电子天平示值误差的不确定度评定

电子天平示值误差的不确定度评定
电子天平示值误差的不确定度评定

电子天平示值误差的不确定度评定

ZJGJC-3Hh280

1、概述

1.1、测量依据:JJG1036-2008《电子天平检定规程》

1.2.、环境条件:温度18~26℃,温度波动不大于0.5℃/h ,相对湿度不大于75%

1.3、计量标准:E 2等级标准砝码。JJG99—1990《砝码试行检定规程》中给出E 2等级砝码200g 其扩展不确定度0.3mg ,包含因子k =3。

1.4、被测对象:电子天平

2、测量过程:采用标准砝码直接来测量天平的示值,可得标准砝码与电子天平实际值之差,即为电子天平的示值误差。

3、数学模型:△m =m-m s

式中:△m —— 电子天平示值误差 m —— 电子天平示值 m s —— 标准砝码值

4、输入量标准不确定度评定: 以200g 天平称量点为例

4.1 输入量m s 的标准不确定度根据规程中给出F 1等级砝码200g 的扩展不确定度0.3mg ,取k =3

mg m u s 10.03

3

.0)(==

4.2 电子天平分辨率引起的不确定度;

该电子天平分度值为0.1mg; 按均匀分布计算

mg md u 058.03

1.0)(==

4.3 输入量m 的标准不确定度来源于天平的测量重复性,以同一砝码,通过连续测量得到测量列,采用A 类方法进行评定。以200g 为载荷点,在重复性条件下连续测量6次:200.0002g.、200.0001g 、200.0002g 、200.0002g 、200.0001g 、200.0002g.、

由此可得:u (m )=S 平=

)

1()

(2

1

--∑=n n m m n

i =

()

16602

.0-=0.026mg

4.4其它不确定度分量在本次分析中略。 5、合成不确定度(以上各分量互不相关):

u C =()2

2

)(2

)(m u u u md ms ++=22210.0058.0026.0++=0.12mg

6、扩展不确定度的评定(以上各分量互不相关): k 取2 U = k × u C = 2 × 0.12=0.24mg

7、对使用天平校准装置校准工作用电子天平的测量不确定度评估

7.1根据JJG1036-2008《电子天平检定规程》规定,常规校准应包含空载、最小称量、最大允许误差转换点所对应的载荷、最大称量,即需包含0.01mg 、0.1mg 、1g 、20g 、50g 、100g 、200g 、500g 、600g 、610g 十个点,其中100以上非本项目包含。其测量不确定度见

8、校准和测量能力(CMC )

210g/0.1mg 分度的一级的电子天平是使用E 2等级标准砝码可校准的最佳电子天平,因此该项目的CMC 为:(1~500)mg,U=(0.013~0.014)mg ;(1~100)g ,U=(0.016~0.2)mg 。

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 本文论述了电子台秤的概念、电子台秤的误差因素以及电子台秤校准结果测量不确定度的评定方法,并且详细叙述了电子台秤误差的改进措施,适用于从事电子台秤的计量检验人员对电子台秤校准结果测量不确定度的分析,希望以此能够提出建设性意见。 标签:电子台秤;校准结果;测量;不确定度评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结

落锤式冲击试验机测量不确定度评定

落锤式冲击试验机校准结果得测量不确定度评定 一、概述 1、检定依据 JJG1445-2014《落锤式冲击试验机校准规范》。 2、检定环境 温度(10~35)℃, 3、测量标准 a)电子天平,TC30KH,最大允许误差不超过±1g, b)钢卷尺,5m,最大允许误差不超过±1mm, c)速度测量装置,(1~10)m/s,最大允许误差不超过±0、5%。 4、被检对象 非金属落锤式冲击试验机。 5、校准方法 5、1在规定条件下,用电子天平直接测量落锤质量,重复测量3次,取3次测量得算术平均值作为落锤质量m ; 5、2在规定条件下,用钢卷尺直接测量跌落高度,重复测量3次,取3次测量得算术平均值作为跌落高度h ; 5、3在规定条件下,用速度测量装置测量落锤接近冲击点时得冲击速度,重复测量3次,取3次测量得算术平均值作为落锤冲击速度v 。6.评定结果得使用 符合上述条件得测量结果,一般可参照使用本不确定度得评定方法。 二、数学模型 依据上面得测量方法,得到如下数学模型: 1.落锤质量 n m m n i i ∑== 1 2.跌落高度 n h h n i i ∑==1 3.落锤冲击速度 n v v n i i ∑==1 4.能量损失

h g v 212 -=η 三、标准不确定度分量得计算 1、落锤质量m 得标准不确定度分量)(m u 评定 )(m u 得标准不确定度主要来源于两个方面,其一就是电子天平不准确引入得不确定度分量u δm ,其二就是落锤质量测量重复性引入得不确定度分量u Rm 。1、1由电子天平不准确引入得不确定度分量u δm ; 采用B 类方法评定,已知电子天平得最大允许误差为±1、0g,故半宽为1、0g,服从均匀分布,包含因子3=k ;因此:u δm =3 0.1g =0、58g 1、2落锤质量测量重复性引入得不确定度分量u Rm ; 采用A 类方法进行评定,用电子天平在重复性条件下,对一3kg 落锤连续进行3次测量,得到实测值得测量列:测得值为3000g,3001g,3002g,极差 R =(3002-3000)g=2g,估计服从正态分布,则单次测量结果得实验标准差s :s ==C R 2/1、69=1、2g 实际测量中测量3次,因此u Rm ===3 s 0、69g 1、3合成标准不确定度)(m u c 得评定 )(m u c =22Rm m u u +δ=0、9g 2、跌落高度h 得标准不确定度分量)(h u 评定 )(h u 得标准不确定度主要来源于两个方面,其一就是钢卷尺不准确引入得不确定度分量u δh ,其二就是跌落高度测量重复性引入得不确定度分量u Rh 。2、1由钢卷尺不准确引入得不确定度分量u δh ; 采用B 类方法评定,已知钢卷尺得最大允许误差为±1、0mm,故半宽为1、0mm,服从均匀分布,包含因子3=k ;因此:u δh =3 0.1mm =0、58mm 1、2钢卷尺测量重复性引入得不确定度分量u Rh ;

误差和不确定度的区别和联系

误差与不确定度的概念比较 实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。 1误差和不确定度的定义 1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。即真值就是被测量量所具有的、客观的真实数值。然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。测量结果与真值的差为测量值的误差,即 测量值(x)-真值(a)=误差(ε) 在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。 对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12 --=∑=n x x s n i i ------------------------------(1) 式中n 为测量值的个数。对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2) 二者的统计意义是,标准偏差小的测量值,其可靠性较高。 对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。 1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。 不确定度也有两类:A 类标准不确定度和B 类不确定度。 由于偶然效应,A 类标准不确定度用统计方法来评定,其就取为平均值的标准偏差,即(2)式,也可写为 n s x s x u A /)()(==-------------------------(3) B 类评定的标准不确定度为 u(x)=Δ/3--------------------------------------(4) (4)式又称为仪器的标准误差。该式是根据仪器误差概率密度函数遵从均匀分布规律,由数学计算所得。 式中Δ为极限误差或仪器误差,是在规定的使用条件下,正确使用仪器时,仪器的示值和被测量真值之间可能出现的最大误差,其可以从下列几种情况中获得:国家计量技术规范;计量仪器说明书或检定书;仪器准确度等级;仪器分度值或经验(粗略估计)等。 2 二者的比较 不同类型的误差中究竟如何来区分误差和不确定度,表达式等方面有何不同,仍然有很多教材没有说明清楚。1993年,国际标准化组织颁布了《测量不确定度表达指南》(UGM),1999年,国家技术监督局颁布了《测量不确定度的评定与表示》 (JJF1059-1999)。这两个文件的颁布,标志着我国各技术领域 在不确

不确定度与数据处理

不确定度与数据处理 一、 误差与不确定度 1.误差与不确定度的关系 (1)误差:测量结果与客观真值之差 ?x =x -A 其中A 称为真值,一般不可能准确知道,常用约定真值代替:?????理论公式计算结果 —理论值更高精度仪器测量结果—标准值如物理常数等 —公认值 对一个测量过程,真值A 的最佳估计值是平均值x 。 在上述误差公式中,由于A 不可知,显然?x 也不可知,对误差的最佳估计值是不确定度u (x )。 (2)不确定度:对误差情况的定量估计,反映对被测量值不能肯定的程度。 通常所说“误差”一般均为“不确定度”含义。 不确定度分为A 、B 两个分量,其中A 类分量是可用统计方法估计的分量,它的主要成分是随机误差。 2.随机误差: 多数随机误差服从正态分布。定量描述随机误差的物理量叫标准差。 (1)标准差与标准偏差 标准差 k A x i k ∑-=∞ →2 ) (lim σ ∵真值A 不可知,且测量次数k 为有限次 ∴ σ 实际上也不可知,于是: 用标准偏差S 代替标准差σ : 1 ) ()(2 --= ∑k x x x S i ——单次测量的标准偏差 结果表述: x i ± S (x ) (置信概率~68.3%) 真值的估计值 单次测量标准差最佳估计值 S (x )的物理意义:在有限次测量中,每个测量值平均所具有的标准偏差。(并不是只做一次测量) 通常不严格区分标准差与标准偏差,统称为标准差。 (2)平均值的标准差 真值的最佳估计值是平均值,故结果应表述为: x ± S (x ) (置信概率~68.3%) 平均值的标准差最佳估计值 其中 ) 1() ()(2 --= ∑k k x x x S i ——平均值的标准偏差 例1:某观察量的n 次独立测量的结果是X 1, X 2, , X n 。试用方差合成公式证明平均值的标准偏差是样本标准偏差的 n 1,即n X S X S )()(=。 解: n X X i ∑= 由题知X i 相互独立,则根据方差合成公式有 n X u X u X u n ) ()()(212++= 利用样本标准偏差的定义,可知 u (X i )=S (X ) i =1,2, ,n 故 n X S n X nS n X S X S X S X u )()() ()()()(222= = ++= = 3.系统误差与仪器误差(限) (1)系统误差:在同一被测量的多次测量过程中,保持恒定或以可以预知方式变化的那一部分误差称为系统误差。已被确切掌握了其大小和符号的系统误差,称为可定系统误差;对大小和符号不能确切掌握的系统误差称为未定系统误差。前者一般可以在测量过程中采取措施予以消除或在测量结果中进行修正;而后者一般难以作出修正,只能估计出它的取值范围。 在物理实验中,对未定系统误差的估计常常利用仪器误差限来进行简化处理。

电子天平不确定度(例)(完成)

吉林省国绘仪器测试有限公司 文件编号:GHT/ZYB-0036 作业指导书 页 码: 第 1页 共 7页 第1版 第1次 修订 标 题 电子天平示值误差 测量结果CMC 不确定度评定 批 准 人 实施日期 2016年 11月06日 电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差; m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、

50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 2)测量点10 g : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差:

不确定度评定

不确定度评定 重量法测定水中溶解性总固体结果不确定度评定 1 概述测量不确定度在实验室数据比对、结果临界值的判断、方法确定以及实验室质控方面具有重要意义。ISO/IEC17025中要求检测实验室应具有评价测量不确定度的程序。本文对水中溶解性总固体测量结果不确定度进行评定。 2 测量过程及主要设备 2.1 检测过程:依据GB/T 5750.4-2006,8.1~水样经过滤后~在105?烘干~所得的固体残渣即为溶解性总固体。 平行测量8份水样~计算得平均值为258.1mg/L~100ml溶解性总固体为 0.02581g~标准差为0.0011g。 2.2 仪器设备:BS124S电子天平 3 数学模型 mm,21TDS,,,10001000 V 式中:m1——蒸发皿的质量~g m2——蒸发皿与溶解性总固体的质量~g V——水样体积~ml 4 不确定度的来源分析 4.1 ,m-m,引起的相对标准不确定度分量 u 21,m, 4.2 取样量V引起的相对标准不确定度分量u(V) 5 不确定度的评定 5.1 ,m-m,引起的不确定度分量 u 21,m, 5.1.1 称量产生的不确定度u ,m1,

(1) 天平校准产生的不确定度u 1 型号为BS124S电子分析天平~校准产生的不确定度由计量证书 给出~扩展不确定度为0.3mg~包含因子k=2。 u=0.0003/2=0.00015g 1 ,2, 天平的分辨率产生的不确定度u 2 天平的分辨率为0.1mg~我们可以取其为均匀分布的不确定度,真值读数可能在0.01mg或0.09mg之间~即0.05mg~其不确定度 u=0.00005/=0.000029g 33 ,3, 恒重产生的不确定度u 3 GB/T 5750.4-2006规定两次称重相差不得大于0.4mg~按均匀分布计算得 u=0.0004/=0.00023g 34 222以上三项合成 uuuug,,,=0.00028123m1,, 5.1.2 样品重复测量产生的不确定度u ,m2, 100ml水样重复测量得溶解性总固体为0.0258g~标准差为 0.00110.0011g。标准不确定度ug,, 0.00039m2,,8 5.2 ,m-m,引起的合成不确定度分量 u 21,m, 22uuug,, =0.00048m(2)(m1)m,, 6.1 吸取水样产生的不确定度u ,v, 用无刻度吸管吸取100ml水样测定~最佳测量能力为0.071ml~k=2~不确定度u=0.071/2=0.036ml。 ,v, 100ml溶解性总固体为0.0258g~那么u=0.0000093g ,v, 7 合成标准不确定度评定 由于各分项的不确定度来源彼此独立不相关~故该方法的标准不 22uuug,,确定度为:=0.00048 v()c(m)

压力传感器测量误差不确定度分析

线性压力传感器(静态)基本误差不确定度评定 吉林省计量科学研究院:张攀峰 李德辉 韩晓飞 孙俊峰 1、评定依据:JJG 860-1994 《压力传感器(静态)》 JJF 1059-1990 《测量不确定度评定与表示》 JJF 1094-2002 《测量仪器特性评定》 2、测量方法: 检定/校准、检测装置由标准器(在此为0.02级活塞式压力计)、压力源、三通接头用导压管连接起来而组成,导压管另一端与压力传感器(以下简称传感器)连接起来,连接处不得泄漏,外加对传感器供电电源,并由数字电压表读取传感器输出。通过采用多次循环测量确定被测传感器工作直线方程的方法进行检定/校准、检测。 3、数学模型 依据JJG 860 — 1994 压力传感器(静态)检定规程可知,线性压力传感器的基本误差公式为: A =±(ξS +ξLH )------(1) 式中:A ——传感器各检定/校准、检测点的基本误差(以绝对误差表示) ξLH ——传感器各检定/校准、检测点系统标准不确定度分量 3 方差和灵敏度系数 ()()() () 22 222212------+=LH S u C u C A u ξξ

式中:灵敏度系数C 1=C 2=1 则: 4 标准不确定度一览表 5 标准不确定度分量的计算 5.1 由被检定/校准、检测传感器重复性引起的标准不确定度u (ξS ): 用0.02级活塞压力计检定/校准、检测由北京中航机电技术公司生产CYB —IOS 型,编号为2H2883,测量范围为0—80MPa,0.25级传感器的0MPa 、10MPa 、20MPa 、30MPa 、40MPa 、50MPa 、60MPa 、70MPa 、80MPa 点,分别读取被检定/校准、检测传感器各点四个循环读数如下表所示: 传感器在整个测量范围内的标准偏差为s : ()()() () 3222------+=LH S u u A u ξξ) 4(21 2 1 2------+= ∑∑==m S S s m i Di m i Ii

电子秤不确定度评定

15Kg电子秤示值误差测量结果的不确定度评定 1概述 1.1测量依据:JJG555-1996《非自动秤通用检定规程》。 1.2 环境条件:温度(-10~40)℃ 1.3 测量标准器:M1等级砝码,根据JJG99-2006《砝码检定规程》中给出100mg~10kg砝码质量最大允许误差MPE:±(0.5mg~0.5g)。 1.4被测对象: 电子秤 e为5g,0~500e为±0.5e;>500~2000e为±1.0e;> 2000e~max为±1.5e。 1.5测量过程:用砝码直接加载、卸载方式,分段测量示值与标准砝码之差即为示值误差。 一般情况下,检定电子秤大致均匀分布的10个称量点。 1.6评定结果的使用: 在符合上述条件下,对15kg规格电子秤的15kg称量点示值误差的测量,一般可使用本不确定度评定结果,对其他示值和其他电子秤的示值误差测量结果的不确定度评定,可采用本评定方法。 2 数学模型: △E=P-m 式中,△E--电子秤的示值误差 P--电子秤示值 m--标准砝码质量值 3 输入量的标准不确定度评定 本评定方法以最大称量15kg点为例 3.1输入量P的标准不确定度u(P)的来源主要是电子秤测量重复性、四角偏载误差以及示 值随电源变化等。 3.1.1电子秤测量重复性引入的不确定度分量u(P1)的评定(用A类方法评定) 用标准砝码在重复性条件下对电子秤进行连续10次测量,得到测量数据15.0000; 15.0000;4.9995;14.9995;14.990;15.0000;14.9995;14.9990;15.0000;14.9995(kg)

单次测量的标准偏差: 3.1.2电子秤的偏载误差引入的不确定度分量u (P 2)的评定(用B 类方法评定) 电子秤在进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积中最大值与最小值之差,根据试验数据,一般不会超过5g ,其半宽α=2.5g 。而在实际工作时,放置砝码的位置比较注意,实际的偏载量,根据经验,一般只有试验偏载量的1/3。 实际偏载量为:2.5g/3=0.83g 此误差属于平均分布,包含因子为3。 所以u (P 2)=0.83g/3=0.48g 3.1.3 电源电压不稳定引入的不确定度分量u (P 3)的评定(用B 类方法评定) 根据有关资料,电源电压在规定条件下(电源电压变化:220V -15%~+10%;电源频率变化:-2%~+2%)变化会造成示值变化0.2e ,即1.0g 。 半宽度为α=1.0g 。此误差属于平均分布,根据《JJF1059测量不确定度评定与表示》附录中的规定,其包含因子(p =100%)为3。 所以u (P 3)=1.0g/3=0.58g 3.1.4 输入量P 的标准不确定度u (P )的计算 由于输入量P 的各分量彼此独立不相干,因此 g P u P u P u P u 82.0)()()()(322212=++= 3.2 输入量m 的标准不确定度u(m) 输入量m 的标准不确定度u(m)可以根据检定证书上得到,如果检定证书上没有给出扩展不确定度,可查找检定规程,得到15kg M 1等级砝码的最大允许误差为±0.75g ,根据《JJF1059测量不确定度评定与表示》附录中的规定,按级使用的数字式仪表、测量仪器最大允许误差导致的不确定度为均匀分布,其包含因子(p =100%)为3。 所以u(m)=0.75g/3=0.43g g n P P P s n i i i 40.01 ) ()(1 2 =--= ∑=

电子天平检定或校准结果的测量不确定度评定

1、测量依据:JJG 1036-2008《电子天平》检定规程。 1.1环境条件:温度(18~26)℃,温度波动不大于0.5℃∕h ,相对温度不大于(30%~70%)RH 1.2测量标准:F 1等级标准砝码,JJG 99-2006 《砝码》检定规程中给出其200g 砝码扩展不确定度不大于0.3㎎,包含因子k=2 1.3被测对象: 200g/ 1㎎电子天平。量程(0.020~50)g ,最大允许误差为±5㎎;量程(50~200)g ,最大允许误差为±10㎎.一般情况下,校准天平的空载、最小称量点、最大允许误差转换点对应载荷、最大称量点以及大致均匀分布点。 1.4测量方法:采用标准砝码直接来测量天平的示值,可得标准砝码与电子天平实际值之差,即为电子天平的示值误差。 1.5评定结果的使用:在符号上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 2、数学模型:s m m m -=? 式中: △m —电子天平示值误差 m —电子天平示值 m s —标准砝码折算质量值 3、输入量的标准不确定度评定

第2页 共4页 ZY/CSZX JD BD 09-2015电子天平检定结果的测量不确定度分析作业指导书 作业指导书 评定方法以200g 天平最大称量点为例,其它称量点的示值误差测量结果的不确定度可参照本方法进行评定。 3.1 输入量m s 的标准不确定度u (ms )的评定 标准砝码输入量m s 的标准不确定度u (ms )采用A 类和B 类方法进行评定。 根据JJG 99-2006 《砝码》检定规程中所给出,F 1等级标准砝码200g 的扩展不确定度为0.3㎎,包含因子k=2 标准不确定度 ()mg mg u ms 15.023.0== ' 3.2 标准砝码质量的不稳定性引起的不确定度,采用A 类评定 对一稳定的电子天平在半年内六次测得值为(单位为g ) 200.002g 200.003g 200.002g 200.003g 200.003g 200.003g ()mg g n x x u n i i ms nst i 52.000052.0)1()(1 2 ==--= ∑= 因此()mg u u u ms nst i ms ms 54.0)(2 2 )(=+'= 3.3 输入量m 的标准不确定度u(m)的评定 输入量m 的标准不确定度来源于天平的测量重复性,可以用同一砝码,通过连续测量得到测量列,采用A 类方法进行评定。以200g 为天平最大称量点,在重复性条件下连续测量10次,得到的测量列为:199.999g 199.998g 199.999g 199.998g 199.999g 200.000g 199.999g 200.000g 199.999g 199.998g

测量仪器准确度、最大允许误差和不确定度辨析

测量仪器准确度、最大允许误差和不确定度辨析国家计量技术规范JJF1033—2001《计量标准考核规范》对所采用的计量标准器具、配套设备以及所开展的检定/校准项目的准确度指标,要求填写“不确定度或准确度等级或最大允许误差”;JJF1069—2000《法定计量检定机构考核规范》要求填写检定/校准“准确度等级或测量扩展不确定度”;实验室国家认可的校准项目则是填写“不确定度/准确度等级”。以上几种表述方式,表面看来仅仅在文字上有所区别,而实际,在对不确定度如何表达的问题上,存在不同的理解和误区。例如,JJF1033—2001对计量标准器具、配套设备不确定度的解释是“已知测量仪器或量具的示值误差,并且需要对测量结果进行修正时,填写示值误差的测量不确定度”;另JJF1033—2001对所开展的检定及校准项目不确定度的解释是“指用该计量标准检定或校准被测对象所给出的测量结果不确定度,其中不应包括由被测对象所引入的不确定度分量”(见JJF1033—2001国家统一宣贯教材《计量标准考核规范实施指南》,中国计量出版社)。对仪器的不确定度,在同一规范中,已有不同的理解,在其它规范中的含义也各有区别,还有不少专家提出用不确定度表示测量仪器的特性,根本就是不合适。为了对表述测量仪器的准确度指标有统一和清晰的理解,对仪器准确度等级、最大允许误差和不确定度的意义和内在联系进行分析和探讨,是十分必要的。 一、准确度等级是用符号表示的准确度档次 测量仪器准确度是定性概念。这个问题在JJF1001—1998《通用计量术语及定义》,JJF1059—1999《测量不确定度的评定与表示》,BIPM、ISO等7个国 际计量组织1993年颁布的《国际基本和通用计量名词术语》(VIM)、ISO等7 个国际组织于1993年正式颁布《测量不确定度表示指南》(GUM)已有明确的解释。JJF1033—2001《计量标准考核规范》也已将JJF1033—1992中对计量标准 准确度赋予一个定量计算公式的规定作出修订,以测量结果不确定度取代。明确测量仪器准确度是定性概念,以和国际接轨以及和上面规范保持一致是十分必要的。由于VIM和GUM是以多个国际组织的名义联合颁布,国际上各个组织也在逐渐消除这种不规范的表述。对于一些不合适的表达,如“二等活塞压力计的准确度为±0.05%”,只能是对标准、规范等文件的修订逐步改正。

电子台秤不确定度评定

For personal use only in study and research; not for commercial use 宁波市计量测试研究院 电子台秤测量结果的不确定度评定

1.概述 1.1 测量依据:JJG539-1997《数字指示秤检定规程》。 1.2 环境条件:温度(-10~40)℃。 1.3 测量标准:M1等级标准砝码,根据JJG99-2006《砝码检定规程》中给出500mg~15kg砝码最大质量允差 为±(0.8 mg~750 mg)。 1.4 被测对象: 电子秤的分类 允许误差为:(0~500)e为±0.5e;>(500~2000)e为±1e; >2000e为±1.5e。 1.5 测量过程 用砝码直接加载、卸载的方式,分段测量示值与标准砝码之差。 1.6 评定结果的使用 在符合上述条件下,对3kg规格电子秤的3kg点示值误差的测量,一般可使用本不确定度评定结果。对其他示值和其他规格电子秤的示值误差测量结果的不确定度可采用本评定方法。 2. 评定模型 ΔE = P - m 式中:ΔE—电子秤示值误差; P—电子秤示值; m—标准砝码质量值

3. 输入量的标准不确定度评定 本评定方法以ACS —3电子秤,3kg 称量点为例。 3.1 输入量P 的标准不确定度来源u(P )主要是电子秤测量重复性u(P 1)及电子秤分辨率的影响u(P 2)。 3.1.1 ACS-3电子秤测量重复性引起的标准不确定度分项u(P 1)的评定(A 类评定方法) 用标准砝码在重复性条件对电子秤在最大秤量进行10次连续测量,得到测量列为:(单位:g )2.9995,2.9994,2.9995,2.9997,2.99995,2.9994,2.9997,2.9999,2.9998,2.9994。 单次实验标准差为 0.18s g == 则标准不确定度为1()0.056u P g = == 自由度v P1可按下式计算: v P1 =n-1=10-1 =9 3.1.2电子秤分辨率引起的标准不确定度分项u (P 2)的评定,用B 类标准不确定度评定 被检电子秤的分度值为1g ,采用闪点法可以使数字分辨率为0.1g ,则不确定度区间半宽为0.1g ,按均匀 分布计算:2()0.058u P g = = 3.1.4 输人量P 的标准不确定度的计算 由于输人量P 的分项彼此独立不相关,因此, 则 222 12()()()u P u P u P =+ 3.2输入量m 的标准不确定度评定 输人量m 的不确定度可以根据检定证书中得到,如检定证书中没有给出扩展不确定度,则可按OIML R111砝码国际建议的约定,对低准确度级砝码的标准不确定度等于允差表规定的最大允许误差的 。 查表得到3kg 砝码,允差±0.15g ,估计分布为均匀分布,即k = 4.合成标准不确定度的评定 4.1合成标准不确定度的计算 输入量P 与m 彼此独立不相关,所以合成标准不确定度可按下式得到: 5.扩展不确定度的评定 取置信概率95%,按有效自由度,查t 分布表得到 k p = t 95(50) = 2.01 扩展不确定度 U 95 = t 95(50)·u c (ΔE) =2×0.11=0.22g 13

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重

的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结经验和规律用科学的方法不断去修正,保障电子台秤测量结果的真实性以及可靠性。 5、鉴别力误差。 电子台秤的鉴别力大小反映了电子台秤对负载的微小变化的反应快慢能力。对电子台秤进行鉴别力误差测试的目的在于更加准确的检验电子台秤的结构连接过程以及摩擦过程,所以,机械连接中的摩擦和应力是造成电子台秤的鉴别力误差的主要影响因素。 三、电子台秤校准结果测量不确定度的评定 1 范围。 适用于电子台秤示值误差测量结果的不确定度评定。 2 引用文件。 JJF 1059.1- 2012 测量不确定度评定与表示 JJG 539- 97 数字指示秤检定规程 3 概述。 3.1 测量依据:JJG 539- 97 数字指示秤检定规程。 3.2 环境条件:温度:21.5℃ 湿度:48%RH。 3.3 测试标准:M1级砝码。 3.4 被测对象:电子台秤。 3.5 测量过程:用砝码直接测量的方式,分段测量示值与标准砝码之差。 3.6 评定结果的使用在符合上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 4 数学模型。 E=P- m 其中:E———电子台秤示值误差; P———电子台秤示值; m———标准砝码质量值。 5 输入量的标准不确定度评定。

综合不确定度分析

电子天平测量结果不确定度评定报告 1 概述 1.1 测量依据:JJG 1036-2008《电子天平检定规程》(电子天平部分); 1.2 测量标准:E2级标准砝码装置,出厂编号968,根据JJG 99-2006《砝码检定规程》中给出100g砝码的扩展不确定度不大于0.053mg,包含因子k=2; 1.3 环境条件:温度23℃,相对湿度31 %; 1.4 测量对象:电子天平100g/0.1mg,型号AB104-S,出厂编号1128422995; 1.5 测量过程:检定方法属直接测量法,标准砝码与电子天平示值之差为电子天平示值误差。 2 不确定度来源分析 2.1 输入量m的标准不确定度u(m),包括: 2.1.1 被检天平测量重复性的标准不确定度u1(m); 2.1.2 电子天平的分辨力引入的标准不确定度u2(m); 2.1.3 由温度不稳定及振动等引入的标准不确定度u3(m); 2.2 由标准砝码本身的误差引入的标准不确定度u(m B)。 3 数学模型 Δm = m —m B 式中: Δm——电子天平示值误差; m——电子天平示值; m B——标准砝码值。 但实际上考虑电子天平的示值与上述不确定度来源中的被检天平的测量重复性、电子天平的分辨力及环境温度的不稳定和振动等影响因素有关,故在测量不确定度评定中必须考虑这三个附加因素的影响,考虑到上述不确定度来源,于是数学模型成为: Δm = m ×f重复性×f分辨力×f温度、振动—m B

4 输入量的标准不确定度评定 4.1 输入量m的标准不确定度分量u(m)的评定 4.1.1 重复性测量 被检天平测量重复性的标准不确定度u1(m),可以通过连续测量得到测量列,采用A类方法评定: 以100g为天平最大称量点,进行n=10次重复测量,测得结果如表1所示。 表1 测量数列 次数12345 实测值(g)100.0004100.0004100.0003100.0004100.0003次数678910 实测值(g)100.0004100.0002100.0003100.0004100.0004 其平均值为:100.0004 g 可用贝塞尔公式计算得:u1(m) = s(x i)= 0. 071mg 自由度:υ(m1) =(n-1)= 9 4.1.2 分辨力 电子天平的分辨力引入的不确定度u2(m) ,我们采用标准不确定度的B类评定方法,我们所采用的天平的分辨力为0.1mg,根据经验,数字式测量仪器的分辨力导致的不确定度一般可以近似地估计为矩形分布(均匀分布),矩形分布k取3, 所以有u2(m)=a/k= 0.05÷3= 0.03 mg 自由度为υ(m 2) = ∞ 4.1.3温度不稳定及振动等引起示值不确定度u3 (m),由于实验室在采用砝码校准的过程中完全采用计量标准规定的方法要求,环境温度的控制、周围振动等影响在此予以忽略。 电子天平示值合成标准不确定度u c(m) 由于没有任何输入量具有值得考虑的相关性,因此 u2 (m) = u12(m)+u22(m) +u32(m) u (m)= √u12 (m)+u22 (m) +u32 (m) = 0.078 mg 4.2 标准砝码误差引入的不确定度量分量u(m B)的评定 该不确定度分量主要由检定装置的误差引起,采用B类评定方法: 由JJG 99-2006《砝码检定规程》可知100g砝码的扩展不确定度不大于 0.053mg,包含因子k = 2 则:标准不确定度u(m B) = 0.053mg ÷2 = 0.027mg/3=0.016mg 5 合成标准不确定度的评定 5.1数学模型Δm = m×f重复性×f分辨力×f温度、振动—m B 灵敏系数为:

测量的不确定度,测量误差

什么叫测量的不确定度?什么叫测量误差?测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为 A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类: 系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别: 一.评定目的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二.评定结果的区别:

测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。 三.影响因素的区别: 测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。 否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。 四.按性质区分上的区别: 测量不确定度分量评定时一般不必区分其性质,若需要区分时应表述为: “由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。 五.对测量结果xx的区别: “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度; 而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。

误差精度与不确定度的区分

作为计量人员,误差、精度与不确定度是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所芸。在此略作论述,希望能引起大家讨论。 一、误差的基本概念: 1.误差的定义: 误差=测得值-真值; 因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。 2.误差的表示方法: 2.1 绝对误差: 绝对误差=测量值-真值(约定真值) 在检定工作中,常用高一等级准确度的标准作为真值而获得绝对误差。如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为 100.5N/cm2,二等活塞压力计示值为100.2N/cm2,则二等活塞压力计的测量误差为-0.3N/cm2。 2.2 相对误差: 相对误差=绝对误差/真值X100% 相对误差没有单位,但有正负。 如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。 2.3 引用误差: 引用误差=示值误差/测量范围上限(或指定值)X100%引用误差是一种简化和实用方便的仪器仪表示值的相对误差。 如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。 3.误差的分类: 3.1 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结

果的平均值与被测量的真值之差。 3.2 随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。 3.3 粗大误差:超出在规定条件下预期的误差。 二、精度: 1.精度细分为:准确度:系统误差对测量结果的影响。精密度:随机误差对测量结果的影响。精确度:系统误差和随机误差综合后对测量结果的影响。精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。对测量而言,精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高的准确度与精密度都高,精度是精确度的简称。目前,不提倡精度的说法。 三、测量不确定度: 1.定义:表征合理地赋予被测量之值地分散性,与测量结果相联系地参数。 (1)此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 (2)测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,并用实验标准差表征。另一些分量则可用基于经验或其他信息的假定概率分布估算,也可用标准偏差表征。 (3)测量结果应理解为被测量之值的最佳估计,而所有的不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 由此可以看出,测量不确定度与误差,精度在定义上是不同的。因此,其概念上的差异也造成评价方法上的不同。 四、测量误差和测量不确定度的主要区别 1.定义上的区别:误差表示数轴上的一个点,不确定度表示数轴上的一个

数字指示秤不确定度评定

电子台秤示值误差测量结果的不确定度评定 1.概述: 1.1测量依据:JJG539-1997《数字指示秤检定规程》 1.2环境条件:温度-10℃~40℃ 1.3测量标准:M1级砝码,根据JJG99-1990《砝码检定规程》中给出50g~20kg质量最大允许误差为±(3mg~1g)。 1.4被测对象:电子秤Ⅲ级,检定分度值e=0.5kg,0~500e为± 0.5e,(500~2000)e为±1.0e,2000e~Max为1.5e。 1.5测量过程:用砝码直接加载、卸载的方式,观察测量示值与标准砝码之差即为示值误差。 2.数学模型:△E=p-m 式中:△E—电子秤示值误差(kg) p—二次仪表显示值(kg) m—标准砝码质量值(kg) 对上式求偏导得灵敏系数为:C1=1,C2=-1 3.输入量的标准不确定度评定: 3.1输入量p的标准不确定度来源u(p)主要是电子秤测量重复性、四角偏载误差、示值随电源电压变化以及二次仪表分度值选取引起 的示值误差等。 3.1.1电子秤测量重复性引起的标准不确定度来源u(p1)的评定 (A类评定方法)。

用固定砝码在重复性条件下对电子秤进行10次连续测量,得到测量列:1000.00,1000.00,999.95,999.85,1000.00,1000.00,999.85,999.85,1000.00,1000.00kg p — = 1n ∑i=1 n p i =999.95(kg ) 根据贝塞尔公式:S =∑ i=1 n (p i -p 1 ̄)2 n-1 = 0.12(kg ) u (p 1)= S n = 0.12 3 = 0.07(kg ) 自由度γp1 = 3×(n-1)=27 3.1.2电子秤的偏载误差引起的标准不确定度分项u (P 2)评定。 电子秤进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积上,最大值与最小值之差一般不会超过0.5kg ,半宽a=0.25kg 。假设其误差为偏载时的1/3,并服从均匀分布,包含因 子k= 3 ,可得u (p 2)= 0.25 33 =0.05(kg ) 估计△u (p 2) u (p 2) = 0.10,则γρ2= 12 [△u (p 2) u (p 2) ]-2= 50 3.1.3电源电压稳定度引起的标准分项u (p 3)评定。 电源电压在规定条件下变化可能会造成示值变化0.2e ,即0.1kg 。假设半宽度a=0.1kg ,服从均匀分布,包含因子k= 3 u (p 3)= 0.1 3 =0.06(kg )

相关文档
最新文档