齿轮齿条传动

齿轮齿条传动
齿轮齿条传动

齿轮齿条的传动计算 齿轮与齿条传动特点 齿轮作回转运动,齿条作直线运动,齿条可以看作一个齿数无穷多的齿轮的一部分,这时齿轮的各圆均变为直线,作为齿廓曲线的渐开线也变为直线。齿条直线的速度v 与齿轮分度圆直径d 、转速n 之间的关系为

v=(/)60

dn mm s π

式中 d ——齿轮分度圆直径,mm ; n ——齿轮转速,min r 。

其啮合线12N N 与齿轮的基圆相切1N ,由于齿条的基圆为无穷大,所以啮合线与齿条基圆的切点2N 在无穷远处。

齿轮与齿条啮合时,不论是否标准安装(齿轮与齿条标准安装即为齿轮的分度圆与齿条的分度圆相切),其啮合角'α恒等于齿轮分度圆压力角α,也等于齿条的齿形角;齿轮的节圆也恒与分度圆重合。只是在非标准安装时,齿条的节线与分度线不再重合。

齿轮与齿条正确啮合条件是基圆齿距相等,齿条的基圆齿距是其两相邻齿廓同侧直线的垂直距离,即cos cos b P P m απα==。

齿轮与齿条的实际啮合线为12B B ,即齿条顶线及齿轮齿顶圆与啮合线12N N 的交点2B 及1B 之间的长度。

齿轮齿条传动的几何尺寸计算

齿轮与齿条传动的尺寸计算见表

齿条的主要特点:

(1)由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。(2)与齿顶线平行的任一条直线上具有相同的齿距和模数。

(3)与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。

齿轮齿条传动机构设计规划介绍

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得m in /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80m in,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

齿轮齿条传动优缺点

齿轮齿条,同步带,丝杠对比 齿轮齿条,承载力大,传动精度较高,可达0.1mm,可无限长度对接延续,传动速度可以很高,>2m/s,缺点:若加工安装精度差,传动噪音大,磨损大。典型用途:大版面钢板、玻璃数控切割机,建筑施工升降机可达30层楼高。 同步带,承载力较大,负载再大就要加宽皮带,传动精度较高,传动长度不可太大,否则需要考虑较大的弹性变形和振动,传动距离大尤其不适合精确定位、连续性运动控制,如大版面数控设备的XY轴,但是可用于伺服电机到传动齿轮或伺服电机到丝杠的短距离传动。优点:短距离传动速度可以很高,噪音低。典型用途:小型数控设备、某些打印机 丝杠,(1)普通梯形丝杠可以自锁,这是最大优点,但是传动效率低下,比上述二者低许多,所以不适合高速往返传动。缺点是时间久了传动间隙大,回程精度差,用在垂直传动较合适。 (2)滚珠丝杠不能自锁,传动效率高,精度高,噪音低,适合高速往返传动,但是水平传动时跨距大了要考虑极限转速和自重下垂变形,所以传动长度不可太大,要么改用丝母旋转丝杠不动,但还是不能太长,要么就用齿轮齿条。典型用途:数控机床,小版面数控切割机 应用上的区别? 在长距离重负载直线运动上,丝杆有可能强度不够,就会导致机子出现震动、抖动等情况,严重的,会导致丝杆弯曲、变形、甚至断裂等等;而齿条就不会有这样的情况,齿条可以长距离无限接长并且高速运转而不影响齿条精度(当然这个跟装配、床身本身精度都有关系),丝杆就做不到这一点,但在短距离直线运动中,丝杆的精度明显要比齿条高得多。另外就是,齿条齿轮传动对于机子结构设计来讲要相对简单一些。反正,各有优劣,所以,丝杆有丝杆的市场,齿条有齿条的市场。互不影响。 当标准外齿轮的齿数增加到无穷多时,齿轮上的基圆和其它圆都变成了相互平行的直线,同侧渐开线齿廓也变成了相互平行的斜直线齿廓,这就是齿条。齿条与齿轮相比有以下两个特点: (1)由于齿条齿廓是直线,所以齿廓上各点的法线是平行的。又由于齿条在传动时作平动,齿廓上各点的速度大小、方向都相同,所以齿条上各点的压力角都相等,等于齿廓的倾斜角(齿形角),标准值是。 (2)与齿顶线平行的各直线上的齿距都相同,模数为同一标准值,其中齿厚与齿槽宽相等且与齿顶线平行的直线称为中线,它是确定齿条各部分尺寸的基准线。 标准齿条的齿部尺寸与,与标准齿轮相同。 但是在进行冲压的加工时,由于在冲压过程中冲压行程是工作行程,而返回时是非工作过程,则在加工工件时要尽量满足工件在返回时减少时间。所以要满足此机构有急回特性。但是齿轮齿条不能满足急回的特性,不能增加工件的冲压加工效率,齿轮齿条加工的运动形式不符合;则排除此工艺的加工方式。

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS , 齿条材料为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N ?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1= K HN1σHlim1S =1.7×600MPa =1020MPa (2) 计算 1) 试算小齿轮分度圆直径d t1,代入[σH ]1。

齿轮齿条的传动

齿轮齿条的传动计算 齿轮与齿条传动特点 齿轮作回转运动,齿条作直线运动,齿条可以看作一个齿数无穷多的齿轮的一部分,这时齿轮的各圆均变为直线,作为齿廓曲线的渐开线也变为直线。齿条直线的速度v 与齿轮分度圆直径d 、转速n 之间的关系为 v= (/)60 dn mm s π 式中 d ——齿轮分度圆直径,mm ; n ——齿轮转速,min r 。 其啮合线12N N 与齿轮的基圆相切1N ,由于齿条的基圆为无穷大,所以啮合线与齿条基圆的切点2N 在无穷远处。 齿轮与齿条啮合时,不论是否标准安装(齿轮与齿条标准安装即为齿轮的分度圆与齿条的分度圆相切),其啮合角'α恒等于齿轮分度圆压力角α,也等于齿条的齿形角;齿轮的节圆也恒与分度圆重合。只是在非标准安装时,齿条的节线与分度线不再重合。 齿轮与齿条正确啮合条件是基圆齿距相等,齿条的基圆齿距是其两相邻齿廓同侧直线的垂直距离,即cos cos b P P m απα==。 齿轮与齿条的实际啮合线为12B B ,即齿条顶线及齿轮齿顶圆与啮合线12N N 的交点2B 及1B 之间的长度。

齿轮齿条传动的几何尺寸计算 齿轮与齿条传动的尺寸计算见表表齿轮齿条传动的几何尺寸计算 项目名称计算公式及代号转90?齿轮齿条数 值转180?齿轮齿条数值 齿轮齿数 1 z4832模数m2mm2mm 螺旋角β0?0? 基本齿廓压力角α20?20?齿顶高 系数 * a h11顶隙系 数 * C 齿轮变位系数 1 x 尺宽齿轮 1 b10mm10mm

齿条的主要特点: (1)由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。(2)与齿顶线平行的任一条直线上具有相同的齿距和模数。 (3)与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。

消除齿轮齿条传动间隙的理想解决方案

消除齿轮齿条传动间隙的理想解决方案近年来,国内对大行程、高效率、高精度机床的需求量激增。齿轮与齿条搭配的传动方式越来越受到机床设计者的青睐。但是由于数控机床进给系统经常处于自动变向状态,反向时齿轮于齿条之间存在间隙,就会使进给运动的反向滞后于指令信号,从而影响其驱动精度。这个问题多年来一直困扰着机床设计者。 下面我们以德国WMH HERION(亨利安传动)公司生产的6模数齿条为例来探讨间隙对传动系统的危害性: 德国亨利安齿条每米齿距累积误差已经能达到0.020mm以内,然而在标准中心距下与齿轮相啮合的背隙高达0.040mm~0.140mm,齿轮齿条的啮合背隙在高精度的传动方案中显的更为致命。 为了实现齿轮齿条的高传动精度,始于1895年的德国亨利安传动在为客户提供精密传动解决方案的过程中积累了大量经验,下面我们将向读者介绍两种机械自动消除间隙的解决方案。 方案一适合轻载机床用的预加载荷自动消隙齿轮(专利产品) 这种齿轮安装部位为ISO 9409—1标准法兰盘,可以与任何法兰输出的减速机连接,而且此结构直齿或斜齿都可消除间隙,安装与选型都非常方便,特别适合轻型快速的机械设备,在欧洲已经广泛应用与激光切割以及大型非金属机加工机床。 接下来我们通过逐步装配图来了解一下它的消隙原理 DIN5级精度的标准齿轮通过无缝焊接技术焊接在ISO标准法兰盘上 另一半消隙齿轮与花键轴连接定位 安装夏德联轴器选择正确的错位角度 安装碟形弹簧插入预紧螺钉并用力拧至间隙消除 插入锁紧螺钉

这种结构的消隙齿轮德国亨利安传动已经将其作为一种标准产品,为客户提供不同规格的解决方案,通过批量生产降低了生产成本以及供货周期。 参照图表并按要求转动螺纹孔个数 方案二、适合重型机床使用的自动消隙齿轮箱 为亨利安传动为机床制造用户量身定做,齿轮箱为双齿轮输出,前进与后退时前后齿轮单独提供动力,从动齿轮在碟形弹簧的涨紧力的作用下紧靠在齿条上,如图所示 为了方便客户调节预紧力亨利安传动在设计之初已经计算好了预紧力的大小,用户在使用时紧需要按照说明扭动表盘指针到指定的刻度。而且这种齿轮箱可直接与伺服电机相接,在齿轮箱设计的过程中,亨利安的设计人员已经将用户所需要的减速比计算好,通过齿轮的多极减速起到提高输出扭矩的作用。 双齿轮输出消隙齿轮箱现在已经广泛的应用在重型卧车、数控落地镗铣、重型龙门机床等领域。亨利安传动的技术人员,可以按照机床设计者的要求,为机床生产企业提供完整的传动解决方案。

齿轮传动的特点和应用

齿轮传动的特点和应用 外 合直齿圆啮齿柱轮动 内啮传直合圆齿齿轮传柱 齿动轮条传动(齿直条齿 外啮合)齿斜柱齿圆轮动传 字人轮传动 齿轮齿条齿动传(斜条)齿 .空2齿轮传间动.间齿轮空动用传于交轴相交和轴之错间的动。空间齿轮传传用于相动交和交错轴轴间的之动。传 螺旋轮齿传动齿直锥圆齿传轮动曲齿圆锥齿传轮动交错(轴齿斜轮动传)蜗 传杆 动

双准曲齿轮传动 面 齿轮传的类动型齿直圆柱齿轮动外传啮 合啮内 平合齿面轮运齿(动传递平轴行的运动)间轮传动间空齿轮运(传动递不行轴间的平动) 运 (齿与轮轴平)行轮齿条齿 啮合斜外齿柱齿轮传动圆内合啮轮齿(与不平行轴齿轮)条齿 人字轮齿动传(齿成轮字形) 人递传交轴相运动(齿锥传轮动)直齿斜齿交错轴斜齿传动轮传递错轴交运动蜗轮杆蜗动传准双曲齿轮面动传 121..3廓啮齿基本合律定齿轮动传要求确准平,即要稳在求传过动程中瞬时传比保动持不变以免,生产击、冲齿传动轮求准确要平,即要稳求传动在过程中,瞬传动比时持不保,以免产生变击冲振动、

噪音。和振和动音。噪论齿廓不任何点接触在,过触点所作两齿廓接的法线必须公连与线交心于固一定点不论齿,廓在任何点触接过接,触所点作两齿的廓法公线必与连心线须交一于定点,这固就是廓齿合基本定律。就啮齿廓啮是基合定律。本 212.渐线开轮12.2.齿1开渐线的形成基及性质本.1渐开的形线成2.渐开 线的质性.据根渐线的形开,成可知开渐具有下列线些一特性:据根渐开的线成形,知可渐开线有下列具些特性一:)1生线沿基发圆过滚直线的长,等度于 基圆上滚被过的弧长圆度;发)生沿基圆滚过的直线线度,等于基长上圆被滚过的弧圆度;长 2))发线k生n是开渐在任线意点k法的。线法线的因此,。生线发任上一点法的必线切基于。因圆,此发生线上任一的法点必线切基于圆。)3开渐线廓上某点的齿法线该与点速度的方向线所夹锐的α角k称为该的压点角。力)称为点的该压角力。上式由知可,开线渐

齿轮齿条传动设计计算39229

7)由图10-19取接触疲劳寿命系数 HN1 1.7。 材料选择。由表10-1选择小齿轮材料为40Cr (调质),硬度为280HBS 齿条 材料为45钢(调质)硬度为240HBS 6)由式10-13计算应力循环次数。 N 1 60n 1 jL h 60 7.96 1 2 0.08 200 4 6.113 10 4 1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传 动。 2 ) 速度不高,故选用7级精度(GB10095-88。 3) 4) 选小齿轮齿数1=24,大齿轮齿数 2=x 。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d it I 2 ccc (K" u 1 Z E 2.323 |— ----------------------- --- V u (1) 确定公式内的各计算数值 1) 试选载荷系数t 2) 计算小齿轮传递的转矩。 (预设齿轮模数 m=2mn 直径d=65mm T 1 95.5 1O 5 R n 1 95.5 105 O. 2424 2.908 105N mm 7.96 3) 由表10-7选齿宽系数d =。 4) 由表10-6查得材料的弹性影响系数 1 E 189.8 MPa 2 5) 由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 Hlim1 600M Pa ;齿 条的接触疲劳强度极限 Hlim 2 500 Mpa 。

8)计算接触疲劳许用应 力。 取失效概率为1%安全系数S=1,由式(10-12)得 K HN 1 Hlim1 S 1.7 600M Pa 1020MPa 计算 1 ) 试算小齿轮分度圆直径d ti,代入 2)d1t 2.323{K.T1 u 1 68.89mm 计算圆周速度V。 Z E 60 1000 3)计算齿宽b o d d1t 0.5 4)计算齿宽与齿高之 比。 模数 m t d1t 68.89 Z1 24 齿高 2.25m t 2.25 卜 3 2.908 105 1 189.8 2 0.5 1020 68^1^ 0.026m/s 60 1000 68.89 34.445mm 2.87 2.27 6.46 34.445 6.46 5.33

(完整版)齿轮齿条传动设计计算.docx

1. 选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用 7 级精度( GB10095-88)。 3)材料选择。由表 10-1 选择小齿轮材料为 40Cr(调质 ),硬度为 280HBS ,齿条 材料为 45 钢(调质)硬度为 240HBS 。 4)选小齿轮齿数 Z 1 =24,大齿轮齿数 Z 2 = ∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 3 K t T 1 u + 1 Z E d 1t ≥ 2.32 √ ?( ) 2 φd u [ σ ] H (1) 确定公式内的各计算数值 1)试选载荷系数 K t =1.3。 2)计算小齿轮传递的转矩。 (预设齿轮模数 m=8mm,直径 d=160mm ) T 1 = 95.5 ×105 P 1 = 95.5 ×105 ×0.2424 n 1 7.96 = 2.908 ×105 N ?mm 3) 由表 10-7 选齿宽系数 φ = 0.5。 d 1 4)由表 10-6 查得材料的弹性影响系数 Z E = 189.8MPa 2 。 5)由图 10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限 σ = 600MPa;齿 Hlim1 条的接触疲劳强度极限 σ = 550MPa 。 Hlim2 6)由式 10-13 计算应力循环次数。 N 1 = 60n 1 jL h = 60 × ( 2× 0.08× 200 × ) = × 4 7.96 ×1 × 4 6.113 10 7)由图 10-19 取接触疲劳寿命系数 K HN1 = 1.7。 8)计算接触疲劳许用应力。 取失效概率为 1%,安全系数 S=1,由式( 10-12)得 [ σH ] 1 = K HN1 σHlim1 ×600MPa = 1020MPa = 1.7 S (2) 计算 1)试算小齿轮分度圆直径 d ,代入 [σ ] 。 t1 H 1

齿轮齿条机构设计说明书

齿轮齿条机构设计说明书 一、原理说明: 齿轮齿条机构,就是完成直线运动和转动相互转化的机构。其各部分功用及相互关系如下: a. 齿条——也称作直线齿轮,它与小齿轮相互啮合。 b.小齿轮——与齿条相互啮合,依靠齿条的直线驱动,齿轮的输出轴做回转运动。 c. 直进与回转的关系——齿条的移动量与齿条的转角,无论在任何位置都保持一定,所以这是等值直进回转交换机构。当齿条的移动量与齿轮圆周相等时,齿条驱动一次,齿轮转动一周。在本机构中,输出齿轮的直径是啮合齿轮的2倍,所以输出齿轮的圆周距离也是啮合齿轮的2倍。 ◆齿条驱动齿轮转动——齿条驱动一次,则输出的大齿轮转一周,线速度是小齿轮的2倍。 ◆齿轮驱动齿条移动——从输出轴处驱动齿条做直线运动时,与前面相反,机构将呈1/2减速。 f.相互关系: L=齿条的进给量;R1=啮合齿轮的节圆半径;R2=输出齿轮的节圆半径;S=输出齿轮的圆周距离;N=R2/R1;S=2×3.14×R2=2×3.14×R1×N 图1机构总装配图1

图2机构总装配图2 图3机构装配爆炸图

二、主要部件设计说明 1、啮合齿轮的数据确定 设模数m=3,z=17,α=20o,其宽选择20,计算如下: d=m×z=3×17=51 d a=d+2h a=51+2×1×3=57 d f=d-2h f=51-2×1.25×3=43.5 2、输出齿轮的数据确定 设模数m=3,z=34,α=20o,其宽选择15,计算如下: d=m×z=3×34=102 d a=d+2h a=102+2×1×3=108 d f=d-2h f=102-2×1.25×3=94.5 3、齿条的设计 设模数m=3,z=40,α=20o,其宽选择20+10,即有齿部分为20,没有齿部分为10,计算如下: p=π×m=9.425 L=p×z=377 ha= m ×ha*=3 hf= m ×(ha*+c*)=3.75 其他的部件均在设计中一步步确定,详细请参考图纸。 三、参考文献 1、《机械设计手册》 2、《机械设计基础》杨可桢等主编高等教育出版社 3、《画法几何及工程制图》上海科学技术出版社第四版 四、设计小组成员

齿轮齿条的设计

齿轮齿条的材料选择 齿条材料的种类很多,在选择过程中应考虑的因素也很多,主要以以下几点作为参考原则: 1)齿轮齿条的材料必须满足工作条件的要求。 2)应考虑齿轮尺寸的大小、毛坯成形方法及热处理和制造工艺。 3)正火碳钢,不论毛坯制作方法如何,只能用于制作载荷平稳或轻度冲击 工作下的齿轮,不能承受大的冲击载荷;调制碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的 高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS 或者更多。 钢材的韧性好,耐冲击,还可通过热处理或化学热处理改善其力学性能及提高齿面硬度,故适用于来制造齿轮。由于该齿轮承受载荷比较大,应采用硬齿面(硬度≥350HBS ),故选取合金钢,以满足强度要求,进行设计计算。 齿轮齿条的设计与校核 1.2.1起升系统的功率 设V 为最低起钻速度(米/秒),F 为以V 起升时游动系统起重量(理论起重量,公斤)。 起升功率 V F P ?= F=N 5 106? 1V 取(米/秒)

KW P 4808.01065=??= 由于整个起升系统由四个液压马达所带动,所以每部分的平均功率为 KW KW P P 1204 4804 == =' 转矩公式: 595.510P T n ?= 所以转矩 T= mm N n .120 105.955?? 式中n 为转速(单位r/min ) 1.2.2 各系数的选定 计算齿轮强度用的载荷系数K ,包括使用系数A K 、动载系数V K 、齿间载荷分配系数K α及齿向载荷分配系数K β,即 K=A V K K K K αβ 1)使用系数A K 是考虑齿轮啮合时外部因素引起的附加载荷影响的系数。 该齿轮传动的载荷状态为轻微冲击,工作机器为重型升降机,原动机为液压装置,所以使用系数A K 取。 2)动载系数V K 齿轮传动不可避免地会有制造及装配误差,轮齿受载后还要产生弹性变形,对于直齿轮传动,轮齿在啮合过程中,不论是有双对齿啮合过渡到单对齿啮合,或是有单对吃啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。为了计及动载荷的影响,引入了动载系数V K ,如图2-1所示。

各种传动方式优缺点

1、齿轮传动 分类:平面齿轮传动、空间齿轮传动。 优点:适用的圆周速度和功率范围广;传动比准确、稳定、效率高。;工作可靠性高、寿命长。;可实现平行轴、任意角相交轴和任意角交错轴之间的传动 缺点:要求较高的制造和安装精度、成本较高。;不适宜远距离两轴之间的传动。渐开线标准齿轮基本尺寸的名称有齿顶圆;齿根圆;分度圆;摸数;压力角等。 2、涡轮涡杆传动 适用于空间垂直而不相交的两轴间的运动和动力。 优点:传动比大。;结构尺寸紧凑。 缺点:轴向力大、易发热、效率低。;只能单向传动。 涡轮涡杆传动的主要参数有:模数;压力角;蜗轮分度圆;蜗杆分度圆;导程;蜗轮齿数;蜗杆头数;传动比等。 3、带传动 包括主动轮、从动轮;环形带 1)用于两轴平行回转方向相同的场合,称为开口运动,中心距和包角的概念。 2)带的型式按横截面形状可分为平带、V带和特殊带三大类。 3)应用时重点是:传动比的计算;带的应力分析计算;单根V带的许用功率。 优点:适用于两轴中心距较大的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防止损坏其他零部件;结构简单、成本低廉。 缺点:传动的外廓尺寸较大;、需张紧装置;由于打滑,不能保证固定不变的传动比;带的寿命较短;传动效率较低。 4、链传动 包括主动链、从动链;环形链条。 链传动与齿轮传动相比,其主要特点:制造和安装精度要求较低;中心距较大时,其传动结构简单;瞬时链速和瞬时传动比不是常数,传动平稳性较差。 5、轮系 1)轮系分为定轴轮系和周转轮系两种类型。

2)轮系中的输入轴与输出轴的角速度(或转速)之比称为轮系的传动比。等于各对啮合齿轮中所有从动齿轮齿数的乘积与所有主动齿轮齿数乘积之比。 3)在周转轮系中,轴线位置变动的齿轮,即既作自转,又作公转的齿轮,称为行星轮,轴线位置固定的齿轮则称为中心轮或太阳轮。 4)周转轮系的传动比不能直接用求解定轴轮系传动比的方法来计算,必须利用相对运动的原理,用相对速度法(或称为反转法)将周转轮系转化成假想的定轴轮系进行计算。 适用于相距较远的两轴之间的传动;可作为变速器实现变速传动;可获得较大的传动比;实现运动的合成与分解。 二、电气传动 1、精确度高:伺服电机作为动力源,由滚珠丝杠和同步皮带等组成结构简单而效率很高的传动机构。它的重复精度误差是0.01%。 2、节省能源:可将工作循环中的减速阶段释放的能量转换为电能再次利用,从而减低了运行成本,连接的电力设备仅是液压驱动所需电力设备的25%。 3、精密控制:根据设定参数实现精确控制,在高精度传感器、计量装置、计算机技术支持下,能够大大超过其他控制方式能达到的控制精度。 4、改善环保水平:由于使用能源品种的减少及其优化的性能,污染源减少了,噪音降低了,为工厂的环保工作,提供了更良好的保证。 5、降低噪音:其运行噪音值低于70分贝,大约是液压驱动注塑机噪音值的2/3。 6、节约成本:此机去除了液压油的成本和引起的麻烦,没有硬管或软喉,无须对液压油冷却,大幅度降低了冷却水成本等。 三、液压传动 优点:

(完整版)齿轮齿条传动设计计算

1.选定齿轮类型、精度等级、材料级齿数 1)选用直齿圆柱齿轮齿条传动。 2)速度不高,故选用7级精度(GB10095-88)。 3)材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS,齿条材料为45钢(调质)硬度为240HBS。 4)选小齿轮齿数Z1=24,大齿轮齿数Z2=∞。 2.按齿面接触强度设计 由设计计算公式进行计算,即 d1t ≥2.32√K t T1 d ? u+1 ( Z E [H] )2 3 (1)确定公式内的各计算数值 1)试选载荷系数K t =1.3。 2)计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm) T1=95.5×105P1 1 = 95.5×105×0.2424 =2.908×105N?mm 3) 由表10-7选齿宽系数φd=0.5。 4)由表10-6查得材料的弹性影响系数Z E=189.8MPa 1 2。 5)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;齿条的接触疲劳强度极限σHlim2=550MPa。 6)由式10-13计算应力循环次数。 N1=60n1jL h=60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1=K HN1σHlim1 S =1.7×600MPa=1020MPa (2)计算 1)试算小齿轮分度圆直径d t1,代入[σH]1。

d 1t ≥2.32√K t T 1φd ?u +1u (Z E [σH ])23 =2.32√1.3×2.908×1050.5?∞+1∞ (189.81020)23=68.89mm 2)计算圆周速度v 。 v =πd 1t n 1=π×68.89×7.96=0.029m s ? 3)计算齿宽b 。 b =φd ?d 1t =0.5×68.89=34.445mm 4)计算齿宽与齿高之比b h 。 模数 m t =d 1t z 1=68.8924 =2.87 齿高 h =2.25m t =2.25×2.87=6.46mm b =34.445=5.33 5)计算载荷系数。 根据v =0.029m/s ,7级精度,由图10-8查得动载荷系数K V =1; 直齿轮,K Hα=K Fα=1; 由表10-2查得使用系数K A =1.5; 由表10-4用插值法查得7级精度、小齿轮为悬臂布置时K Hβ=1.250。 由b h =5.33,K Hβ=1.250查图10-13得K Fβ=1.185;故载荷系数 K =K A K V K HαK Hβ=1.5×1×1×1.250=1.875 6)按实际的载荷系数校正所算得的分度圆直径,由式(10-10a )得 d 1=d 1t √K t 3=68.89×√1.8753=77.84mm 7)计算模数m 。 m = d 1z 1=77.8424 =3.24mm 3. 按齿根弯曲强度设计 由式(10-5)得弯曲强度设计公式为

齿轮齿条传动设计计算

齿轮齿条传动设计计算 Revised as of 23 November 2020

1. 选定齿轮类型、精度等级、材料级齿数 1) 选用直齿圆柱齿轮齿条传动。 2) 速度不高,故选用7级精度(GB10095-88)。 3) 材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS ,齿条材料 为45钢(调质)硬度为240HBS 。 4) 选小齿轮齿数Z 1=24,大齿轮齿数Z 2=∞。 2. 按齿面接触强度设计 由设计计算公式进行计算,即 d 1t ≥2.32√K t T 1d u +1(Z E [H ])23 (1) 确定公式内的各计算数值 1) 试选载荷系数K t =。 2) 计算小齿轮传递的转矩。(预设齿轮模数m=8mm,直径d=160mm ) T 1=95.5×105P 1n 1=95.5×105×0.24247.96 =2.908×105N?mm 3) 由表10-7选齿宽系数φd =0.5。 4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 12 。 5)由图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa ;齿条的接触疲劳强度极限σHlim2=550MPa 。 6)由式10-13计算应力循环次数。 N 1=60n 1jL h =60×7.96×1×(2×0.08×200×4)=6.113×104 7)由图10-19取接触疲劳寿命系数K HN1=1.7。 8)计算接触疲劳许用应力。 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH ]1=K HN1σHlim1S =1.7×600MPa =1020MPa

齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即?dn??,取又由此可33,25mmB?B,?m?3.25mm,Z?Z?20,500V?mm/s1?V ??,由(1)与得(2)联立解得,取in2m147r/nmZ?65mm?n??dd?i?4331221zn 21133360 得则由124?i??n?588r/min,z?801221zn212. 齿轮1齿轮2与齿轮3几何尺寸确定 ????齿顶高 ????齿根高 ?mm525?5?0.?x7?3.25?.1h?h?h?mh annaaa123 齿高 ??mm791.7.?25?251?0?hh?h?m.h??c?x0?3.nann3f1ff2 mm3157.h?h?h?h?h?f231a分度圆直径 00???265.1284mm3.25?80/cos12d?66.46mm,?mz/coscos?dd??mz/cos?3.25?20/22311 齿顶圆直径mm34?277.d?d?2h??dd?2h?77.51mm,d23aaa1a1221a齿根圆直径mm.26??2h262?h62.88mm,d?d?d?dd?22fff1f23f121基圆直径 法向齿厚为 0??mm.?dcos8?249.?6646?cos20.?6245mm,cos??dddd2211bb3b ???????mm6.75925??0.70.3643.????2mtan2??s?s?sx????11n2nnnn3n22???? 端面齿厚为 ????7.0?????mm94.32?6.?2??0.367??s?s?s?2xtan3m????? t3t2ttt1t?22cos????2 齿距?mm.205.25?10m?3.14?3?p?p?p3213. 齿轮材料的选择及校核

各种传动方式的比较

各种传动方式的比较 各种传输模式的比较 这有几个优点。齿轮有间隔,链条有平均传动比,皮带传动有过载,螺旋传动精度高,蜗杆传动传动比大。 皮带传动和齿轮传动的区别很大,“比较皮带传动和齿轮传动的应用场合”很简单:皮带传动主要应用于中心距大、传力小、传动比要求低的场合;而齿轮传动适用于中心距小、传力大、传动比要求高的场合。齿轮齿条传动和滚珠丝杠传动(举升)哪一种效率更高 齿轮带动齿条上下移动,螺母(固定旋转)带动螺杆上下移动,效率高?他们的优点和缺点是什么?同样的垂直速度,哪一个需要更多的动力?请列出相关的公式和数据。两者重量相同,设备需要自锁。请帮忙分析,先谢谢你!齿轮传动的效率约为99%。试管架可以参考这个。 一般丝杠效率一般为50%,即使丝杠角度较大,也不会超过60%。只要滚珠丝杠的导程角不太小,一般正效率可以达到90%以上,但一般不超过95%。从动力的角度来看,齿条传动和滚珠丝杠传动之间的差别很小。 齿轮传动效率是机械特殊操作中效率最高的传动之一,一般可达90%,如果是一级齿轮传动效率可达99%,如果是多级齿轮传动,则是各级效率的乘积..当然,最低取决于齿轮设计和制造过程。没有必要研究这个。制造业就是这样,只需要知道当前的一般水平和最高水平。此外,传动功率可达10万千瓦,圆周速度可达12月XXXX“传

动技术”研究报告。两者之间的区别不取决于传动方式的选择,而是取决于制造商的设计和制造水平。 2、空载能耗为齿轮传动(耦合传动)的直接传动方式,空载压力一般保持在2.5巴以上,有的甚至高达4巴,以保证齿轮箱的润滑。对于皮带传动模式,理论上空载压力可以为零,因为吸入转子的油足以润滑转子和轴承。通常,出于安全原因,压力保持在大约0.5巴。以160千瓦齿轮驱动空气压缩机为例。它每年工作8000个小时,其中15%(即在1XXXX比同等功率的皮带驱动空气压缩机多消耗28800千瓦时的电能(假设两台机器之间的空载压差为2巴,能耗差约为15%)。从长远来看,这将是一笔巨大的开支。3.对漏油有经验的实际用户都知道变速箱将首先遭受漏油。皮带传动系统没有这样的安全问题。 4.根据用户要求设计工作压力。通常,用户要求的工作压力与制造商标准型号的压力不完全一致。例如,用户需要10巴的压力。根据后处理设备的情况,管道长度和密封程度不同,空气压缩机的工作压力可以是11巴或11.5巴。在这种情况下,通常将安装额定压力为13巴的空气压缩机,出口压力将设置为现场所需的工作压力。此时,位移将保持基本不变,因为尽管最终工作压力已经降低,转子的速度却没有增加。代表现代技术的皮带传动设计制造商只需简单地改变皮带轮的直径,就可以将工作压力设计成完全符合用户的要求,这样用户就可以用同样的动力电机获得更多的风量。对于齿轮传动来说,就不那么方便了。 5.已安装空气压缩机的压力变化有时由于用户生产工艺条件的变化,

齿轮传动的特点和类型

第一节齿轮传动的特点和类型 一、齿轮传动的特点 齿轮传动是应用最为广泛的一种传动形式,与其它传动相比,具有传递的功率大、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定传动比;缺点是制造及安装精度要求高,成本高,不适于两轴中心距过大的传动。 二、齿轮传动分类 1、按轴线相互位置:平面齿轮传动和空间齿轮传动。 平面齿轮传动:按轮齿方向:直齿轮传动,斜齿轮传动和人字齿轮传动;按啮合方式:外啮合、内啮合和齿轮齿条传动; 空间齿轮传动:锥齿轮传动、交错轴斜齿轮传动和蜗杆蜗轮传动。 2、按齿轮是否封闭:开式和闭式齿轮传动 三、齿轮传动的基本要求 1、传动准确平稳; 齿廓啮合基本定律:为保证齿轮传动的瞬时传动比保持不变,则两轮不论在何处接触,过接触点所作两轮的公法线必须与两轮的连心线交于一定点。定点C称为节点,分别以O1、O2为圆心,过节点C所作的两个相切的圆称为节圆。根据齿廓曲线满足齿廓啮合基本定律制出的齿轮有渐开线齿轮、摆线齿轮和圆弧线齿轮。我们主要介绍渐开线齿轮。 渐开线的有关概念:1、发生线在基圆上滚过的长度等于基圆上相应被滚过的弧长;2、发生线即渐开线的法线,它始终与基圆相切,故也是基圆的切线;3、同一基圆上生成的任意两条反向渐开线间的公法线长度处处相等,任意两条同向渐开线间的法向距离处处相等;4、渐开线的形状取决于基圆的大小。基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;5、基圆内无渐开线。 2、承载能力高和较长的使用寿命。 第二节渐开线齿轮的基本参数及几何尺寸计算 一、各部分名称 端平面:垂直于齿轮轴线的平面; 齿槽:相邻两轮之间的空间; 齿顶圆(da)、齿根圆(df)、齿槽宽(ek)、齿厚(sk)、齿顶高(ha)、齿根高(hf)、齿宽(p)、全齿高(h) 二、基本参数 1、模数m:; 2、压力角:规定分度圆上的压力角为标准压力角; 3、齿顶高系数:; 4、顶隙系数:; 5、齿数z:。当m、α不变时,z越大,db越大,渐开线越平直,若当z→∞时,db→∞,渐开线变成直线,齿轮变成齿条。 标准齿轮:m、α、ha*、c*皆为标准值且e=s。 三、几何尺寸计算 1、内齿轮与外齿轮比较:内齿轮的齿根即外齿轮的齿顶,内齿轮的齿顶即外齿轮的齿根;内齿轮的df>da>db; 2、齿条与齿轮比较:齿条的齿廓曲线为直线,齿轮的齿廓曲线为曲线(渐开线);对应的圆都变为直线,如分度线、齿顶线、齿根线;啮合角等于压力角,等于齿形角。齿条上所有轮齿的同侧齿廓都互相平行,齿廓任意位置的齿距都等于分度线的齿距,即pk=p=πm。 3、几何尺寸计算(见书表35-3) 例1、已知:m=7mm,z1=21、z2=37,α=20°,正常齿,求其几何尺寸。

齿轮齿条式转向器设计和计算

转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于且无动力转向和不大于4t带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。(转向盘转角增量与相应的转向摇臂转角增量之比iω1称为转向器角传动比。) 二、两侧转向轮偏转角之间的理想关系式 汽车转向行驶时,为了避免车轮相对地面滑动而产生附加阻力,减轻轮胎磨损,要求转向系统能保证所有车轮均作纯滚动,即所有车轮轴线的延长线都要相交于一点。 cotα=cotβ+B/L 其中α、β分别是内外侧转向轮的偏转角,B是两侧主销轴线与地面相交点之间的距离;L是汽车轴距。

齿轮齿条的传动计算

齿轮齿条的传动计算 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

齿轮齿条的传动计算 齿轮与齿条传动特点 齿轮作回转运动,齿条作直线运动,齿条可以看作一个齿数无穷多的齿轮的一部分,这时齿轮的各圆均变为直线,作为齿廓曲线的渐开线也变为直线。齿条直线的速度v 与齿轮分度圆直径d 、转速n 之间的关系为 式中 d ——齿轮分度圆直径,mm ; n ——齿轮转速,min r 。 其啮合线12N N 与齿轮的基圆相切1N ,由于齿条的基圆为无穷大,所以啮合线与齿条基圆的切点2N 在无穷远处。 齿轮与齿条啮合时,不论是否标准安装(齿轮与齿条标准安装即为齿轮的分度圆与齿条的分度圆相切),其啮合角'α恒等于齿轮分度圆压力角α,也等于齿条的齿形角;齿轮的节圆也恒与分度圆重合。只是在非标准安装时,齿条的节线与分度线不再重合。 齿轮与齿条正确啮合条件是基圆齿距相等,齿条的基圆齿距是其两相邻齿廓同侧直线的垂直距离,即cos cos b P P m απα==。 齿轮与齿条的实际啮合线为12B B ,即齿条顶线及齿轮齿顶圆与啮合线12N N 的交点2B 及1B 之间的长度。 齿轮齿条传动的几何尺寸计算 齿轮与齿条传动的尺寸计算见表 表 齿轮齿条传动的几何尺寸计算

齿条的主要特点: (1)由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。(2)与齿顶线平行的任一条直线上具有相同的齿距和模数。 (3)与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。

齿轮齿条传动机构设计说明

齿轮齿条传动机构得设计与计算 1、 齿轮1,齿轮2与齿轮3基本参数得确定 由齿条得传动速度为500mm/s,可以得到齿轮3得速度为500m/s,即,/5003s mm V =又()160d 3 33n V π=,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 2 11212===n n z z 得80m in,/58821==z r n 2、 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ 端面齿厚为

相关文档
最新文档