专题18立体几何与空间向量A辑(学生版)-备战2021年高中数学联赛之历年真题汇编

专题18立体几何与空间向量A辑(学生版)-备战2021年高中数学联赛之历年真题汇编
专题18立体几何与空间向量A辑(学生版)-备战2021年高中数学联赛之历年真题汇编

备战2021年高中数学联赛之历年真题汇编(1981-2020)

专题18立体几何与空间向量A辑

历年联赛真题汇编

1.【2008高中数学联赛(第01试)】若三个棱长均为整数(单位:cm)的正方体的表面积之和为564cm2,则这三个正方体的体积之和为( )

A.764cm3或586cm3B.764cm3

C.586cm3或564cm3D.586cm3

2.【2007高中数学联赛(第01试)】在正四棱锥P-ABCD中,∠APC=60°,则二面角A-PB-C的平面角的余弦值为( )

A.1

7B.?1

7

C.1

2

D.?1

2

3.【2006高中数学联赛(第01试)】在直三棱柱ABC?A1B1C1中,∠BAC=π

2

,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为( )

A.[

51)B.[

5

2)C.[1,√2)D.[

5

√2)

4.【2005高中数学联赛(第01试)】如图,ABCD-A'B'C'D'为正方体.任作平面α与对角线AC'垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S,周长为l.则( ).

A.S为定值,不为定值B.S不为定值,l为定值

C.S与l均为定值D.S与l均不为定值

5.【2004高中数学联赛(第01试)】顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆的圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且P A=4,C为P A的中点,则当三棱锥C-HPC的体积最大时,OB的长是( )

A.√5

3B.2√5

3

C.√6

3

D.2√6

3

6.【2003高中数学联赛(第01试)】四面体ABCD中,设AB=1,CD=√3,直线AB与CD的距离为2,夹角为π

3

,则四面体ABCD的体积等于( )

A.√3

2B.1

2

C.1

3

D.√3

3

7.【2002高中数学联赛(第01试)】曲线x2=4y,x2=?4y,x=4,x=?4围成的图形绕y轴旋转一周所得旋转体的体积为V1.满足x2y2?16,x2+(y?2)2?4,x2+(y+2)2?4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则( )

A.V1=1

2V2B.V1=2

3

V2C.V1=V2D.V1=2V2

8.【2001高中数学联赛(第01试)】命题I:长方体中,必存在到各顶点距离相等的点;

命题Ⅱ:长方体中,必存在到各棱距离相等的点;

命题Ⅲ:长方体中,必存在到各面距离相等的点

以上三个命题中正确的有( )

A.0个B.1个C.2个D.3个

9.【1999高中数学联赛(第01试)】给定下列两个关于异面直线的命题:

命题I:若平面α上的直线a与平面上的直线b为异面直线,直线c是α与β的交线,那么,c至多与a,b中的一条相交;

命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线.那么,( )

A.命题I正确,命题Ⅱ不正确

B.命题Ⅱ正确,命题I不正确

C.两个命题都正确

D.两个命题都不正确

10.【1998高中数学联赛(第01试)】设E,F,G分别是正四面体ABCD的棱AB,BC,CD的中点,则二面角C -FG-E的大小是( )

A.arcsin√6

3B.π

2

+arccos√3

3

C.π

2+arctan√2D.π?arccot√2

2

11.【1998高中数学联赛(第01试)】在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是( )

A.57B.49C.43D.37

12.【1997高中数学联赛(第01试)】如图,正四面体ABCD中,E在棱AB上,F在棱CD上,使得AE

EB =CF

FD

=λ(0

<λ<+∞),记f(λ)=αλ+βλ,其中αλ表示EF与AC所构成的角,βλ表示EF与BD所构成的角,则( )

A.f(λ)在(0,+∞)单调增加B.f(λ)在(0,+∞)单调减少

C.f(λ)在(0,1)单调增加,而在(1,+∞)单调减少

D.f(λ)在(0,+∞)为常数

13.【1997高中数学联赛(第01试)】如果空间三条直线a,b,c两两构成异面直线,那么a,b,c都相交的直线有( )

A.0条B.1条C.多于1的有限条D.无穷多条

14.【1996高中数学联赛(第01试)】高为8的圆台内有一个半径为2的球O1,球心O1在圆台的轴上,球O1与圆台上底面、侧面都相切圆台内可再放入一个半径为3的球O2,使得球O2与球O1、圆台的下底面及侧面都只有一个公共点,除球O2,圆台内最多还能放入半径为3的球的个数是( )

A.1B.2C.3D.4

15.【1995高中数学联赛(第01试)】设O是正三棱锥P-ABC底面三角形ABC的中心,过O的动平面与P-AB

C 的三条侧棱或其延长线的交点分别记为Q ,R ,S ,则和式1PQ

+

1PR

+

1PS

( )

A .有最大值而无最小值

B .有最小值而无最大值

C .既有最大值又有最小值,两者不等

D .是一个与面QPS 无关的常数

16.【1994高中数学联赛(第01试)】在正n 棱锥中,相邻两侧面所构成的二面角的取值范围是( ) A .(

n?2n

π,π) B .(

n?1n

π,π) C .(0,π

2

)

D .(

n?2n

π,

n?1n

π)

17.【1992高中数学联赛(第01试)】设四面体四个面的面积分别为S 1,S 2,S 3,S 4,它们的最大值为S ,记A =∑S i

4

i=1S

则λ一定满足( ) A .2<λ?4

B .3<λ<4

C .2.5<λ?4.5

D .3.5<λ<5.5

18.【1991高中数学联赛(第01试)】由一个正方体的三个顶点所能构成的正三角形的个数为( ) A .4

B .8

C .12

D .24

19.【1989高中数学联赛(第01试)】以长方体8个顶点中的任意3个为顶点的所有三角形中,锐角三角形的个数为( ) A .0

B .6

C .8

D .24

20.【1988高中数学联赛(第01试)】已知三个平面α,β,γ,每两个平面之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c .若有命题甲:θ>π

3;命题乙:a ,b ,c 相交于一点.则( )

A .甲是乙的充分条件但不必要

B .甲是乙的必要条件但不充分

C .甲是乙的充分必要条件

D .A ,B ,C

都不对

21.【1986高中数学联赛(第01试)】如果四面体的每一个面都不是等腰三角形,那么其长度不等的棱的条数最少为( ) A .3

B .4

C .5

D .6

22.【1984高中数学联赛(第01试)】若四面体的一条棱长是x ,其余棱长都是1,体积是F (x ),则函数F (x )在其定义域上( ) A .是增函数但无最大值

B .是增函数且有最大值

C.不是增函数且无最大值D.不是增函数但有最大值

23.【1981高中数学联赛(第01试)】给出长方体ABCD?A′B′C′D′,下列12条直线:AB′,BA′,CD′,DC′,AD′,DA′,B C′,CB′,AC,BD,A′C′,B′D′中有多少对异面直线( ).

A.30对B.60对C.24对D.48对

优质模拟题强化训练

1.已知正三棱锥侧面与底面所成二面角的余弦值为1

6

,则此三棱锥的高h与其内切球半径r之比是()

A.5B.6C.7D.8

2.下面左边的平行四边形ABCD是由6个正三角形构成,将它沿虚线折起来,可以得到如右图所示的粽子形状的六面体,在这个六面体中,AB与CD夹角的余弦值是().

A.0B.1C.1

2D.5

6

3.过正方体外接球球心的截面截正方体所得图形可能是①三角形,②梯形,③五边形,④六边形中的(). A.①③B.③④

C.②④D.以上都不对

4.已知在凸四边形ABCD所在的平面外有一点P,又知E、F、G、H、M、N分别为AB、PC、AD、BC、EF、GH的中点,则( )

A.P、D、M、N四点共面,且PD=4MN

B.P、D、M、N四点不共面,且PD=4MN

C.P、D、M、N四点共面,且PD≠4MN

D.P、D、M、N四点不共面,且PD≠4MN

5.如图,正三棱柱ABC?A1B1C1的底面边长为a,侧棱长为√2a.则AC1与侧面ABB1A1所成的角是( ).

A .30°

B .45°

C .60°

D .75°

6.在空间直角坐标系中,已知O (0, 0,0),A (1,0,0),B (0,1,0),C (0,0,1),则到面OAB 、面OBC 、面OAC 、面ABC 的距离相等的点的个数是( ) A .1 B .4 C .5 D .无穷多

7.若圆柱被一平面所截,其截面椭圆的离心率为2√23

,则此截面与圆柱底面所成的锐二面角是( )

A .arcsin 1

3

B .arccos 1

3

C .arcsin 2

3

D .arccos 2

3

8.在正方体的8个顶点及正方体的中心共9个点中,共面的四点组的个数是( ). A .28

B .32

C .36

D .40

9.如图.设为A ?BCD 正三棱锥(底面BCD 是正三角形),作AO ⊥底面BCD ,O 为垂足. P 为高AO 上一点,且PA =

1

m AO(m >1).过点P 作底面BCD 的平行截面分别交三条棱AB 、AC 、AD 于点B 1、C 1、D 1.点Q 在线段PO 上,过点Q 作底面BCD 的平行截面平分正三棱台BCD ?B 1C 1D 1的体积.则PQ

QO 等于( ).

A .√2(m 3+1)3

?1

33 B .√2(m 3+1)3

?1

33

C .√m 3+13

?1

33

D .

√4(m 3+1)3

?2

√4(m 33

10.一个二面角的两个面与另一个二面角的两个面分别垂直. 那么,这两个二面角的平面角的大小关系是( ). A .相等 B .互补 C .相等或互补 D .不能确定

11.设正三棱锥V?ABC的底面边长为4,侧棱长为8,过A与侧棱VB、VC相交的截面为AED.则截面ΔAED周长的最小值为().

A.121

5

B.11

C.12D.111

5

12.如图,在矩形ABCD中,AB=1,BC=m,O为矩形的中心,PO⊥平面ABCD,PO=n,且在边BC上存在唯一的点E,使得PE⊥DE.若平面PDE与平面ABCD所成的角为60°,则(m,n)为().

A.[2,3

2]B.[2√2,3

2

]

C.[3

2,2]D.[3

2

,2√2]

13.如图,三棱锥P?ABC的三条侧棱PA、PB、PC两两垂直,侧面PAB、PBC、PCA与底面ABC所成的二面角的平面角的大小分别为θ1、θ2、θ3,底面ΔABC的面积为4√3.若tanθ1+tanθ2+tanθ3=3√2,则关于V P?ABC的正确说法是().

A.等于2√3B.等于√6C.等于8√2

3

D.条件不够,V P?ABC无法确定

14.半径为r的两个球相切,且都与二面角的两个面相切,第三个球和二面角的两个面也相切,且同时与这两个半径为r的球相切.已知二面角的平面角为60°,且第三个球的半径大于r.则第三个球的半径为().

A.15?√11

3r B.8+√7

6

r C.5+√13

3

r D.6+√11

4

r

15.从正方体的8个顶点中任取4个不在同一平面上的点M、N、P、Q组成二面角M?PQ?N.则这样大小不同的二面角共有()个

A.28B.27C.9D.8

16.已知在三棱锥S?ABC中,SC⊥CB,SA⊥AB,CB⊥AB,并且SA、SC与ABC所在平面所成的角相等.若AC =6,S到平面ABC的距离为4,则异面直线AC与SB之间的距离为().

A.r B.12√13

13C.12

5

D.24

5

17.正方体的截面不可能是( )

①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.

A.①②⑤B.①②④C.②③④D.③④⑤

18.已知ABCD?A1B1C1D1是边长为1的正方体,P为线段AB1上的动点,Q为底面ABCD上的动点.则PC1+PQ的最小值为().

A.1+√2

2B.√3C.2D.1

2

+√5

2

19.如图,在三棱锥P?ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F.若PA=PB=2,∠BPC =θ,则当ΔAEF的面积最大时,tanθ的值为( ).

A.2B.1

2C.√2D.√2

2

20.设O是正三棱锥P?ABC底面ΔABC的中心,过O的动平面与P?ABC的三条侧棱或其延长线的交点分别记为Q,

R,S。则和式1

PQ +1

PR

+1

PS

()

A.有最大值而无最小值B.有最小值而无最大值

C.既有最大值又有最小值,且二者不等D.是一个与平面QRS位置无关的常量

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

人教版高中数学向量练习题

一、选择题; 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( ) A 、a b b a +=+r r r r B 、() a b a b λλλ+=+r r r r C 、()() a b c a b c ++=++r r r r r r D 、b a λ=r r 2、已知向量a r =(1,1,0),则与a r 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 22,2 2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 2 55 D.2或255 - 6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,, 则D 的坐标为( ) A.7412 ?? - ??? , , B.(241),, C.(2141)-,, D.(5133)-,, 7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) C.12 9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角 P AD C --为60°,则P 到AB 的距离为( ) A. C.2

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高中数学向量专项练习(含答案)

高中数学向量专项练习 一、选择题 1.已知向量(1,),(1,),a x b x ==-r r 若(2).a b b -⊥r r r 则a =r ( ) A .2 B .3 C .2 D .4 2.化简+ + + 的结果是( ) A . B . C . D . 3.已知向量(1,2),(4,)a b m ==-v v ,若2a b +v v 与a v 垂直,则m =( ) A .-3 B .3 C .-8 D .8 4.已知向量(1,1)a =-r ,(1,)b m =r ,若(2)4a b a -?=r r r ,则m =() A .1- B .0 C .1 D .2 5.设向量(12)a =-r , ,(1)b m =r ,,若向量a r 与b r 平行,则a b ?=r r A .27- B .21- C .23 D .2 5 6.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ?=u u u r u u u r ( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =u u u v u u u v ,则AD =u u u v ( ) A .1233AC A B +u u u v u u u v B .5233AB A C -u u u v u u u v C .2133AC AB -u u u v u u u v D .2133 AC AB +u u u v u u u v 8.在ABC ?中,已知90BAC ∠=o ,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ?u u u r u u u r 的值为 ( ). A .6 B .12 C .24 D .48 9.已知向量(1,1),(2,2),m n λλ→ → =+=+若()()m n m n → → → → +⊥-,则=λ( ) A .4- B .3- C .2- D .1- 10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a b A .()1,5- B .()1,5 C .()1,6- D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a b A .()1,5- B .()1,5 C .()1,3-- D .()1,3

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

2020年高考数学平面向量专题复习(含答案)

2020年高考数学平面向量专题练习 一、选择题 1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值() A. B. C. D. 2、向量,,若,且,则x+y的值为() A.-3 B.1 C.-3或1 D.3或1 3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4 4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则 () A.B. C.D. 5、在平行四边形中,,若是的中点,则() A. B. C. D. 6、已知向量,且,则()

A. B. C. D. 7、已知是边长为2的等边三角形,D为的中点,且,则( ) A. B.1 C. D. 3 8、在平行四边形ABCD中,,则该四边形的面积为 A. B. C.5 D.10 9、下列命题中正确的个数是() ⑴若为单位向量,且,=1,则=;⑵若=0,则=0 ⑶若,则;⑷若,则必有;⑸若,则 A.0 B.1 C.2 D.3 10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为() 二、填空题 11、已知向量与的夹角为120°,且,则____. 12、若三点满足,且对任意都有,则的最小值为________. 13、已知,,则向量在方向上的投影等于___________. 14、.已知,是夹角为的两个单位向量,,,若,则实数的值为 __________.

15、已知向量与的夹角为120°,,,则________. 16、已知中,为边上靠近点的三等分点,连接为线段的中点,若 , 则__________. 17、已知向量为单位向量,向量,且,则向量的夹角为. 18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。若 (λ,μ∈R),则λ+μ的值为。 三、简答题 19、已知平面直角坐标系中,向量,,且. (1)求的值;(2)设,求的值. 20、已知向量=(sin,cos﹣2sin),=(1,2). (1)若∥,求的值; (2)若,0<<,求的值. 21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若 在区间[1,6]内取值,求满足的概率. 22、在平面直角坐标系xOy中,已知向量, (1)求证:且; (2)设向量,,且,求实数t的值.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

相关文档
最新文档