差分格式的稳定性与收敛性1

差分格式的稳定性与收敛性1
差分格式的稳定性与收敛性1

一维热传导方程的差分格式

《微分方程数值解》 课程论文 学生姓名1:许慧卿学号:20144329 学生姓名2:向裕学号:20144327学生姓名3:邱文林学号:20144349学生姓名4:高俊学号:20144305学生姓名5:赵禹恒学号:20144359学生姓名6:刘志刚学号: 20144346 学院:理学院 专业:14级信息与计算科学 指导教师:陈红斌 2017年6 月25日

《偏微分方程数值解》课程论文 《一维热传导方程的差分格式》论文 一、《微分方程数值解》课程论文的格式 1)引言:介绍研究问题的意义和现状 2)格式:给出数值格式 3)截断误差:给出数值格式的截断误差 4)数值例子:按所给数值格式给出数值例子 5)参考文献:论文所涉及的文献和教材 二、《微分方程数值解》课程论文的评分标准 1)文献综述:10分; 2)课题研究方案可行性:10分; 3)数值格式:20分; 4)数值格式的算法、流程图:10分; 5)数值格式的程序:10分; 6)论文撰写的条理性和完整性:10分; 7)论文工作量的大小及课题的难度:10分; 8)课程设计态度:10分; 9)独立性和创新性:10分。 评阅人: - 2 -

一维热传导方程的差分格式 1 引言 考虑如下一维非齐次热传导方程Dirichlet 初边值问题 22(,),u u a f x t t x ??=+?? ,c x d << 0,t T <≤ (1.1) (,0)(),u x x ?= ,c x d ≤≤ (1.2) (,)(),u c t t α= (,)(),u d t t β= 0t T <≤ (1.3) 的有限差分方法, 其中a 为正常数,(,),(),(), ()f x t x t t ?αβ为已知常数, ()(0),c ?α= ()(0).d ?β= 称(1.2)为初值条件, (1.3)为边值条件. 本文将给出(1.1) (1.3)的向前Euler 格式, 向后Euler 格式和Crank Nicolson -格式, 并给出其截断误差和数值例子. 经对比发现, Crank Nicolson -格式误差最小, 向前 Euler 格式次之, 向后Euler 格式误差最大. 2 差分格式的建立 2.1 向前Euler 格式 将区间[,]c d 作M 等分, 将[]0,T 作N 等分, 并记 ()/h d c M =-, /T N τ=, j x c jh =+,0j M ≤≤, k t k τ=,0k N ≤≤. 分别称h 和τ为空间步长和时间步长.用 两组平行直线 j x x =, 0j M ≤≤, k t t =, 0k N ≤≤ 将Ω分割成矩形网格.记{} |0h j x j M Ω=≤≤, {}|0k t k N τΩ=≤≤, h h ττΩ=Ω?Ω. 称() ,j k x t 为结点[1] . 定义h τΩ上的网格函数 {}|0,0k j U j M k N Ω=≤≤≤≤, 其中() ,k j j k U u x t =. 在结点() ,j k x t 处考虑方程(1.1),有

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

热传导方程向后差分格式的MATLAB程序

向后差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end u(2:M,2)=S; u(:,1)=u(:,2); end %计算精确解 for x=0:M

笔记:线性常差分方程基本知识

本材料是关于线性常差分方程基本知识的笔记,参考了两个文献: 1、《差分方程》【日】福田武雄著穆鸿基译上海科学技术出版社1962年9月第一版 2、《常差分方程》王联、王慕秋著新疆大学出版社1991年2月第一版

目录 第一节差分 第二节和分 第三节对步长及定义域的约定 第四节阶乘多项式与差分 第五节Bernoulli多项式与差分 第六节几个公式,例题 第七节n阶线性常差分方程的解的结构 第八节 Lagrange变易常数法 第九节解n阶常系数齐次线性方程的特征根方法 第十节常系数对称型线性方程的解 第十一节几种特殊常系数非齐次线性方程的解法

第一节 差分 定义1.1:设函数()x f 的定义域是D ,R D ?,R x ∈?,0≠?x ,D x ∈?有D x x ∈?+,定义算子?为 ()()()x f x x f x f -?+=? 称x ?是x 的变化步长,()x f ?是()x f 在x 处的步长为x ?的一阶差分、阶差、有限差;D x ∈,函数()x f ?称为D 上的差分函数,简称差分;算子?是步长为x ?的差分算子。定义为 ()()x x f x f ?+=E 称()x f E 是()x f 在x 处的步长为x ?的一阶位移;称函数()x f E 是D 上的位移函数,简称位移;算子E 是步长为x ?的位移算子。定义算子I 为 ()()x f x f =I 称算子I 为恒等算子。称函数 ()x x f ??是D 上的差商函数,简称差商。 约定算子?与算子E 的步长相等。 注1.1: 大写希腊字母?、E 、I 的小写形式是δ、ε、ι,其英文单词形式是delta /`delt ?/ 、epsilon /ep`sail ?n/ 、 iota /ai`?ut ?/ 。 若D x ∈?,有D x x ∈?+,则N n ∈?,有D x n x ∈?+。 定理1.1:算子?、E 、I 有以下关系: ①()()()()()x f x f x f x f I -E =I -E =?,即I -E =?。 ②()()()()()x f x f x f x f I +?=I +?=E ,即I +?=E 。 ③()()()()x f x f E ?=?E ,即?E =E?。 定理1.2:算子?、E 是线性算子。对R b a ∈,,函数()x f 与()x g ,有以下等式 ()()()()()x g b x f a x bg x af ?+?=+? ()()()()()x g b x f a x bg x af E +E =+E 定义1.2:设N n ∈,作递推定义 ()()()x f x f x f =I =?0,()()() x f x f n n ??=?+1

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

差分格式稳定性及数值效应比较实验

差分格式稳定性及数值效应比较实验 5090719044 张赟F0907102 一实验目的: 1.以一阶线性双曲线方程为例,使用Matlab工具分析4种差分格式的误差。 2.了解4种差分格式的稳定性 二实验问题: 对于一阶线性双曲型方程: 取a=1,2,4, h=0.1, τ=0.08, 对不同的差分格式(迎风格式,Lax-Friedrichs格式,Lax-Wendroff格式,修正迎风格式)及不同的a值进行迭代计算。通过将计算结果与精确解来进行比较,来讨论分析差分格式的稳定性。 三实验原理: 1.迎风格式: 这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特征线方向一侧的单边差商来代替,格式如下: 运算格式: https://www.360docs.net/doc/603078960.html,x-Friedrichs格式:

运算格式: https://www.360docs.net/doc/603078960.html,x-Wendroff格式: 这种格式构造是采用Taylor 级数展开和微分方程本身得到,运算格式: 4.修正迎风格式(目标点范围跟踪格式): 其中是取整数部分,=。根据之后的理论分析可以得到这是一个无条件稳定结构。 四四种格式理论分析: 通过求差分格式的增长因子G(τ, k),来判定差分格式是否稳定。 1.迎风格式: 记,则, 得, 即。 所以。 则在,满足von Neumann条件,格式稳定。 以下格式用相同方法求解稳定性条件。 https://www.360docs.net/doc/603078960.html,x-Friedrichs格式: ,在时稳定。

https://www.360docs.net/doc/603078960.html,x-Wendroff格式: ,在时稳定。 4.修正迎风格式(目标点范围跟踪格式): , 其中,的成立条件为。而恒成立,故格式无条件稳定。 五实验结果: a=1() 迎风格式Lax-Friedrichs格式 Lax-Wendroff格式修正迎风格式

热传导方程向前差分格式的MATLAB程序

向前差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end D=(1-2*r)*eye(M-1); temp=r*linspace(1,1,M-2); D=D+diag(temp,1)+diag(temp,-1); S=D*S

差分方法的稳定性

差分方法的稳定性 1.实验内容 对于一阶线性双曲线型方程: 其中初值 取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间来讨论和分析差分格式的稳定性。 2.算法思想与步骤 2.1迎风格式 这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特 征线方向一侧的单边差商来代替,格式如下: 运算格式: 2.2 Lax-Friedrichs 格式

运算格式: 2.3 Lax-Wendroff格式 这种格式构造采用Taylor级数展开和微分方程本身得到 运算格式: 2.4 Bean-Warming格式(二阶迎风格式) 借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。 A,B,C和D 层上网格点P 假定C.F.L条件成立,过P点特征线与BC交于点Q, ①用B,C两点值进行线性插值,得到的是迎风格式; ②用B,D两点值进行线性插值,得到的是Lax-Friedrichs格式; ③用B,C和D三点值进行抛物型插值,得到的是Lax-Wendroff格式。 如果我们采用A,BC三点来进行抛物型插值,可以得到 这就是Beam-Warming格式。

2.5 蛙跳格式 运算格式: 保持精度的阶数相同,一般我们用Lax-Wendroff格式或Beam-Warming格式。 2.6 目标点范围跟踪格式(迎风格式的改进) 下面的分析将会得到这是一个无条件稳定结构。 3.数据分析与作图 3.1迎风格式

稳定性分析: 记,则,得

研究有限差分格式稳定性的其他方法 - 报告

2015 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:偏微分方程数值解法 学生所在院(系):理学院数学系 学生所在学科:数学 学生姓名:H i t e r 学号:1X S012000 学生类别: 考核结果阅卷人

研究有限差分格式稳定性的其他方法 摘要 偏微分方程的求解一直是大家比较关心的一个问题,而有限差分格式则是求解偏微分方程时常用并且有效的一个方法。因此,研究有限差分格式的性质就显得尤为重要。在课上我们已经跟着老师学习了运用Fourier方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt启示型方法、直接方法(或称矩阵方法)和能量不等式方法。 关键字:偏微分方程;有限差分格式;稳定性 Abstract The solution of partial differential equations has been more concerned with a problem, and the finite difference scheme is a common and effective method for solving partial differential equations. Therefore, it is very important to study the character of the finite difference scheme. We have followed the teacher to learn the use of Fourier method of finite difference scheme stability, but in a lot of research on the stability of finite difference scheme is only used Fourier method is not enough, so in this paper, will introduce the other three kinds of commonly used in the study of finite difference scheme stability method, respectively is: Hirt enlightenment method, direct method (or matrix method) and energy inequality method. Key words: partial differential equation; finite difference scheme; stability 1 前言 微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。在课上我们已经跟着老师学习了运用Fourier方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt 启示型方法、直接方法和能量不等式方法。 2 Hirt启示性方法 2.1 方法概述 Hirt启示性方法是一种近似分析方法。主要是把差分格式在某确定点上作泰勒级数近似

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

有限差分和Matlabpde求解一维稳态传热问题.(优选)

有限差分和pde 函数求解一维定态热传导方程 分别用有限差分方法和pde 函数求解一维定态热传导方程,初始条件和边界条件,热扩散系数α=0.00001, 22 T T t x α??=?? (1) 求解过程: 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 首先对T 进行泰勒展开得到如下两式子: 2 3 1231 2 3 ... 232! 3! 2 3 ... 232!3!n n n n n j j j j j n n n n n j j j j j t t T T t x x T T x T T T t t t T T T x x x ++??=+?+ + +??=+?+ + +????????? ? ? ?????? ???? ????????? ? ? ?????? ?? ?? 上述两个方程变换得: ()11223 23...23n n n n n n n j j j j j j j T T T T T t T t T o t t t t t t ++--???? ???????= --=+? ? ? ???????????? (2) 223 123...23n n n n n j j j j j T T T x T x T x x x x --???? ???????= -- ? ? ??????????? ()1232422 342222...3!4!n n n n n n j j j j j j T T T T x T x T x x x x x x +-?? ????????????=--- ? ? ? ??????????????? ()()2112 22 22-n n n j j j T T T T o x x x +--+???=+? ????? (3) 将上述式子(2)(3)代入(1)得:

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

向前差分格式求解二维热传导方程

用向前差分格式求解二维热传导方程function varargout=liu(varargin) T=1;a=1;h=1/30;dt=1/150; [X,T,Z]=chfenmethed(h,dt,a,T); mesh(X,T,Z(:,:,3)); shading flat; % xlabel('X','FontSize',14); % ylabel('t','FontSize',14); % zlabel('error','FontSize',14); % title('误差图'); function [X,Y,Z]=chfenmethed(h,dt,a,T); %求解下问题 %u_t-a*(u_xx+u_yy)=f(x,y,t) 0

n=length(t); r=a*dt/h^2; [X,Y]=meshgrid(x,y); Z=zeros(m,m,n); U=zeros(m,m,n); for i=1:m for j=1:m U(i,j,1)=d(x(i),y(j)); end end for j=2:n for k=1:m U(1,k,j)=g0(y(k),t(j)); U(m,k,j)=g1(y(k),t(j)); U(k,1,j)=h0(x(k),t(j)); U(k,m,j)=h1(x(k),t(j)); end end for k=2:n for i=2:m-1 for j=2:m-1

一维导热方程有限差分法matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

热传导方程地差分格式

一维抛物方程的初边值问题 分别用向前差分格式、向后差分格式、六点对称格式,求解下列问题: 22,01,u u a x t x ??=< 在0.05,0.10.2t =和时刻的数值解,并与解析解2 (,)sin()t u x t e x ππ-=进行比较。 1差分格式形式 设空间步长1/h N =, 时间步长0τ>,T M τ=,网比2/r h τ=. (1)向前差分格式 该问题是第二类初边值问题(混合问题),我们要求出所需次数的偏微商的函数 (,)u x t ,满足方程22,01,u u a x t x ??=<。 已知sin x π在相应区域光滑,并且在0,x l =与边值相容,使问题有唯一充分光滑的 解。 取空间步长1/h N =,和时间步长/T M τ=,其中,N M 都是正整数。用两族平行直 线 (0,1,,) j x x jh j N ===L 和 (0,1,,) k t t k k M τ===L 将矩形域 {01,0}G x t =≤≤≥分割成矩形网络,网络格节点为(,)j k x t 。以h G 表示网格内点集合, 即位于矩形G 的网点集合;h G 表示闭矩形G 的网格集合;h h G G -=Γh 是网格界点的集合。 向前差分格式,即 i k j k j k j k j k j f h u u u a u u ++-=--++2 1 112τ (1)

常微分方程与差分方程知识点

常微分方程与差分方程知识点 考试纲要 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 微分方程的简单应用 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 考试要求 1、了解微分方程及其阶、解、通解、初始条件和特解等概念 2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法 3、会解二阶常系数齐次线性微分方程 4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程 5、了解差分与差分方程及其通解与特解等概念 6、了解一阶常系数线性差分方程的求解方法 7、会用微分方程求解简单的经济应用问题 重要知识点 1、微分方程通解中任意常数的个数与微分方程的阶数相同 2、变量可分离微分方程解法 g(y)dy f (x)dxg(y)dy f(x)dx G(y) F(x) C 3、齐次微分方程解法 dy(y)T殳u y- dU dx T再用y代替u dx x x (u) u x x 附:可化为齐次的方程 c C| 0,可化为齐次微分方程 a b . . a1 bi dy ax by c dx ax by c c或c o a b a b x X h 0,设h,带入原方程解出h,k,可化为齐次微分方程y Y k 设印b,dy ax by c ,令ax a b dx (ax by) c 则可化为史的变量可分离微分方程 dx by v, 0,

7、二阶常系数非齐次线性微分方程的解法 齐次方程y t 1 ay t 0的通解为y t C a ,其中C 是一个任意常数。 若给定初始条件y 0 C o ,则y 0 C 0 a t 即为满足该初始条件的特解。 对于非齐次方程 y t 1 ay t f (t),其通解也是非齐次方程的一个特解 y t*与对应齐次方程通解之和。即: ? t y t y t C a 。

差分格式稳定性实验报告——张方博5090719049

差分格式稳定性实验报告 张方博 学号:5090719049 班级:F0907102 一、 实验目的 1、 加深对几种差分格式稳定性及其稳定条件的理解; 2、 利用matlab 数值直观上验证差分格式是否稳定性; 二、 实验问题 考察对流方程: 其中() 1 (0),()0(0)f x x f x x =≤=> 给定 0.1 ,=0.08 ,=h/h τλτ=,对a=1,2,4,分别对以下格式求解出t=4时的数值结果,并绘制u(x,4)的函数图像 1111111122111111() 11()()22 11()(2)22 n n n n j j j j n n n n n j j j j j n n n n n n n j j j j j j j n n j j p u u a u u Lax Friedrichs u u u a u u Lax Wendroff u u a u u a u u u u du λλλλ+-++-+-++-+-+--=---=+---=--+-+=+迎风格式(upwind ): 格式: 格式: 修正迎风格式: [][]2362 (1),10~10n j p d u p a d a a λλλ--==-这里 三、 实验过程 0, (0,)()t x u au u x f x +==

用matlab编程,程序附在文档后,绘制图形,分析比较。 四、实验结果 这里只给出绘制的图像如下: (1)a=1: upwind Lax-Friedrich

Lax-Wendroff Modified Upwind (2)a=2:

Upwind Lax-Friedrich

相关文档
最新文档