3.21)of[41]is imposed.

Our goal is to generalize this for theories with quantum anomalies.These anomalies depend only on the gauge vectors.The?eld strengths G,(3.39),however,also depend on the matrix N which itself generically depends on scalar?elds.Therefore,we want to consider modi?ed transformations of the antisymmetric tensors such that G does not appear in the ?nal result.

To achieve this,we would like to replace(3.56)by a transformation such that

X(NP)R?BρσNP=?2X(NP)RΛN GρσP+3

2

?RM D MNQΛQ(H?G)ρσN.(3.58) Indeed,inserting this in(3.55)would lead to

δL V T=εμνρσ 3

8

ΛQ D MNQ FμνM FρσN

?D MNP AμM DνΛN

?ρAσP+3

8

X RS P AρR AσS

,(3.59)

where we have used(3.47)to delete contributions coming from the BμνNP term in HμνM(cf.

(3.35)).

The?rst term on the right hand side of(3.58)would follow from(3.56),but the second term cannot in general be obtained from assigning transformations to BρσNP(compare with (3.18)).Indeed,self-consistency of(3.58)requires that the second term on the right hand side be proportional to X(NP)R,which imposes a further constraint on D MNP.We will see in section4.3how we can nevertheless justify the transformation law(3.58)by introducing other antisymmetric tensors.For the moment,we just accept(3.58)and explore its consequences.

Expanding(3.59)using(3.15)and(3.27)and using a partial integration,(3.59)can be

[批处理]计算时间差的函数etime

[批处理]计算时间差的函数etime 计算时间差的函数etime 收藏 https://www.360docs.net/doc/6e2710923.html,/thread-4701-1-1.html 这个是脚本代码[保存为etime.bat放在当前路径下即可:免费内容: :etime <begin_time> <end_time> <return> rem 所测试任务的执行时间不超过1天// 骨瘦如柴版setlocal&set be=%~1:%~2&set cc=(%%d-%%a)*360000+(1%%e-1%%b)*6000+1%%f-1% %c&set dy=-8640000 for /f "delims=: tokens=1-6" %%a in ("%be:.=%")do endlocal&set/a %3=%cc%,%3+=%dy%*("%3>> 31")&exit/b ---------------------------------------------------------------------------------------------------------------------------------------- 计算两个时间点差的函数批处理etime 今天兴趣大法思考了好多bat的问题,以至于通宵 在论坛逛看到有个求时间差的"函数"被打搅调用地方不少(大都是测试代码执行效率的) 免费内容: :time0

::计算时间差(封装) @echo off&setlocal&set /a n=0&rem code 随风@https://www.360docs.net/doc/6e2710923.html, for /f "tokens=1-8 delims=.: " %%a in ("%~1:%~2") do ( set /a n+=10%%a%%100*360000+10%%b%%100*6000+10%% c%%100*100+10%%d%%100 set /a n-=10%%e%%100*360000+10%%f%%100*6000+10%%g %%100*100+10%%h%%100) set /a s=n/360000,n=n%%360000,f=n/6000,n=n%%6000,m=n/1 00,n=n%%100 set "ok=%s% 小时%f% 分钟%m% 秒%n% 毫秒" endlocal&set %~3=%ok:-=%&goto :EOF 这个代码的算法是统一找时间点凌晨0:00:00.00然后计算任何一个时间点到凌晨的时间差(单位跑秒) 然后任意两个时间点求时间差就是他们相对凌晨时间点的时间数的差 对09这样的非法8进制数的处理用到了一些技巧,还有两个时间参数不分先后顺序,可全可点, 但是这个代码一行是可以省去的(既然是常被人掉用自然体

九年级课文翻译完整版

九年级课文翻译 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

人教版初中英语九年级U n i t3课文翻译 SectionA2d 何伟:这是欢乐时光公园——我所在城市最大的游乐园! 艾丽斯:要尝试一些乘骑项目,我好兴奋呀! 何伟:我们应该从哪里开始玩呢?有太空世界、水上世界、动物世界…… 艾丽斯:哦,你能先告诉我哪儿有洗手间吗? 何伟:什么休息室你想要休息吗但是我们还没有开始玩呢! 艾丽斯:哦,不是,我的意思不是休息间。我的意思是……你知道的,卫生间或盥洗室。何伟:嗯……那么你是指……厕所? 艾丽斯:正是!对不起,也许“洗手间”一词在中国不常用。 何伟:对,我们通常说“厕所”或“卫生间”。就在那边。 艾丽斯:好的,我会很快的!我想知道公园今天何时关门。 何伟:九点三十,你不必着急! SectionA3a 欢乐时光公园——永远快乐的时光 [艾丽斯和何伟在太空世界。] 艾丽斯:我想知道我们接下来应该去哪里? 何伟:那边那个新项目怎么样? 艾丽斯:好吧……看起来蛮吓人的。 何伟:快来吧!我保证它将激动人心!如果你害怕,只要大叫或者抓住我的手。 [云霄飞车之后……] 艾丽斯:你是对的!太有趣了!起初我好害怕,但大声喊叫还蛮管用的。 何伟:瞧,那玩意并不糟糕,对吧?某些东西你不去尝试,就绝不会知道。 艾丽斯:对,我很高兴我试过了! 何伟:你现在想去水上世界么? 艾丽斯:好,但我很饿。你知道我们在哪里能吃到好的快餐? 何伟:当然!我建议在水上世界的水城餐馆,那里有美味可口的食物。 艾丽斯:好极了!我们走! [在前往水城餐馆途中,艾丽斯和何伟经过鲍勃叔叔餐馆。] 艾丽斯:看!这家餐馆看起来蛮有趣的。这招牌上说这儿每晚有摇滚乐队演出。

旅游与文化 翻译

旅游与文化I Part I 1.charming autumn scenery in a most fresh air and clear weather 秋高气爽,秋色宜人 2.the 15th General Assembly Session of the World Tourism Organization 世界旅游组织第15届全体大会3.to travel ten thousand li and read ten thousand books 读万卷书,行万里路 4.enriching themselves mentally and physically 承天地之灵气,接山水之精华 5.tourist arrival 旅游人数 6.foreign currency receipts 外汇收入 7.outbound tourists 出境旅游人数 8.unique, rich and varied tourism resources 得天独厚的旅游资源 9.World Cultural and Natural Heritages sites 世界文化遗产地和世界自然遗产地 10.t o add radiance and charm to each other 交相辉映 11.a thriving modern metropolis 繁华的现代化大都市 12.a patchwork of cottages 村舍星罗棋布 13.t o exist side by side 鳞次栉比 14.I nternational Architecture Exhibition 万国建筑博览会 15.c lock towers and turrets , marble pillars 钟塔、角楼和大理石柱 16.e ach representing a distinctively individual appearance 风格迥异,各领风骚 17.t he rainy season 梅雨季节 18.t o linger longer 留连忘返 19.e xcellence, elegance and the best quality 卓越超群,富丽堂皇,一流质量 20.e mbroidery, inlaid lacquer 刺绣,金漆镶嵌 21.g old and silver jewelleries, water-color woodblock prints 金银首饰,木刻水印 22.c arvings in jade, ivory, bamboo and woven bamboo baskets 玉雕、牙雕,竹雕,竹编筐篮 23.b ird cages, lanterns 鸟笼灯笼 24.d ouble-sided embroidery and sandal wood fans from Suzhou 双面绣和苏州的檀香扇 25.t erracotta teapots from Yixing, and clay figures from Wuxi 宜兴的陶制茶壶和无锡的泥人 26.t he Peach Blossom Fair 桃花节 27.t he Daci Temple Fair 大慈寺庙会 28.t he Chengdu Tourism Festival 成都旅游节 29.a place blessed with favorite climate, fertile land, rich resources and outstanding talents 物华天宝,人杰地灵30.s uperb artistic style of aiming at catching the sprit of the landscape 写意山水 31.a rtistic gems 艺术瑰宝 32.U NESCO Heritage Committee 联合国教科文组织遗产委员会 33.t he list of World cultural heritage 世界文化遗产名录 34.b ronzeware 青铜器 35.b amboo, wood and lacquer ware 竹木漆器 36.i nscribed bones and tortoise shells 甲骨 37.s eals 玺印 38.a rchaeology 39.r estoration room 文物修复馆 旅游与文化II Part II景点描述常用语 Match work: 雄伟壮丽imposing 灯火辉煌glittering

用c++编写计算日期的函数

14.1 分解与抽象 人类解决复杂问题采用的主要策略是“分而治之”,也就是对问题进行分解,然后分别解决各个子问题。著名的计算机科学家Parnas认为,巧妙的分解系统可以有效地系统的状态空间,降低软件系统的复杂性所带来的影响。对于复杂的软件系统,可以逐个将它分解为越来越小的组成部分,直至不能分解为止。这样在小的分解层次上,人就很容易理解并实现了。当所有小的问题解决完毕,整个大的系统也就解决完毕了。 在分解过程中会分解出很多类似的小问题,他们的解决方式是一样的,因而可以把这些小问题,抽象出来,只需要给出一个实现即可,凡是需要用到该问题时直接使用即可。 案例日期运算 给定日期由年、月、日(三个整数,年的取值在1970-2050之间)组成,完成以下功能: (1)判断给定日期的合法性; (2)计算两个日期相差的天数; (3)计算一个日期加上一个整数后对应的日期; (4)计算一个日期减去一个整数后对应的日期; (5)计算一个日期是星期几。 针对这个问题,很自然想到本例分解为5个模块,如图14.1所示。 图14.1日期计算功能分解图 仔细分析每一个模块的功能的具体流程: 1. 判断给定日期的合法性: 首先判断给定年份是否位于1970到2050之间。然后判断给定月份是否在1到12之间。最后判定日的合法性。判定日的合法性与月份有关,还涉及到闰年问题。当月份为1、3、5、7、8、10、12时,日的有效范围为1到31;当月份为4、6、9、11时,日的有效范围为1到30;当月份为2时,若年为闰年,日的有效范围为1到29;当月份为2时,若年不为闰年,日的有效范围为1到28。

图14.2日期合法性判定盒图 判断日期合法性要要用到判断年份是否为闰年,在图14.2中并未给出实现方法,在图14.3中给出。 图14.3闰年判定盒图 2. 计算两个日期相差的天数 计算日期A (yearA 、monthA 、dayA )和日期B (yearB 、monthB 、dayB )相差天数,假定A 小于B 并且A 和B 不在同一年份,很自然想到把天数分成3段: 2.1 A 日期到A 所在年份12月31日的天数; 2.2 A 之后到B 之前的整年的天数(A 、B 相邻年份这部分没有); 2.3 B 日期所在年份1月1日到B 日期的天数。 A 日期 A 日期12月31日 B 日期 B 日期1月1日 整年部分 整年部分 图14.4日期差分段计算图 若A 小于B 并且A 和B 在同一年份,直接在年内计算。 2.1和2.3都是计算年内的一段时间,并且涉及到闰年问题。2.2计算整年比较容易,但

点面结合 场面描写

点面结合场面描写 场面描写指的是在某一特定时间和特定地点范围内以人物活动为中心的生活画面的描写。场面描写一般由“人”、“事”、“境”构成,它是叙事性作品的基本构成单位,是刻画人物、展开情节、表现主题的主要手段。常见的有劳动场面、战斗场面、运动场面以及各种会议场面等。那么如何写好场面呢?点面结合是进行场面描写最好的选择。 所谓“点”,指的是最能显示人事景物场面的形象状态特征的详细描写;所谓“面”,指的是对人事景物场面的叙述或概括性描写。点面结合就是“点”的详细描写和“面”的叙述或概括性描写的有机结合。点面结合一般有以下三种形式: 一、视角笔触横向化,就是要把观察的视线向横的方向展开。要看到整个场面在同一个时间里所发生的事,不能只集中看一点。如下面一段场面描写: “王励勤,加油,中国队,雄起!”随着观众此起彼伏的呐喊声,中国对韩国的世界杯乒乓赛决赛被王励勤与韩国柳承敏的几个大力远拉推向高潮,场内翻滚着一股热浪,坐在电视机前的我们,也目不转睛地看着电视,我、爸爸、哥哥戴着头巾,挥舞着乒乓拍,用力捶着茶几当起场外拉拉队来,王励勤又胜一局,在加油声中一路高歌,这时,对方柳承敏奋起反击,几个短摆,直线,反手对拉,利用王励勤侧身过多,迎头赶上,观众的叫声更响亮了,震耳欲聋,把电视机前的观众的心深深地震撼了。我们一家也急得直跺脚,索性脱掉衣服

在此挥舞,终于,王励勤不负众望,在掌声与欢呼中尽显他的王者风范,一声大叫,一个手势,又使他崛起赢得了比赛,我们也抑制不住兴奋之情,相互拥抱起来。 二、一面带多点,就是要有整体的概括,又有重点的具体描写。一般采用先总述再分述的方法。这也是我们进行场面描写时所常用的手法。如《十里长街送总理》第一段的描写。 天灰蒙蒙的,又阴又冷。长安街两旁的人行道上挤满了男女老少。路那样长,人那样多,向东望不见头,向西望不见尾。人们臂上都缠着黑纱,胸前都佩着白花,眼睛都望着周总理的灵车将要开来的方向。一位满头银发的老奶奶拄着拐杖,背靠着一棵洋槐树,焦急而又耐心地等待着。一对青年夫妇,丈夫抱着小女儿,妻子领着六七岁的儿子,他们挤下了人行道,探着身子张望。一群泪痕满面的红领巾,相互扶着肩,踮着脚望着,望着…… 作者为了把送总理的人很多这一特点写出来就用了“点面结合”的写法:其中“长安街两旁的人行道上挤满了男女老少。路那样长,人那样多,向东望不见头,向西望不见尾。”这是面的描写;“一位满头银发的老奶奶拄着拐杖,背靠着一棵洋槐树,焦急而又耐心地等待着。一对青年夫妇,丈夫抱着小女儿,妻子领着六七岁的儿子,他们挤下了人行道,探着身子张望。一群泪痕满面的红领巾,相互扶着肩,踮着脚望着,望着……”这是点的描写。这样,我们一读文章就能够深刻感受到来总理的自发群众是那样的多。细读之后,我们更能够感受到人民对总理的爱戴和无限悲思。难能可贵的是在这一段中,没有

九年级英语unit课文翻译

九年级英语u n i t课文 翻译 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

unit3 Could you please tell me where the restroom are ? sectionA 2d 何伟:这就是欢乐时代公园——我们这座城市最大的游乐园。 爱丽丝:就要玩各种游乐项目了,我好兴奋呀! 何伟:我们先玩那样呢?有太空世界、水世界、动物世界…. 爱丽丝:在我们决定前,麻烦你先告诉我哪儿有洗手间吗? 何伟:什么?休息室?你想要休息了?我们可还没有开始玩呢! 爱丽丝:不是的,我不是指休息的地方。我是说…..你知 道,一间洗手间或卫生间。 何伟:嗯….那么你是指….卫生间吗? 爱丽丝:对啦!不好意思,也许中国人说英语不常用 restroom这个词。 何伟:就是的,我们常说toilets 或washroom 。不过,厕所在哪里。 爱丽丝:知道了,我一会儿就好! 何伟:没问题,你不必赶的。 Section A 3a 欢乐时代公园————总是欢乐时光 [ 爱丽丝和何伟在太空世界] 爱丽丝:我不知道我们接下来该去哪里。

何伟:去玩玩那边那个新项目怎样? 爱丽丝:啊…..看上去挺吓人的。 何伟:勇敢些!我保证会很好玩!如果害怕就喊出来或抓住我的手。 【乘坐后…..】 爱丽丝:你是对的,这真好玩!我起先有些害怕,但喊叫真管用。何伟:瞧:这并不糟糕,对吧?你需要去尝试,否则永远不会知道你能行。 爱丽丝:是这样的,我真高兴自己尝试了这个项目。 何伟:现在你想去水世界吗? 爱丽丝:当然,但我饿了。你知道哪里有又好吃又快的地方? 何伟:当然知道!我建议去水世界的水城餐馆他们做得很好吃。爱丽丝:太好了,我们去吧! 何伟:[在去水城餐馆的路上,爱丽丝与何伟路过鲍勃叔叔的餐厅]爱丽丝:你瞧!这间餐厅看上去很有意思。牌子上写着有个摇滚乐队每晚在演奏。 何伟:我们为何不回头过来在这吃晚饭?咱们去问一下乐队演出几点开始。 【爱丽丝和何伟向门口的员工走去】 爱丽丝:劳驾,请问你们乐队今天晚上何时开始演奏? 何伟:八点。那时人总是很多,所以得来早一点才有桌子。 爱丽丝:好的,谢谢!

《论语十则》——《中国文化经典研读》(整理)

《论语十则》——《中国文化经典研读》(整理) 1 子曰:“君子食无求饱,居无求安,敏于事而慎于言,就(1)有道(2)而正(3)焉,可谓好学也已。” 【注释】 (1)就:靠近、看齐。 (2)有道:指有道德的人。 (3)正:匡正、端正。 【译文】 孔子说:“君子,饮食不求饱足,居住不要求舒适,对工作勤劳敏捷,说话却小心谨慎,到有道的人那里去匡正自己,这样可以说是好学了。” 2 2?4 子曰:“吾十有(1)五而志于学,三十而立(2),四十而不惑(3),五十而知天命(4),六十而耳顺(5),七十而从心所欲不逾矩(6)。” 【注释】 (1)有:同“又”。 (2)立:站得住的意思。 (3)不惑:掌握了知识,不被外界事物所迷惑。 (4)天命:指不能为人力所支配的事情。 (5)耳顺:对此有多种解释。一般而言,指对那些于己不利的意见也能正确对待。 (6)从心所欲不逾矩:从,遵从的意思;逾,越过;矩,规矩。 【译文】 孔子说:“我十五岁立志于学习;三十岁能够自立;四十岁能不被外界事物所迷惑;五十岁懂得了天命;六十岁能正确对待各种言论,不觉得不顺;七十岁能随心所

欲而不越出规矩。” 3 子曰:“由(1),诲女(2),知之乎,知之为知之,不知为不知,是知也。” 【注释】 (1)由:姓仲名由,字子路。生于公元前542年,孔子的学生,长期追随孔子。 (2)女:同汝,你。 【译文】 孔子说:“由,我教给你怎样做的话,你明白了吗,知道的就是知道,不知道就是不知道,这就是智慧啊~” 4.颜渊、季路侍(1)。子曰:“盍(2)各言尔志。”子路曰:“原车马,衣轻裘,与朋友共,敝之而无憾。”颜渊曰:“愿无伐(3)善,无施劳(4)。”子路曰:“愿闻子之志。”子曰:“老者安之,朋友信之,少者怀之(5)。” 【注释】 (1)侍:服侍,站在旁边陪着尊贵者叫侍。 (2)盍:何不。 (3)伐:夸耀。 (4)施劳:施,表白。劳,功劳。 (5)少者怀之:让少者得到关怀。 【译文】 颜渊、子路两人侍立在孔子身边。孔子说:“你们何不各自说说自己的志向,”子路说:“愿意拿出自己的车马、衣服、皮袍,同我的朋友共同使用,用坏了也不抱怨。”颜渊说:“我愿意不夸耀自己的长处,不表白自己的功劳。”子路向孔子说:“愿意听听您的志向。”孔子说:“(我的志向是)让年老的安心,让朋友们信任我,让年轻的子弟们得到关怀。” 5 子曰:“知之者不如好之者,好之者不如乐之者。” 【译文】

Excel中如何计算日期差

Excel中如何计算日期差: ----Excel中最便利的工作表函数之一——Datedif名不见经传,但却十分好用。Datedif能返回任意两个日期之间相差的时间,并能以年、月或天数的形式表示。您可以用它来计算发货单到期的时间,还可以用它来进行2000年的倒计时。 ----Excel中的Datedif函数带有3个参数,其格式如下: ----=Datedif(start_date,end_date,units) ----start_date和end_date参数可以是日期或者是代表日期的变量,而units则是1到2个字符长度的字符串,用以说明返回日期差的形式(见表1)。图1是使用Datedif函数的一个例子,第2行的值就表明这两个日期之间相差1年又14天。units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数

表1units参数的类型及其含义 图1可以通过键入3个带有不同参数的Datedif公式来计算日期的差。units的参数类型 ----图中:单元格Ex为公式“=Datedif(Cx,Dx,“y”)”得到的结果(x=2,3,4......下同) ----Fx为公式“=Datedif(Cx,Dx,“ym”)”得到的结果 ----Gx为公式“=Datedif(Cx,Dx,“md”)”得到的结果 现在要求两个日期之间相差多少分钟,units参数是什么呢? 晕,分钟你不能用天数乘小时再乘分钟吗? units的参数类型对应的Datedif返回值 “y”日期之差的年数(非四舍五入) “m”日期之差的月数(非四舍五入) “d”日期之差的天数(非四舍五入) “md”两个日期相减后,其差不足一个月的部分的天数 “ym”两个日期相减后,其差不足一年的部分的月数 “yd”两个日期相减后,其差不足一年的部分的天数 假设你的数据从A2和B2开始,在C2里输入下面公式,然后拖拉复制。 =IF(TEXT(A2,"h:mm:ss")

场景描绘案例分享

简单、好用的“场景描绘” ——帮助顾客实现梦想 让我们先来看看买花的女孩是如何使用“场景描绘”的: 卖花女孩向一位路过的小伙子兜售鲜花。小伙子说,你的鲜花太贵了。卖花女郎说,送给女孩子最好的礼物 就是鲜花,而且要在众人面前送给她最漂亮的花!假如你捧着一束花去见她,你的女朋友会是什么样呢?我想她一 定会含情脉脉地看着你,脸上洋溢着幸福的笑容,会在众人羡慕的眼光中给你一个最热烈的拥抱的。听到这里, 小伙子立即掏出钱包了。 场景描绘,就是运用一些生动形象的语言给客户描绘一幅使用产品后带来好处的图像,激起顾客对这幅图的向往,有效刺激顾客的购买欲望。试想一下,听到这样一段有诱惑力的话,哪个顾客能不动心呢? 正是因为: 1.带感情色彩的语句能够在顾客心里产生震荡 人是有感情的,富有感情色彩的语句和平淡的语句在顾客心里产生的震荡肯定不一样。每一位顾客都有其特定的经历、经验,从而形成对事物的独特见解、看法和态度。富有感情色彩的语句可以使顾客把你的介绍和他的亲身经验结合起来,从而使得你所推销的物品(饰品)与顾客对于未来的期待和向往合二为一,这样顾客对此物品(饰品)就会产生一种依赖感和依存感,购买的兴趣就会大增。 2.让顾客感到自己的选择合情合理 顾客的购买行为主要是由感情力量引起的,他们仍然会感到有必要为自己的行为找到合理的依据,可能是为了必要时给别人一个解释,或者仅是为了让自己满意地感到自己是理智的。因此,你必须充分意识到这一点,并随时准备提供理由,满足顾客的需要,证明他们的行动是合理的。其实,对于你所提出的理由,顾客也绝对不会认真追问,因为这些论点是他们所需要的。这时候的顾客非常容易相信你的话,如果你能够用一些带有感情色彩的话来说服顾客的话,多半都会成功。 珠宝消费不同于售卖花朵,不是凭一两句场景描绘就足以让顾客“冲动”而消费的,因为它是高额消费品。正是因为它价格昂贵,所以受到重视,顾客对拥有首饰后能达到其目的的期望值会更高!因此“场景描绘”在整个销售过程中起着举足轻重“煸情”的作用,“心动而产生行动”。 那在我们的销售工作中,又要如何来进行呢? 描述时方法有两种: 1.第一种:你可以尝试使用以下三个句型,激发顾客想象力。 “您有没有感觉到/您看……?” “当……时候……” “……像……一样” 例如:“您有没有感觉到这件衣服的布料很柔软,也很保暖?当天冷的时候穿上它,肯定会像睡在羽绒被子里一样舒服和暖和的。” “您看,这枚戒指款式非常简洁,两股线条缠绕于指尖,您有没有感觉到它非常适合您的手型?不炫丽但看上去很舒服,就像您的先生一样,一直会温柔体贴的陪伴在身边,很幸福啊。” 2、第二种:向顾客直接描绘未来 例如:在商品快介绍结束时,推销员向准备为女儿买钢琴的母亲说:“我想用不了多久,您女儿一定能在学校的表演厅里为大家演奏曲子了。” 翡翠饰品快介绍完毕时,“您老公佩戴着这枚挂件,出门在外一定会平平安安的,摸到翡翠就会想起您的叮咛的。”

初中作文指导:细节描写案例【精品】

细节描写案例 教学目标:A知识技能目标:明确细节描写的内涵,学习细节描写的方法,初步学会运用细节描写。 B思想情感目标:养成良好的观察习惯,积累对百态人生的体验,做一个生活的有心人。 教学重点:细节描写的方法及运用 教学难点:通过细节描写表达真情实感 教学手段:多媒体课件 教学方法:体验法、启发式(教学过程中可以讨论法和演练法为主,充分发挥学生学习的主动性,培养学生的探究能力。)教学过程: 一、导入 著名文艺批评家兰色姆指出,使文学成为文学的东西不在于文学作品的框架结构、中心逻辑,而在于作品的细节描写,只有细节才属于艺术,也只有细节的表现力最强。其实,现在世界中细节的力量又何尝可以小觑?每增加一厘米的倾斜,都有可能导致比萨斜塔的倾覆;使人疲惫的不是远方的高山,而是鞋子里的一粒沙子。 今天,我们就一起来探讨一下细节描写对作文的影响作用。(多媒体课件展示课题,学生齐读课题:《一枝一叶总关情——作文指导之细节描写》。) 二、明确定义 细节描写是指抓住生活中的细微而又具体的典型情节,加以生动细致的描绘,它具体渗透在对人物、景物或场面描写之中。它是最生动、最有表现力的手法,是作者精心的设置和安排,不能随意取代。一篇文章,恰到好处地运用细节描写,能起到烘托环境气氛、刻画人物性格和揭示主题思想的作用。(多媒体课件展示课文片段 三、回顾我们课文中的细节描写 (多媒体课件展示课文片段) 1.(阿Q)要画圆圈了,那手捏着笔只是抖,于是那人将纸铺在地上,阿Q伏下去,使尽平生的力画圆圈。他生怕被人笑话,立志要画得圆,但这可恶的笔不但很沉重,并且不听话,刚刚一抖一抖的几乎合缝,却又向外一耸,成了瓜子模样了。”(鲁迅《阿Q正

英语新课标九年级课文翻译Unit9-14

英语新课标九年级课文翻译Unit9-14 Unit9 I like music that I can dance to. SectionA 2d 吉尔:斯科特,周末你打算干什么呢? 斯科特:没什么事,我估计就是听听我新买的激光唱片吧. 吉尔:哦?是什么激光唱片? 斯科特:嗯,全是音乐的,没有歌曲。我喜欢听舒缓的音乐来放松自己,尤其是在工作了漫长的一周以后。 吉尔:听起来不错啊。嗯,如果你有空,愿意和我一起去看部电影吗?(电影的)导演很有名。 斯科特:嗯,那要看什么电影。我只喜欢有趣的电影,我只想笑一笑不想费脑筋,你懂我的意思吧? 吉尔:哦,那样的话,我还是去邀请喜欢看严肃电影的人吧. 斯科特:(你说的)电影是关于什么的? 吉尔:是关于第二次世界大战的。我喜欢能让我思考的电影。 section A, 3a 今天你想看什么(电影)呢? 虽然一些人坚持只看一种电影,但是我喜欢看不同种类的电影,(具体)由当时盼心情决定。 当我情绪低落或感到疲惫的时候,我更喜欢能让我开心的影片。比如,像《黑衣人》那样的喜剧片或像《功夫熊猫》这类的动画片,通常都有滑稽的对话和一个愉快的结局。影片中的人物不一定完美,但是他们都会尽力去解决问题,看了这样的电影,我所面对的许多问题突然间会显得不那么严重,我也会感觉好多了。两个小时的欢笑是一种很好的放松方式。 当我伤心或劳累的时候,我不看剧情片或纪录片。像《泰坦尼克号》这样的剧情片只会让我更伤心。像《帝企鹅日记》这样的纪录片,(通常)会针对某个特定话题提供丰富的信息,(内容)也很有趣,但是当我累的时候,我不想思考太多。当我太累不想思考时,我不介意看像《蜘蛛侠》这样的动作电影。我只想屏蔽我的大脑,坐在那里观看一个令人兴奋的超级英雄,他总是能在关键时刻挽救世界。 偶尔我会喜欢看恐怖片。虽然它们很有意思,但是我会因为太害怕而不敢独自一人看,我总会带上一位不怕这些类型的电影的朋友(一起看),这样就觉得没那么可怕了。 Secton B 2b 凄美 昨晚我的一个中国朋友带我去听了一场中国民间音乐会。其中有一首二胡曲令我特别感动。音乐出奇的美,但是在那美的背后,我感受到悲伤和痛苦。这首曲子有个简单的名字,《二泉映月》,但它是我听到过的最感人的曲子之一。二胡(的声音)听起来那么悲伤,以至于我在听的时候也几乎随着它哭了。后来我查阅了《二泉映月》的历史,开始理解音乐中蕴含的伤感。 这首曲子由一位民间音乐家阿炳写成,他于1893年出生在无锡市。在他还很小的时候,他的母亲就去世了。阿炳的父亲教他弹奏各种乐器,如鼓、笛子和二胡。到了十七岁,阿炳就以他的音乐天赋闻名。然而,他的父亲去世后,阿炳的生活变得更糟糕。他很穷,还得了很严重的疾病,眼睛瞎了。好些年他都没有家,他住在大街上,以弹奏音乐来谋生。即使在他结了婚有了家以后,他还是继续在街道上唱歌、弹曲,他以这种方式表演了好多年。 阿炳惊人的音乐技能让他在有生之年就非常出名。到他临终前,他已会弹六百多首曲子,大部分是他自己写的。遗憾的是,一共只有六首曲子被录了下来得以传世,但时至今日,他(的作品)依旧颇受人们喜爱。今天,阿炳的《二泉映月》成 了所有伟大的二胡演奏家弹奏和赞赏的曲子。它已成了中国文化魁宝之一。它的凄美不仅描绘出阿炳自己的生活,而且也让人们回想起自身的悲苦体验和最深的的痛。

翻译中国文化和历史

翻译(一)、中国文化和历史 1、狮舞(Lion Dance)是中国最广为流传的民间舞蹈之一。狮为百兽之首,在中国传统中,狮子被视为是能带来好运的吉祥物(mascot)。古人将狮子视作是勇敢和力量的化身,能驱赶邪恶、保护人类。据记载,狮舞已拥有了2,000多年的历史。在唐代(the Tang Dynasty),狮舞就已经被引入了皇室。因此,舞狮成为元宵节(the Lantern Festival)和其他节日的习俗,人们以此来祈祷好运、平安和幸福。 The Lion Dance is one of the most widespread folk dances in China.The lion is the king of animals. In Chinese tradition, the lion is regarded as a mascot, which can bring good luck.Ancient people regarded the lion as a symbol of braveness and strength, which could drive away evil and protect humans. The dance has a recorded history of more than 2,000 years. During the Tang Dynasty, the Lion Dance was already introduced into the royal family of the dynasty. Therefore, performing the lion dance at the Lantern Festival and other festive occasions became a custom where people could pray for good luck, safety and happiness. 2、端午节,又叫龙舟节,是为了纪念爱国诗人屈原。屈原是一位忠诚和受人敬仰的大臣(minister),他给国家带来了和平和繁荣。但最后因为受到诽谤(vilify)而最终投河自尽。人们撑船到他自尽的地方,抛下粽子,希望鱼儿吃粽子,不要吃屈原的身躯。几千年来,端午节的特色在于吃粽子(glutinous dumplings)和赛龙舟,尤其是在一些河湖密布的南方省份。 ? The Duanwu Festival, also called the Dragon Boat Festival, is to commemorate the patriotic poet Qu Yuan. Qu Yuan was a loyal and highly esteemed minister, who brought peace and prosperity to the state but ended up drowning himself in a river as a result of being vilified. People got to the spot by boat and cast glutinous dumplings into the water, hoping that the fishes ate the dumplings instead of Qu Yuan’s body. For thousands of years, the festival has been marked by glutinous dumplings and dragon boat races, especially in the southern provinces where there are many rivers and lakes. 3、上海菜系是中国最年轻的地方菜系,通常被成为“本帮菜”,有着400多年的历史。同中国其他菜系一样,“本帮菜”具有“色,香,味”三大要素。//上海菜的特点是注重调料的使用,食物的质地和菜的原汁原味。其中最著名的有特色点心“南翔小笼”和特色菜“松鼠鲑鱼”。//“南翔小笼”是猪肉馅,个小味美,皮薄汁醇。“松鼠鲑鱼”色泽黄亮,形如松鼠,外皮脆而内肉嫩,汤汁酸甜适口。//在品尝过“松鼠鲑鱼”之后,我们常常惊讶于“松鼠”的形状,觉得在三大评价标准上在添加“形”这个标准才更合适。 Shanghai cuisine, usually called Benbang cuisine, is the youngest among themajor regional cuisines in China, with a history of more than 400 years. Like all other Chinese regional cuisines, Benbang cuisines takes “color, aroma and taste”as its essential quality elements.//Shanghai cuisine emphasizes in particular the expert use of seasonings,

excel中计算日期差工龄生日等方法

excel中计算日期差工龄生日等方法 方法1:在A1单元格输入前面的日期,比如“2004-10-10”,在A2单元格输入后面的日期,如“2005-6-7”。接着单击A3单元格,输入公式“=DATEDIF(A1,A2,"d")”。然后按下回车键,那么立刻就会得到两者的天数差“240”。 提示:公式中的A1和A2分别代表前后两个日期,顺序是不可以颠倒的。此外,DATEDIF 函数是Excel中一个隐藏函数,在函数向导中看不到它,但这并不影响我们的使用。 方法2:任意选择一个单元格,输入公式“="2004-10-10"-"2005-6-7"”,然后按下回车键,我们可以立即计算出结果。 计算工作时间——工龄—— 假如日期数据在D2单元格。 =DA TEDIF(D2,TODAY(),"y")+1 注意:工龄两头算,所以加“1”。 如果精确到“天”—— =DA TEDIF(D2,TODAY(),"y")&"年"&DATEDIF(D2,TODAY(),"ym")&"月"&DATEDIF(D2,TODAY(),"md")&"日" 二、计算2003-7-617:05到2006-7-713:50分之间相差了多少天、多少个小时多少分钟 假定原数据分别在A1和B1单元格,将计算结果分别放在C1、D1和E1单元格。 C1单元格公式如下: =ROUND(B1-A1,0) D1单元格公式如下: =(B1-A1)*24 E1单元格公式如下: =(B1-A1)*24*60 注意:A1和B1单元格格式要设为日期,C1、D1和E1单元格格式要设为常规. 三、计算生日,假设b2为生日

=datedif(B2,today(),"y") DA TEDIF函数,除Excel2000中在帮助文档有描述外,其他版本的Excel在帮助文档中都没有说明,并且在所有版本的函数向导中也都找不到此函数。但该函数在电子表格中确实存在,并且用来计算两个日期之间的天数、月数或年数很方便。微软称,提供此函数是为了与Lotus1-2-3兼容。 该函数的用法为“DA TEDIF(Start_date,End_date,Unit)”,其中Start_date为一个日期,它代表时间段内的第一个日期或起始日期。End_date为一个日期,它代表时间段内的最后一个日期或结束日期。Unit为所需信息的返回类型。 “Y”为时间段中的整年数,“M”为时间段中的整月数,“D”时间段中的天数。“MD”为Start_date与End_date日期中天数的差,可忽略日期中的月和年。“YM”为Start_date与End_date日期中月数的差,可忽略日期中的日和年。“YD”为Start_date与End_date日期中天数的差,可忽略日期中的年。比如,B2单元格中存放的是出生日期(输入年月日时,用斜线或短横线隔开),在C2单元格中输入“=datedif(B2,today(),"y")”(C2单元格的格式为常规),按回车键后,C2单元格中的数值就是计算后的年龄。此函数在计算时,只有在两日期相差满12个月,才算为一年,假如生日是2004年2月27日,今天是2005年2月28日,用此函数计算的年龄则为0岁,这样算出的年龄其实是最公平的。 本篇文章来源于:实例教程网(https://www.360docs.net/doc/6e2710923.html,) 原文链接:https://www.360docs.net/doc/6e2710923.html,/bgruanjian/excel/631.html

记叙文细节描写篇分析

高三语文写作指导与训练系列二编号 GS YW XZ--002 记叙文写作之细节描写篇导学案 编写:徐明生审定:张明玺时间:2014-08-26 班级:组别:组名:姓名: 知识与技能:理解细节描写的概念及分类,掌握细节描写的方法,学会运用细节描写表现人物细腻的情感,为文章增色。 过程与方法:1.创设情境,赏析富有情趣的细节描写。2.例文引导,掌握细节描写的方法。 3.写作训练,将细节描写融入作文中。 情感态度与价值观:培养观察力、想象力,引导学生发现生活中的细节之美,形成热爱生活、积极的人生态度。 教学方法:揣摩、讨论、归纳、操练 课前准备:1.了解细节描写的相关知识点; 2.回顾所学过的记叙文(小说),初步体会细节描写的作用。 课时:2课时 导学过程:一、导语众所周知,记叙文的灵魂在于细节描写。同学们在作文里缺少的不是把某件事写完整的能力,而是缺少细节捕捉、描写的能力。这些缺失细节描写的文章读来生涩呆板,缺乏感染力。而高考作文评分在发展等级项中有明确的规定,即:“材料丰富,形象丰满,意境深远”,这“形象丰满”很大程度上依赖于考生对细节的描摹与刻画。细节描写之重要,不仅可以在“生动”上“出彩”加分,而且可以使作品形象丰满,使整个文章升格。所以作文缺少感人的细节实在是一个制约记叙文成绩提高的瓶颈。 一沙一世界,一叶一菩提。其实,纷繁的生活,是由无数小的细节构成的。细节虽小,却是美的源泉,情的聚焦。生活中的细节之美,看在眼里,便是风景;握在掌心,便是花朵;拥进怀中,便是温暖;写在笔端,便是精彩。今天这节课,我们来一起用双眼发现细节,用心灵感悟细节,用文字展现细节,让我们作文中的人与事如生活中一般于细处见情,微处见妙! 二、了解概念、分类,感受作用、魅力 (1)什么是细节描写? 细节描写就是某些细小的能很好表现中心的环节和情节,如对人物的一个动作、一种表情、一句话等以及事物发展的具体环节、环境中的细小物体,通过准确、生动、细致的描绘,使读者“如见其人”“如睹其物”。 细节描写如电影中的特写镜头,具体渗透在对人物、景物或场面描写之中。它将我们身边

九年级英语课文翻译,帮忙

7楼 迪士尼乐园是个娱乐的公园,但我们也可以叫它“主题公园”。它拥有你在其他公园可以找到的所有的娱乐设施,但是它有一个主题。当然,这个主题就是迪士尼电影和迪士尼人物。比如说,在其他一些公园你可以看到到摩天轮,但是在迪士尼乐园,摩天轮就有了“迪士尼人物”的主题。这意味着你可以在摩天轮的任何地方看到迪士尼人物。同样,你也可以看有关迪士尼的电影,在迪士尼餐厅就餐,买迪士尼礼物。你还随时可以看到迪士尼乐园里来回走动的迪士尼人物! 你听说过“迪士尼航行”吗?那是同样有迪士尼主题的巨大的船。你可以在船上航行几天,还可以在甲板上吃东西睡觉。和迪士尼乐园一样,甲板上也有许多吸引人的地方。你可以购物,参加迪士尼的聚会,和米老鼠一起吃晚餐。这些船有几条不同的航线,但最终都会抵达同样的地方。那就是属于迪士尼乐园的小岛。 在迪士尼乐园的乐趣简直太多了! 9. p72 UNIT 9 3a: Come to the Hilltop Language School and change your life. 来到Hilltop语言学校,改变你的人生! 第一篇:这里是两名同学讲述关于我校的事情 当我还是个小女孩,我就梦想着去旅行,因而我选择了个最佳的方式—从事空中乘务员.我做这个行业已有两年了,它的确是份有趣的工作,我能游遍世界各地,但也我发现说好英语对我来说是件多么重要的事,正因如此早在当空乘之前我就在Hilltop语言学校学习五年了,我以一口流利的口语赢得了这份工作,谢谢, Hilltop语言学校! Mei Shan 第二篇: 我渴望当一名导游,事实上,这是我一直都很想要从事的事业.我渴望旅行,特别是英语国家,像是美国,澳大利亚.不论如何我知道我必须提高我的英语能力,于是我来到Hilltop语言学校进行口语学习, Hilltop语言学校对我的学习有很大的帮助,我已经在这里学满一年了,非常热爱这个地方.或许当我要离开这个学校的时候,我开始想做一名英语教师的热情会大过于想做一名导游! David Feng 9. p74 UNIT 9 3a: Have you ever been to Singapore?翻译! 你去过新加坡吗? 对于很多中国旅游者来说,这个位于东南亚的小岛是个度假的好去处。一方面,超过四分之

相关文档
最新文档