电子论文-Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz Data Sheet

电子论文-Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz Data Sheet
电子论文-Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz Data Sheet

Definitions

Analog demodulation mode = Measurements with AM, PM, and FM demodulation capabilities.

Baseband= dc to 10 MHz measurements.

Baseband time = Time-domain measurements selected by setting start frequency to exactly 0 Hz or choos-ing full span in 0 to 10 MHz measurements.

dBc = dB relative to input signal level.

dBfs = dB relative to full scale amplitude range setting. Full scale is approximately 2 dB below ADC overload.

FS or fs = Full scale; synonymous with amplitude range or input range.

RBW = Resolution bandwidth.

RF = 2 MHz to 2.65 GHz measurements.

Scalar mode = Measurements with only frequency-domain analysis available. Frequency spans up to 2648 MHz.

SNR = Signal to noise ratio.

Vector mode = Measurements with frequency- and time-domain capabilities. Frequency spans up to 10 MHz in baseband, and 7 MHz for RF analysis (8 MHz with Option 89441A-AYH).

Zoom time = Time-domain measurements selected by setting frequency parameters using center fre-quency and span values.Introduction

Specifications describe warranted performance over the temperature range of 0°to 45°C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics identified as “typical”or “characteristic” provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20°to 30°C. When enabled, automatic calibrations are periodi-cally performed to compensate for the effects of temperature and time sensitivities. During the cali-bration, no signals > 0 dBm should be connected to the front panel inputs.

Feature summary

Frequency

dc to 2.650 GHz

51 to 3201 points

Center frequency signal-tracking

Instrument modes

Scalar (frequency-domain only)

Vector (amplitude and phase information in frequency and time domain and also

time gating)

Analog demodulation (AM/FM/PM)

Sweep types

Continuous Manual

Single

Agilent 89441A

Vector Signal Analyzer

dc to 2.65 GHz

Data Sheet

Triggering

Free run External

Input channel External arm

IF channel Programmable polarity Internal source and level

GPIB Pre and post delay

Trigger holdoff

Averaging

Video Peak hold

Video exponential Simultaneous display of Time instantaneous and

Time exponential average spectrum

Source types

CW Periodic chirp

Random noise Arbitrary (up to 8192 points) Input

One channel

Second 10 MHz input channel (optional)

Auto-ranging (baseband only)

Overload indicators

50/75/1M ?BNC (dc to 10 MHz)

50 ?Type-N, 75 ?with minimum-loss pad (2 MHz to

2650 MHz)

Resolution/window shapes

1-3-10 bandwidth steps

Arbitrary RBW

Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning

(high frequency resolution), Uniform Detectors: normal, positive peak, sample Measurement data

Spectrum Time capture

PSD Frequency response,

Main time coherence, cross

Gate time spectrum, and cross Math function correlation (with second Data register10 MHz input channel)

Auto correlation Instantaneous spectrum Data format

Log magnitude Imaginary part

Linear magnitude Group delay

Phase (wrap or unwrap)Log/linear x-axis

Real part

Trace math

Display

1, 2, or 4 grids

1 to 4 traces displayed (single or overlay)

Auto-scaling

Color (user definable)

User trace title and information

Graticule on/off

Data label blanking

X-axis scaling

Instrument/Measurement state displays

External monitor Markers

Marker search: Peak, next peak, next peak right, next peak, left, minimum

Marker to: Center frequency, reference level, start frequency, stop frequency

Offset markers

Couple markers between traces

Marker functions: Peak track, frequency counter, band power (frequency, time, or demodulation results), peak/average statistics

Memory and data-storage

Disk devices

Nonvolatile RAM disk (100 Kbyte)

Volatile RAM disk (up to 20 Mbyte)

90 mm (3.5-inch) 1.44 Mbyte flexible disk (LIF or MS-DOS? formats)

External GPIB disk

Disk format and file delete, rename, and copy Nonvolatile clock with time/date

Save/recall of: Trace data, instrument states, trace math functions, Instrument BASIC program, time-capture buffers

Online help

Hard copy output

GPIB/HPGL plotters

GPIB/RS-232/parallel printers

Plot to file

Time stamp

Single-plot spooling

Interfaces

GPIB (IEEE 488.1 and 488.2)

External reference in/out

External PC-style keyboard

Active probe power

RS-232 (one port)

Centronics

LAN and second GPIB

Standard data format utilities

Optional features

Second 10 MHz input channel (Option 89441A-AY7) Extend time capture to 1 MSample (Option 89441A-AY9)

Internal RF source (Option 89441A-AY8) Instrument BASIC (Option 89441A-1C2)

Vector modulation analysis (Option 89441A-AYA) Digital video modulation analysis (Option

89441A-AYH)

Waterfall and spectrogram (Option 89441A-AYB) Advanced LAN support (Option 89441A-UG7)

3GPP W-CDMA analysis, includes code domain power (Option 89441A-080)

W-CDMA code domain power for exper. sys. (Option 89441A-B73)

ARIB 1.0-1.2 W-CDMA analysis (Option 89441A-B79) Enhanced data rates for GSM evol. (EDGE) (Option 89441A-B7A)

Agilent 89441A technical data – feature summary

2

3

RF specifications apply with the receiver mode set to “RF section (2–2650 MHz).”

Frequency

Frequency tuning

Frequency range 2 MHz to 2650 MHz Frequency span Scalar mode 1 Hz to 2648 MHz Vector mode 1 Hz to 7 MHz (8 MHz with Option 89441A-AYH)Center frequency tuning resolution

0.001 Hz Number of frequency points/span

51 to 3201

Signal track (when enabled) keeps the largest measured signal at the center frequency.

Frequency accuracy (with standard high-precision frequency reference)

Frequency accuracy is the sum of initial accuracy,aging, and temperature drift.

Initial accuracy ±0.1 ppm Aging ±0.015 ppm/month Temperature drift ±0.005 ppm (0°to 55°C)Frequency counter

The frequency counter operates in scalar or vector mode.

Frequency counter accuracy:

Total accuracy is the sum of the frequency counter’s basic accuracy and the instrument’s frequency accuracy.

Conditions/exceptions:

Signal-to-noise ratio within resolution bandwidth,20 dB minimum

Marker within 1?2resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth < 5 Hz

Stability (spectral purity)(with standard high-precision frequency reference or equivalent with ≥5 dBm level)

Phase noise (absolute and residual):F in ≤200 MHz 100 Hz offset < –103 dBc/Hz 1 kHz offset < –112 dBc/Hz ≥10 kHz offset < –116 dBc/Hz 200 MHz ≤F in ≤1 GHz 100 Hz offset < –96 dBc/Hz 1 kHz offset < –104 dBc/Hz ≥10 kHz offset < –116 dBc/Hz 1 GHz ≤F in ≤2650 MHz 100 Hz offset < –87 dBc/Hz 1 kHz offset < –97 dBc/Hz ≥10 kHz offset < –116 dBc/Hz LO spurious sidebands Offset > 1 kHz < –75 dBc Offset ≤1 kHz f in ≤2 GHz < –70 dBc f in > 2 GHz < –68 dBc

Agilent 89441A technical data – RF

Frequency counter basic accuracy

Spectral purity at 1 GHz

Agilent 89441A technical data – RF

Resolution bandwidth

Range312.5 μHz to 3 MHz in 1, 3, 10

sequence or arbitrary user-definable

bandwidth

Note: In scalar mode, the minimum resolution bandwidth is 312.5 μHz and the maximum resolu-tion bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth

is a function of span only.

Passband Sideband Window Selectivity1flatness level

Flat-top 2.45:1+ 0, –0.01 dB–95 dBc Gaussian-top 4.0:1+ 0, –0.68 dB –125 dBc Hanning9.1:1+ 0, –1.5 dB–32 dBc Uniform716:1+ 0, –4 dB–13 dBc

1. Shape factor or ratio of –60 dB to –3 dB bandwidths.Amplitude

Input range–50 dBm to +25 dBm

(5 dB steps)

Maximum safe input power

Average continuous +25 dBm (300 mW)

power

DC voltage25 V

A/D overload level > 1.5 dB above range (typical)

Input port

Input channels1

VSWR

Range ≥– 20 dBm 1.6:1 (12.7 dB return loss) Range ≤–25 dBm 1.8:1 (11 dB return loss) Impedance50 ?(75 ?with minimum-

loss pad Option

89441A-1D7) Connector Type-N

Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity. Absolute full-scale accuracy (with signal level equal to range)

20°– 30°C0°– 55°C

≥–25 dBm range±1 dB±2 dB

(0.5 dB typical)

≤–30 dBm range±1.5 dB±3 dB

(0.5 dB typical) Amplitude linearity

0 to –30 dBfs < 0.10 dB

–30 to –50 dBfs < 0.15 dB

–50 to –70 dBfs < 0.20 dB

In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity.

Vector mode frequency response±0.4 dB (relative to the center frequency)

4

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measure-ment bandwidth.

Harmonic distortion (with a single full scale signal at the input)

≥–25 dBm range< –75 dBc

≤–30 dBm range< –54 dBc Third-order intermodulation< –75 dBc distortion (with two input tones at

6 dB below full scale and ≥10 MHz)

General spurious (with input signal level equal to range and input frequency ≤2650 MHz)

For spans ≤1.5 MHz and for< –75 dBc

offset frequencies ≤.5 MHz

from input signal

For all spans and offsets<–70 dBc1 Residual responses (50 ?input)<–80 dBfs Input noise density (50 ?input, vector mode or scalar mode with sample detector)2

20°– 30°C 0°– 55°C

≥–25 dBm range < –115 dBfs/Hz < –112 dBfs/Hz ≤–30 dBm range < –110 dBfs/Hz< –109 dBfs/Hz Sensitivity2

–50 dBm range< –160 dBm/Hz< –159 dBm/Hz Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase (relative to best

fit line with peak signal level within 6 dB of

full scale): ±5 deg

Time (vector mode)

Time-sample resolution = 1/(k*span(Hz)) [second]; where k = 1.28 for zoom time.

Main time length = (number of frequency points –1) ÷span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (for a sine wave in the meas-urement passband, time-domain calibrations on, range ≥–25 dBm)

20°– 30°C±12% full scale

(±6% typical)

0°– 55°C±26% full scale

Sample error rate for zoom time (typical) Error threshold:10–8times/sample

5% full scale

Sample error rate reflects the probability of an error greater than the error threshold

occurring in one time sample.

1. < -60 dBc for RF (2-2650 MHz)-wide (Option 89441A-AYH)

2. Add 4 dB for RF (2-2650 MHz)-wide (Option 89441A-AYH)

Agilent 89441A technical data – RF

5

Analog demodulation

Demodulation specifications apply with demodula-tion mode selected and time-domain calibration on.

AM, PM, or FM demodulation. Auto carrier locking is available with PM or FM demodulators and the carrier value determined is a displayable marker function.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 7 MHz (typical)

AM demodulation (typical performance)

Accuracy±1%

Dynamic range60 dB (100%) for a pure AM

signal

Cross demodulation< 0.3% AM on an FM signal

with 10 kHz modulation,

200 kHz deviation

PM demodulation (typical performance)

Accuracy±3 degrees

Dynamic range60 dB (rad) for a pure PM

signal

Cross demodulation< 1 degree PM on an AM

signal with 80% modulation

FM demodulation (typical performance)

Accuracy±1% of span

Dynamic range60 dB (Hz) for a pure FM

signal

Cross demodulation< 0.5% of span FM on an AM

signal with 80% modulation Trigger

Trigger types

Scalar mode Free run, internal source,

GPIB, external (each

measurement step requires

a separate trigger)

Vector mode Free run, IF channel,

internal source, GPIB,

external

Pre-trigger delay range (see time specifications for sample resolution)

One channel64 Ksamples (1 Msample

with extended time

capture, Option

89441A-AY9)

Two channels 32 Ksamples (0.5 Msample (requires second with extended time

10 MHz input, capture,

Option 89441A-AY7)Option 89441A-AY9)

Post-trigger delay 2 Gsample

range (see time

specifications for

sample resolution)

Trigger holdoff

When enabled, each measurement requires two trigger events. The first event starts a holdoff

timer. After the specified holdoff time, a subse-quent trigger event will initiate a measurement.

Holdoff resolution 2.5 μs

Holdoff range 2.5 μs to 41 s

IF trigger (characteristics only)

Used to trigger only on in-band energy, where

the trigger bandwidth is determined by the

measurement span (rounded to the next higher 107/2n[Hz]).

Amplitude resolution< 1 dB

Amplitude ranges+1 to –70 dBfs. Usable

range will become limited

by the total integrated noise

in the measurement span.

IF trigger hysterysis < 4 dB

External trigger (positive and negative slope) Level accuracy±0.5 V

Range±5 V

Input impedance10 k?(typical)

External arm

Level accuracy±0.5 V

6

Range±5 V

Input impedance10 k?(typical)

Source (requires internal RF source

Option 89441A-AY8)

Source types1CW (fixed sine), (vector mode)random noise,

periodic chirp,

arbitrary Frequency

Range 2 MHz to 2650 MHz Maximum offset from center 3.5 MHz frequency

Amplitude (fixed sine source type)

Amplitude range–40 dBm to +13 dBm Typical maximum +17 dBm

amplitude (overdrive

is available using

direct numeric entry)

Amplitude resolution 0.1 dB

Amplitude accuracy (source level ≤13 dBm) Source amplitude accuracy is the sum of

absolute accuracy at the center frequency (zero offset frequency) and the IF flatness.

20°– 30°C0°– 55°C Absolute accuracy ±1.2 dB±3.5 dB

at the center

frequency

IF flatness (relative ±1dB±1.5 dB

to center frequency)

IF Flatness with ±0.3 dB

|offset frequency| ≤500 kHz

Dynamic range (source level ≤0 dBm)

Harmonic distortion< –40 dBc

Non-harmonic spurious < –40 dBc

(within measurement

bandwidth)

Average noise level< –120 dBc/Hz (for offsets > 1 MHz from

the carrier and carrier

frequency > 100 MHz.

For offsets < 1 MHz, add

the LO phase noise.)

Crosstalk (source-to-receiver, –80 dBfs

source level ≤0 dBm)

Source port

VSWR

Level ≤–10 dBm 1.8:1 (11 dB return loss) Impedance 50 ?(75 ?with optional

minimum-loss pad) Connector Type-N

1.See baseband section for random noise, periodic chirp, and

arbitrary source characteristics.

7

Baseband specifications apply with the receiver mode set to “IF section (0–10 MHz)” or “RF section (0–10 MHz)” unless noted otherwise. Specifications noted as “IF section only” apply with the receiver mode set to “IF section (0–10 MHz)” and the input signal connected directly to the IF section’s channel 1 or channel 2 input.

Frequency

Frequency tuning (characteristic only)

Frequency range dc to 10 MHz Frequency span 1.0 Hz to 10 MHz Center frequency tuning resolution0.001 Hz Number of frequency points/span51 to 3201 Signal track (when enabled) keeps the largest measured signal at the center frequency. Frequency accuracy

Same as the RF specifications.

Frequency counter

Same as the RF specifications.

Stability (spectral purity)

Absolute and residual phase noise, F in= 10 MHz (with standard high precision frequency reference or equivalent)

100 Hz offset< –106 dBc/Hz

1 kHz offset< –110 dBc/Hz

≥10 kHz offset< –120 dBc/Hz

Phase noise decreases with decreasing input frequency by 20 log10(F in/10 MHz) dB

Resolution bandwidth

Same as the RF specifications.Amplitude

Input range (characteristic only) (2 dB steps)

50 ?input–30 dBm to +24 dBm

75 ?input–31.761 dBm to +22.239 dB

1 M W input–30 dBm to +28 dBm (referenced to 50 ?)

Maximum safe input power

50 ?/75 ?input+27 dBm

1 M?input 20 V peak

Auto-ranging (characteristic only)

Up-only, up-down, single, off

Input port

Input channels 1 (second 10 MHz input

channel optional)

Return loss (IF section only)

50 ?input> 25 dB

75 ?input> 20 dB

Coupling dc/ac (ac coupling

attenuation < 3 dB at 3 Hz) Input impedance50/75 ?, 1 M?±2%

(IF section only)(< 80 pF shunt capacitance) Connector BNC (RF section: type-N) Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity. Absolute full-scale±0.5 dB

accuracy (IF section

only, with signal

level equal to range)

Amplitude linearity

0 to –30 dBfs< 0.10 dB

–30 to –50 dBfs< 0.15 dB

–50 to –70 dBfs< 0.20 dB

Residual dc (50 ?)< –25 dBfs

8

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measure-ment bandwidth.

Harmonic distortion (with a single full scale signal at the input)

2nd< –75 dBc (–80 dBc typical) 3rd, 4th, 5th< –75 dBc (–85 dBc typical) Intermodulation distortion (with two input tones at 6 dB below full scale)

Second-order< –75 dBc (–80 dBc typical) Third-order< –75 dBc (–85 dBc typical) Residual (spurious) responses (IF section only) (50 ?input and front panel connections to RF section disconnected)

Frequencies < 1 MHz < –75 dBfs or < –100 dBm

whichever is greater Frequencies ≥1 MHz < –80 dBfs

Alias responses (for a < –80 dBfs

single out-of-band

tone at full scale)

Input noise density (50 ?input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz< –101 dBfs/Hz

40 kHz to 10 MHz < –114 dBfs/Hz

(–118 dBfs/Hz typical) Sensitivity (–30 dBm range, 50 W input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz< –13l dBm/Hz

40 kHz to 10 MHz< –144 dBm/Hz

(–148 dBm/Hz typical) Crosstalk < –85 dBfs

(source-to-input or

channel-to-channel,

50 ?terminations)Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear ±5 degrees

phase (relative to best

fit line with peak signal

level within 6 dB of

full scale)

Time (vector mode)

Time-sample resolution = 1/(k*span(Hz)) [second]; where k = 1.28 for zoom time, 2.56 for baseband time measurements.

Main time length = (number of frequency points – 1)÷span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy±5% full scale

(IF section only) (for a

sinewave in the measure-

ment passband, time-

domain calibrations on)

Sample error rate for zoom time (typical) Error threshold:10–8times/sample

5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

Analog channel-to-channel< 1 ns

time skew (IF section only)

(time-domain calibrations

on,both channels on the

same range)

Analog demodulation

Same as RF analog demodulation specifications except as noted below.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth10 MHz (typical)

Typical harmonic and intermodulation distortion

9

Two-channel

The second 10 MHz input channel (Option 89441A-AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one or to a demodulated signal on the RF input.

Channel match ±0.25 dB, ±2.0 degrees

(IF section only, at the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.) Trigger

Same as RF trigger specifications with the follow-ing additional specifications.

Input channel trigger (positive and negative slope) Level accuracy±10% full scale

Range±110% full scale

Resolution Full scale/116 (typical) Source (with output filter on)

Source types

Scalar mode CW (fixed sine), arbitrary Vector mode CW, random noise, periodic chirp,

arbitrary

Random noise source % of energy in-band> 70% (Span = 10 MHz/2N, N = 1 to 24)

Periodic chirp source % of energy in-band> 85%Frequency

Frequency range dc to 10 MHz Frequency resolution25 μHz

Amplitude

Source level

CW and–110 dBm to +23.979 dBm (50 ?), random noise 5.0 Vpk maximum

Periodic chirp–110 dBm to + 19.542 dBm (50 ?), and arbitrary 3.0 Vpk maximum

DC offset±3.42 V maximum (resolution and

range of programmable dc offset

is dependent on source amplitude) Amplitude accuracy (50 ?, fixed sine)

(IF section only)

–46 dBm to +24 dBm±1.0 dB

–56 dBm to –46 dBm±2.0 dB

Harmonic and other spurious products (fixed sine, 0 V dc offset)

dc to 10 kHz< –55 dBc

10 kHz to 5 MHz< –40 dBc

5 MHz to 10 MHz< –33 dBc

Source port

Return loss (IF section only)> 20 dB

Source impedance 50/75 ?

Arbitrary source characteristics

The arbitrary source repetitively outputs data stored in a data register. The data register may contain a single time record or, with Option

89441A-AYB, a trace buffer. The time length of the register depends on the time-sample resolution for the span entered when the data register was saved or created. See time specifications for time-sample resolution details.

Arbitrary source length

Single time record Up to 4096 complex or

8192 real points.

Trace buffer Up to 16,384 real or

(Requires Option complex points. Some

89441A-AYB)configurations allow up

to 32,768 real or complex

points (see the Operator’s

Guide for details)

10

Safety and environmental

Safety standards CSA certified for

electronic test and

measurement

equipment per CSA

C22.2, No. 231

This product is designed

for compliance to UL1244 and IEC348, 1978 Acoustics LpA < 55 dB typical at

25°C ambient

(temperature controlled

fan to reduce noise

output)

Temperature

Operating0°to 45°C

Internal disk operations4°to 40°C

Storage (no disk in drive)–20°to 60°C Humidity, non-condensing

Operating10% to 85% at 40°C

Internal disk operations20% to 80% at 30°C

Storage (no disk in drive)10% to 85% at 40°C Altitude

Operating (above 4600 m (15,000 ft)

2285 m [7,500 ft], derate

operating temperature

by –3.6°C/1000 m

[–1.1°C/1000 ft])

Storage4600 m (15,000 ft) Calibration interval 1 year

Warm-up time30 minutes

Power requirements

115 VAC operation

IF section90 – 140 Vrms, 47 – 440 Hz

RF section90 – 140 Vrms, 47 – 63 Hz 230 VAC operation198 – 264 Vrms, 47 – 63 Hz Maximum power dissipation

IF section750 VA

RF section275 VA

IEC 801-3 (radiated immunity) performance degradation may occur at severity level 2.Physical

Weight IF section21 kg (46 lb)

RF section25 kg (55 lb)

Dimensions

IF section Height230 mm (9.1 in)

Width426 mm (16.7 in)

Depth530 mm (20.9 in) RF section Height187 mm (7.4 in)

Width426 mm (16.7 in)

Depth525 mm (20.7 in) Real time bandwidth (characteristics only)

Real-time bandwidth is the maximum frequency span that can be continually analyzed without missing any time segment of the input signal.

Frequency spans of 107/2n Hz, arbitrary auto-coupled resolution bandwidth, markers off, one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.

Averaging off

Single-channel vector mode78.125 kHz,

(log magnitude spectrum60 updates/second measurement data, 1601

frequency points, channel 2 off,

averaging off)

Two-channel vector mode39.0625 kHz, (requires second 10 MHz input60 updates/second channel, Option 89441A-AY7)

(Log magnitude frequency

response measurement data,

801 frequency points, averaging

off)

11

Averaging

Single-channel vector mode averaging (log magni-tude spectrum measurement data, 1601 frequency points, channel 2 off)

Fast average78.125 kHz

Displayed78.125 kHz,

48 updates/second Two-channel vector mode averaging (requires sec-ond 10 MHz input channel, Option 89441A-AY7) (Log magnitude frequency response measurement data, 801 frequency points)

Fast average39.0625 kHz

Displayed39.0625 kHz,

48 updates/second Demodulation

Single-channel analog demodulation mode

(log magnitude spectrum measurement data, 1601 frequency points, time cal off, channel 2 off, averaging off)

AM demodulation 39.0625 KHz

FM demodulation19.53125 kHz

PM demodulation 9.765625 kHz Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calcula-tions off on other traces, log magnitude spectrum, frequency spans of 107/2n Hz): 57/second Averaging (characteristics only)

Number of averages 1 to 99,999

Overlap averaging 0% to 99.99%

Average types

Scalar mode rms (video), rms (video)

exponential, peak hold Vector mode rms (video), rms (video)

exponential, time, time

exponential, peak hold Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data; gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details. Gate length

Maximum: Main time length

Minimum: Approximately window shape ÷(0.3 x span Hz)) [seconds]; where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

Window ws Minimum gate length

Flat-top 3.819 1.328125 μs

Gaussian-top 2.215781.25 ns

Hanning 1.5546.875 ns

Uniform 1.0390.625 ns

12

Time-capture (characteristics only)

Direct capture of input waveforms can be accom-plished with spans of 10 MHz/2n Hz. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (Option 89441A-AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

Band power marker (characteristics only) Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and C/N O, within the selected portion of the data.

Peak/average statistics

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured time (Option 89441A-AYA), IQ reference time (Option 89441A-AYA), and math functions involving these trace types. Average power and peak statistics are com-puted using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed results average power

peak power

peak/average ratio

number of samples

Peak percent90% – 99.99%. Setting can

be changed at any time

during or after the

measurement

Signal characteristics

Peak power range+13 dB relative to average

power of the first time

record

Average power ±3 dB relative to average range power of the first time

record Display (characteristic only)

Trace formats One to four traces on one, two,

or four grids or a quad display Other displays On-line help text, view state Number of colors User-definable palette Display points/trace401

User-definable trace titles and information:

X-axis scaling Allows expanded views

of portions of the trace

information

Display blanking Data or full display

Graticule on/off

Center±5 mm referenced to bezel

opening

Dimensions

Height107 ±5 mm

Width154 ±5 mm

Diagonal187.2 mm (7.4 in)

Status indicators

Overload, half range, external trigger, source

on/off, trigger, pause, active trace, remote, talk, listen, SRQ.

External PC-style keyboard interface Compatible with PC-style 101-key keyboard, male DIN5 to PS2 type mini-DIN6 pin female adapter

required for some keyboards.

Agilent 89441A technical data – general

13

Interfaces (characteristics only)

Active probe power+15 Vdc, –13 Vdc; 150 mA

maximum, compatible with

active probes

Sync out Active low TTL level signal

synchronous with source

output of periodic chirps and

arbitrary blocks up to 8192

samples.

External reference in/out IF section

External Locks to a 1, 2, 5, or 10 MHz reference input(±10 ppm) with a level

> 0 dBm

External Output the same frequency reference output as the external reference

input at level of > 0 dBm into

a 50 ?load.

External reference in/out RF section

External Locks to a 1, 2, 5, or 10 MHz reference input(±10ppm) with a level > 0dBm

(use ≥5 dBm for optimum

phase noise performance).

External Outputs 10 MHz at > 0 dBm reference output(+6 dBm typical) into a 50 ?

load.

GPIB

Implementation of IEEE Std 488.1 and 488.2

SH1, AH1, T6, TE0, 1A, LE0, SR1, RL1, PP0,

DC1, DT1, Cl, C2, C3, C12, E2

Benchmark characteristics (typical transfer rate of 401 frequency-point traces)

Scalar25 traces/second

Vector20 traces/second

RS-232Serial port (9-pin) for

connection to printer Centronics Parallel port for connection

to a printer External monitor output

Format Analog plug-compatible with

30.15 kHz multi-sync monitors

Impedance75 ?

Level0 to 0.7 V

Display rate57.43 Hz

Horizontal 30.15 kHz

refresh rate

Horizontal lines 400

LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP

IAN interface: ThinLAN (BNC connector) or AUI Program interface: Send and receive GPIB pro-gramming codes, status bytes, and measurement results in ASCII and/or binary format.

GPIB I/O

Secondary GPIB port: Per IEEE Std 488.1 and 488.2 Functions: Controller-only; accessible from IBASIC program or front panel commands. Peripherals

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and GPIB graphics printers and plotters. Printers supported include the HP LaserJet, HP PaintJet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plot-ting a single display.

14

Memory and data storage

Disk devices

Nonvolatile RAM disk100 Kbyte

Volatile RAM disk21 Mbyte that can be

partitioned between

measurement,

Instrument BASIC

program space and

RAM. Volatile RAM

also supports memory

of waterfalls and

spectrograms with

Option 89441A-AYB.

Internal 90 mm (3.5-inch) 1.44 Mbyte

flexible disk (LIF or

MS-DOS? formats)

External disk GPIB interface

Disk format and file delete, rename and copy

Nonvolatile clock with time/date

Save/recall can be used to store trace data,

instrument states, trace math functions,

Instrument BASIC programs, and time-capture buffers.

Benchmarks (typical disk space requirements

for different file types)

Trace data (401 points)6.2 Kbyte

Instrument state12.3 Kbyte

Trace math 2 Kbyte

Time-capture buffers271 Kbyte

(32 Ksamples)Trace math

Operands measurement data, data register,

constant, other trace math functions, jw Operations+, –, *, /, cross correlation, conjugate,

magnitude, phase, real, imaginary,

square root, FFT, inverse FFF, natural

logarithm, exponential

Trace math can be used to manipulate data on each measurement. Uses include user-units correction and normalization.

Marker functions

Peak signal track, frequency counter, band power, peak/average statistics.

Standard data format utilities

Included on three 90 mm (3.5-inch) 1.44 Mbyte flexible disks. The utilities run in MS-DOS? 2.1 or greater on an IBM PC (AT or higher) or compatible. The utilities include conversions to standard data format (SDF), PC displays of data and instrument state information, and utilities for conversion to PC-MATLAB, MATRIX x, data set 58, and ACSII formats.

15

Vector modulation analysis — Option 89441A-AYA

Supported modulation formats

The vector modulation analysis option supports both single modulated carriers and separate base-band I-Q signals. The optional second 10 MHz input channel is required for baseband I and Q analysis.Carrier types

Continuous and pulsed/burst (such as TDMA)

Modulation formats 2 level FSK (including GFSK)

4 level FSK

MSK (including GMSK)QAM implementations of:BPSK QPSK OQPSK, DQPSK,π/4DQPSK 8PSK, 16QAM,32QAM

Default parameter NADC, PDC (JDC), GSM, PHS,settings DECT, CDPD, TETRA,

CDMA Base, CDMA Mobile Filtering

All filters are computed to 20 symbols in length.Filter types

Raised cosine

Square-root raised cosine IS-95 compatible Gaussian None

Rectangular Low pass

User-selectable Alpha/BT continuously filter parameters adjustable from 0.05 to 100User-defined filters User-defined impulse

response, fixed 20 points/symbol

Maximum 20 symbols in length or 401 points Frequency and symbol rate Receiver mode Information bandwidth chl + j*ch2≤20 MHz 10 – 10 MHz ≤10 MHz 2 – 2650 MHz ≤7 MHz 2 – 2650 MHz - wide ≤8 MHz

(Option 89441A-AYH only)

Symbol rate

Symbol Rate is limited only by the information bandwidth

Symbol rate = (Bits/Second) / (Bits/Second)

Where bits/symbol is determined by the modulation type.

Example: For the raised-cosine filter:

Max symbol rate ≤(Information bandwidth / (1 + a))

Measurement results (formats other than FSK)Display update rate

Conditions: NADC preset, 50 kHz span, result length 150 symbols, 1 point/symbol. IQ enve-lope triggering and data synchronization off.Update rate > 2 per second

(characteristic only)I-Q measured

Time, spectrum (Filtered, carrier

locked, symbol locked)I-Q reference

Time, spectrum (Ideal, computed

from detected symbols)I-Q error vs. time Magnitude, phase

(I-Q measured vs. reference)Error vector

Time, spectrum

(Vector error of computed vs. reference)

Symbol table +Error vector magnitude is error summary

computed at symbol times only

Measurement results (FSK)FSK measured Time, spectrum FSK reference Time, spectrum Carrier error Magnitude FSK error Time, spectrum

Display formats

The following trace formats are available for meas-ured data and computed ideal reference data, with complete marker and scaling capabilities and auto-matic grid line adjustment to ideal symbol or con-stellation states.

Polar diagrams

Constellation: Samples displayed only at symbol times

Vector: Display of trajectory between symbol times with 1 to 20 points/symbol

16

1. Two-channel measurements such as chl + j*ch2 require Option 89441A-AY7 second 10 MHz input channel.

I or Q vs time

Eye diagrams: Adjustable from 0.1 to 10 symbols Trellis diagrams: Adjustable from 0.1 to 10 symbols Continuous error vector magnitude vs. time Continuous I or Q vs. time

Error summary (formats other than FSK)

Measured rms and peak values of the following: Error vector magnitude

Magnitude error

Phase error

Frequency error (carrier offset frequency)

I-Q offset

Amplitude droop (formats other than QAM)

SNR (QAM formats)

Error summary (FSK)

Measured rms and peak values of the following: FSK error

Magnitude error

Carrier offset frequency

Deviation

Detected bits (symbol table)

Binary bits are displayed and grouped by sym-

bols. Multiple pages can be scrolled for viewing

large data blocks. Symbol marker (current symbol shown as inverse video) is coupled to measure-

ment trace displays to identify states with corre-sponding bits. For formats other than FSK and

MSK, bits are user-definable for absolute states or differential transitions. Note: Synchronization

words are required to resolve carrier phase ambi-guity on non-differential modulation formats. Accuracy (formats other than FSK and IS-95 CDMA) Conditions: Specifications apply from 20°to 30°C, for a full-scale signal fully contained in the selected measurement span, random data sequence, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, range ≥–25 dBm, start frequency ≥15% of span, alpha/BT ≥0.31, and symbol rate ≥1 kHz. For symbol rates less than 1 kHz, accuracy may be limited by phase noise.

Residual errors (result length = 150 symbols, averages = 10)Error vector magnitude

Freq span < 100 kHz0.3% rms

Freq span ≤1 MHz0.5% rms

Freq span > 1 MHz 1.0% rms

Magnitude error

Freq span ≤100 kHz0.3% rms

Freq span ≤1 MHz0.5% rms

Freq span > 1 MHz 1.0% rms

Phase error (for modulation formats with equal symbol amplitudes)

Freq span ≤100 kHz0.17°rms

Freq span ≤1 MHz 0.34°rms

Freq span > 1 MHz0.57°rms

Frequency error Symbol rate/500,000 (Added to frequency accuracy if applicable) Origin/I-Q Offset –60 dB

Accuracy (2 FSK and 4 FSK)

Residual errors, typical:

4 FSK or 2 FSK, symbol rate = 3.2 kHz,

deviation = 4.8 kHz, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 50 kHz span, full-scale signal, range ≥–25 dBm, result length = 150, averages = 10, tenth-order Bessel filtering with

3 dB bandwidth = 3.9 kHz.2

FSK error 0.5% rms Magnitude error 0.3% rms Deviation ±0.3% rms (14 Hz) Carrier frequency offset ±0.3% of deviation (Added to frequency

accuracy if applicable)

DECT preset (2 FSK symbol rate = 1.152 MHz,

BT = 0.5) 288 kHz deviation, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 4 MHz span, full-scale signal, result length = 150, averages = 10.

FSK error 1.5% rms

Magnitude error 1.0% rms

Deviation ±1.0% rms (2.88 kHz) Carrier frequency offset ±0.5% of deviation (Added to frequency

accuracy if applicable)

1. 0.3 ≤alpha ≤0. 7 for Offset QPSK

2. Note: For error analysis, a Gaussian reference filter with BT = 1.22 is used to

approximate the tenth-order Bessel filter.

17

Accuracy (IS-95 CDMA)

CDMA Base or CDMA Mobile preset, instrument mode of IF (0 – 10 MHz) or RF (2 – 2650 MHz), 2.6 MHz span, full scale signal, result length = 200, averages = 10.

Residual Errors

Error vector magnitude1% rms

Magnitude error1% rms

Phase error0.57°rms

Frequency error10 Hz

(Added to frequency accuracy if applicable) Origin I/Q offset –60 dB

Signal acquisition

Note: Signal acquisition does not require an external carrier or symbol clock

Data block length

Adjustable up to 4096 samples

Examples:

4096 symbols at 1 point/symbol

409 samples at 10 points/symbol

Symbol clock Internally generated Carrier lock Internally locked Triggering

Single/continuous

External

Internal source

Pulse search (searches data block for beginning of TDMA burst, and performs analysis over

selected burst length)

Data synchronization

User-selected synchronization words

Arbitrary bit patterns up to 30 symbols long,

at any position in a continuous or TDMA burst and measurement result. Up to 6 words can

be defined.

Arbitrary waveform source

RAM-based arbitrary waveforms

Waveform registers Maximum 6

Waveform length4096 complex points each

(16,384 with Option

89441A-AYB)Residual accuracy, typical

Examples

π/4DQPSK, 24.3 EVM ≤0.7% rms

ksymbols/second,

a= 0.35

GMSK, 270.833 EVM ≤1.0% rms

ksymbols/second,

BT= 0.30

Adaptive equalization

This option equalizes the digitally modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized. Equalizer

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate.

Filter length3–99 symbols, adjustable

Filter taps 1, 2, 4, 5, 10, or 20 taps/symbol

Measurement results

Equalizer impulse response

Channel frequency response

Supported modulation formats

MSK, BPSK, QPSK, OQPSK, DQPSK, π/4DQPSK,

8 PSK, 16 QAM, 32 QAM, 64 QAM, 256 QAM,

8 VSB, 16 VSB

Digital video modulation analysis—Option 89441A-AYH

(requires Option 89441A-AYA)

This option extends the capabilities of the vector modulation analysis Option 89441A-AYA by adding modulation formats used for digital video trans-mission. Except where noted, all of the standard capabilities of Option 89441A-AYA are provided for the new modulation formats.

Supported modulation formats

Additional modulation8 and 16VSB

formats16, 32, 64 and 256QAM

16, 32, and 64QAM

(differentially encoded

per DVB standard)

18

Frequency span

The (2–2650 MHz)-wide receiver mode increases the maximum allowable vector frequency span to 8 MHz. Specifications for this mode are in the RF specification section.

Maximum symbol rate

Option 89441A-AYH analyzes vector modulated sig-nals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor (a) of the input signal, according to:

Max symbol rate ≤Information bandwidth / (1 + a) (Note: the maximum symbol rate is doubled for VSB signals.)

Receiver mode Information bandwidth chl + j*ch2≤20 MHz1

0 – 10 MHz≤10 MHz

2 – 2650 MHz normal≤7 MHz

2 – 2650 MHz wide≤8 MHz

External≤10 MHz1

Example: For a 64QAM signal (a= 0.15), the maximum symbol rate for the (2–2650 MHz)-wide receiver is 8 MHz/(1.15) = 6.96 Msymbols/second. Measurement results and display formats

Identical to Option 89441A-AYA measurement results and display formats except for the following changes to the error summary display:

VSB pilot level is shown, in dB relative to nominal.

For VSB formats, SNR is calculated from the

real part of the error vector only.

For DVB formats, EVM is calculated without

removing IQ offset.

Accuracy

Residual errors (typical)

8VSB or 16VSB, symbol rate = 10.762 MHz,

a= 0.115, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 7 MHz span, full-scale signal, range ≥–25 dBm, result length = 800, averages = 10.

Residual EVM ≤1.5% (SNR ≥36 dB)

16, 32, 64 or 256 QAM, symbol rate = 6.9 MHz,

c= 0.15, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz-wide, 8 MHz span, full-scale signal, range ≥–25 dBrn, result length = 800, averages = 10.

Residual EVM ≤1.0% (SNR ≥40 dB)Filtering

All Option 89441A-AYA filter types are supported except user-defined filters for VSB analysis. Filters are calculated to 40 symbols in length.

Triggering and synchronization

All Option 89441A-AYA signal acquisition features are supported except pulse and sync word search for VSB analysis.

Waterfall and spectrogram —

Option 89441A-AYB

Waterfall

Types Vertical and skewed,

Azimuth adjustable 0 to ±45

Normal and hidden line

With or without baseline.

Adjustable Trace height

parameters Buffer depth

Elevation

Threshold

Spectrogram

Types Color, normal, and reversed

monochrome, normal, and

reversed

User color maps (2 total) Adjustable Number of colors

parameters Enhancement

(color-amplitude weighting)

Threshold

Trace select

When a waterfall or spectrogram measurement is paused or completed, any trace in the trace buffer can be selected by trace number or by

z-axis value. The marker values and marker

functions apply to the selected trace.

Z-axis value

The z-axis value is the time the trace data was acquired relative to the start of the measure

ment. The z-axis value of the selected trace is displayed as part of the marker readout. Display update rate: 30 to 60/second, typical Memory required (characteristic only)

Displays occupy memory at the rate of 175

traces/Mbyte (for traces of 401 frequency points).

A full screen of 307 traces will require 2.25 Mbytes

of free memory.

1. Downconverter dependent

19

Advanced LAN support — Option 89441A-UG7 Remote X11 display (characteristic only)

Update rate: > 20 per second, depending on work-station performance and LAN activity.

X11 R4 compatible

X-terminals, UNIX workstations, PC with X-server software

Display: 640 x 480 pixel minimum resolution required;

1024 x 768 recommended.

FTP data (characteristic only)

Traces A, B, C, D

Data registers D1-D6

Time capture buffer

Disk files (RAM, NVRAM, floppy disk)

Analyzer display plot/print Agilent Technologies’ Test and Measurement Support, Services, and Assistance Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifica-tions and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product oper-ation, and provide basic measurement assistance for the use of specified capabili-ties, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs.

Online a ssistance:

https://www.360docs.net/doc/603223714.html,/find/assist

Phone or Fax

Product specifications and descriptions in this document

subject to change without notice.

MS-DOS is a US registered trademark of Microsoft Corporation.

Matlab is a product of The Math Works.

Matrix x is a product of Integrated Systems, Inc.

? Agilent Technologies, Inc. 2002

Printed in USA, June 6, 2002

5965-5425E

https://www.360docs.net/doc/603223714.html,/find/emailupdates

Get the latest information on the

products and applications you select.

Agilent Email Updates

United States: (tel) 800 452 4844 Canada:

(tel) 877 894 4414 (fax) 905 282 6495 China:

(tel) 800 810 0189 (fax) 800 820 2816 Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390 Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840Korea:

(tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America:

(tel) (305) 269 7500 (fax) (305) 269 7599 Taiwan:

(tel) 0800 047 866

(fax) 0800 286 331

Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6836 0252 Email: tm_asia@https://www.360docs.net/doc/603223714.html,

20

电力科技论文电力电子技术论文:现代电力电子技术应用的探讨

电力科技论文电力电子技术论文: 现代电力电子技术应用的探讨 摘要:随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。 关键词:电力电子;技术;发展;应用 1电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2现代电力电子的应用领域 2.1计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了

电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 2.2通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 2.3直流-直流(DC/DC)变换器

艺术设计专业毕业论文参考题目

艺术设计专业 毕业论文参考题目 一、论文参考题目 1、标志设计中“数字”的魅力 2、平面广告设计中图形的有效性和误区 3、展示设计中的空间思考与想象 4、包装中的肌理美 5、标志设计中的正负形使用 6、原始符号与现代标志设计 7、艺术设计中的技术美 8、包豪斯的设计思想研究 9、平面广告设计与其他设计的交融性 10、平面广告创意的互动 11、包装设计的定位(酒品、药品、食品等) 12、招贴设计中传统吉祥元素的运用 13、消费心理对包装设计的影响 14、平面设计中的解构与重置 15、展示设计中光与色的研究 16、修辞技巧在平面广告创意中的运用 17、字体在平面广告设计中的情感表达 18、像素艺术在设计中的表达 19、平面广告设计中错视图形的趣味性 20、海报招贴中的抽象美与具象美 21、绿色材料在包装设计中的重要性

22、平面广告设计中的信息传达 23、中国传统元素与标志设计的融合 24、平面设计中传统文化的现代运用 25、平面设计中的黑色与白色运用 26、平面广告设计中的个性化风格与消费者心理 27、论平面设计中的空白空间 28、现代广告设计与民间美术 29、现代主义艺术对当代平面设计的影响 30、浅析我国平面设计的民族性 31、汉字与现代招贴设计 32、论现代英文字母标志设计 33、浅析汉字标志设计手法 34、中国传统图形在代标志设计中的运用 35、浅析中国古代图徽与现代标志设计 36、浅析现代平面设计的创意切入点 37、现代标志设计与原始符号情结 38、中国民间图形艺术在现代标志设计中的应用思考 39、论商标设计的意象美和形式美 40、浅析平面广告设计的个性要素 41、浅谈广告设计中的传统与现代因素的运用原则 42、论封面设计中的文字要素 43、书法艺术与现代字体设计 44、浅议平面构成与传统图案的对比与和谐 45、谈书籍装帧中的民族元素 46、浅谈中国古代美学思想在现代平面广告中的体现 47、浅析多媒体时代的广告视觉传达效应 48、浅析广告设计设计中意象特征 49、论旅游纪念品包装设计的构思创意与表现 50、现代设计人性化刍议 51、多元化时期的平面设计定位

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

本科毕业论文题目大全

本科毕业论文题目大全 【本科毕业论文题目大全】 浅析我国上市公司的股利分配政策基于长虹和美的的股利政策的分析 关于上市公司股票回购财务效应的探析 上市公司股权结构与公司绩效实证研究 上市公司关联交易对财务报表的影响 上市公司过度投资的行为及其治理 企业并购财务风险的防范与规避措施 上市公司环境会计信息披露的问题浅析以钢铁行业上市公司为例 上市公司会计信息披露问题 上市公司或有事项披露问题分析 上市公司无形资产信息披露的研究 上市公司信息披露诚信问题探究 上市公司虚假陈述危害与原因分析 上市公司盈利质量分析 资产减值会计问题研究 债务重组对上市公司的影响以广东盛润集团股份有限公司为例 我国现代百货企业的盈利能力分析 上市公司职工薪酬激励相关问题分析 我国上市公司中期财务报告研究 上市商业银行内部控制信息披露问题探析 上市银行资本结构与盈余持续性相关研究 社会保险基金会计制度研究 实用文档

浅析社会责任会计信息披露问题 辽宁省审计收费问题探析 我国施工企业现场成本管理问题的研究 食品行业履行社会责任存在的问题及建议 事业单位固定资产管理的问题和对策分析以中国金属研究院为例 电影方向: 1,分析影片《金陵十三钗》,(叙事、造型、视听艺术等角度) 2,分析小成本电影《钢的琴》 3,分析纪录片《海洋》 4,从《艋钾》到《翻滚吧,阿信》看台湾青春电影 5,大陆与台湾(或泰国青春电影比较分析 6,小成本艺术片前景分析 7,黑色电影研究 8,中国电影的档期营销问题 9,中国式大片的市场前景 10,分析电影《失恋33 天》 电视剧方向: 11,以《职来职往》为例分析职场类节目蹿红原因 12,从明星到“民星”看电视话语权的转变 13,电视真人秀节目的本土化问题 14,电视购物节目如何创新 15,新媒体与电视的融合与竞争 16,娱乐脱 【广告设计类论文选题】 元素效应之中国传统元素在品牌设计中的影响 理性设计艺术设计中的数学 实用文档

交流单相在线式不间断电源【文献综述】

毕业设计文献综述 电气工程及其自动化 交流单相在线式不间断电源 随着社会的发展,人类对电能的需求正日益增加,同时对电能质量以及供电安全性的要求也越来越高。现代社会中,电能是一种使用最为广泛的能源,其应用程度是衡量一个国家发展水平的重要标志之一。在银行、证券、通信、工业自动化生产线、办公自动化、医疗、甚至物业管理等各行业中,供电故障将有可能带来巨大的经济损失。特别是随着Internet高速发展和信息化、网络化建设步伐的加快,数据安全成为各行业普遍关注的问题,供电故障对数据的安全性无疑是致命的。使用不间断电源(UPS, Uninterruptible Power System),确保关键用电设备的安全性是解决上述问题的最重要的方法之一。 最初的UPS电源是在二十世纪六十年代出现的靠电动机所带飞轮惯性提输出电源的质量和提供后备供电时间(一般不超过5秒);然后出现了以蓄电池组供电给直流电动机带交流发电机提供后备电源的供电系统,这种方式供电效率较低再后来是靠内燃机提供后备供电的UPS电源,这种UPS设备庞大笨重、操作不够灵活、而且效率低、噪声大。这些都是动态方式的UPS电源。 随着电力电子学的发展,可实现大功率的电能转换,于是出现了静态UPS,这种UPS 具有没有振动、噪音低、体积小、控制灵活、效率高等优点,现代UPS基本上都是静止型的。随着电力电子技术微电子技术的飞速发展,UPS技术也正在朝着网络化、智能化、自动化、远程监控化和数字化的方向发展。 (1)、UPS的网络化 网络时代的UPS产品已经由独立的外设产品发展成为整个计算机和网络系统不可分割的一部分,除了要求UPS产品可方便地接入网络和计算机,有些还要要求其能够实现与网络和计算机间的双向数据通讯。为实现网络连接,目前大多数的UPS产品都提供了RS.232,RS-485通信接口,对于要求能执行计算机网络控制管理功能的UPS来说,还配置了SNMP(silIIpIe Network Management Protoc01),简单网络管理协议卡,实现了UPS 设备接入网络和计算机系统中。 (2)、UPS的智能化

电力电子技术论文

电力电子技术在太阳能中的应用 电力电子技术: 电力电子技术是指电力功率半导体器件,这些器件作为开关操作其中的控制和转换。硅控整流器的来临,简称可控硅,导致的新的电力电子领域的应用发展。之前的可控硅引进,汞弧整流器用于电力控制,但这种整流电路工业电子和汞弧整流器的应用范围是有限的一部分。一旦可控硅可用,应用领域蔓延到许多领域,如驱动器,电源供应器,航空 电力电子技术是什么? 电力电子技术是应用电子电路的能量转换。 您可能有更多的比你想象中的电力电子的相互作用。如果你开车,使用一台电脑,用微波炉做饭,对任何类型的电话交谈,听音响,或用电钻钻孔,然后你来接触电力电子技术。由于电力电子,电力运行所需的处理,过滤,并以最高的效率,最小的尺寸和最小重量的东西,你日常使用。在正式条款“,该技术包括使用的电子元件,应用电路理论与设计技术,分析工具,对电子的转换效率,控制和电力空调的发展。” 电力电子技术研究的主要领域包括: ?电子器件(如二极管和晶体管) ?控制和监管 电力转换器的电路设计和各项工作的转换器电路拓扑 ?磁性元件(如变压器和电感器) ?电子电路封装和制造 ?电机控制 电力电子技术的主要任务 电力电子技术,涵盖了整个电力系统领域的应用,这些应用延伸,从几个VA /瓦数兆伏安/兆瓦的功率范围。 电力电子技术的主要任务是控制和电源转换从一种形式到另一种。转换的四种主要形式是: ?整风指交流电压为直流电压的转换, ?直流到交流的转换, ?直流- 直流转换和 ?交流到交流的转换。 ?“电子式电能转换器”是用来指电力电子电路,转换电压和电流从一种形式到另一个任期。 此外,可控硅和其他功率半导体器件被用作静态开关。 电力电子技术的重要性和用途 电力电子技术是随处可见。例如,电力电子技术中使用 ?计算机 ?汽车 ?电信 ?空间系统和卫星 ?电机

毕业设计(论文)题目类型说明

附件一: 毕业设计(论文)任务书各项内容的填写要求 一、毕业设计(论文)的内容 1、对本课题的总体介绍 2、工作内容 3、课题的具体任务 二、毕业设计(论文)的要求与数据 1、对学生必须掌握和运用的基本理论的要求以及指出完成该课题必须重点研究、攻克的关键问题和理论,或在进行该课题过程中首先应该研究的问题和理论。 2、对研究方案的设计、研究方法和手段的运用提出要求 3、对完成课题内容的具体要求 4、课题中要完成的主要技术指标 三、毕业设计(论文)应完成的工作 1、非英语专业毕业生用英语撰写毕业设计论文详细摘要(运用英语单词达到300-500个) 2、独立完成不少于四万字符专业外语文献的翻译工作 3、完成规定字数的毕业设计说明书(论文) 4、各系各专业的其他具体要求完成的工作 四、应收集的资料及主要参考文献 要求开出的参考文献数量>5项,并指定一些外文资料和文献 五、试验、测试、试制加工所需主要仪器设备 按要求罗列主要仪器设备

毕业设计(论文)题目类型说明 1、工程设计型 指在正式做某项工作之前,能根据一定的目的要求,预先制定出方法或图样。 特点:根据给出的目的要求,参考有关资料后,能按照规定的技术指标,设计出工程图纸,编写出软件程序,并在一定条件下,可根据设计出的图纸进行施工。 2、工程技术型 具有硬件设计和软件设计两种类型。 (1)硬件课题是以硬件实体来体现毕业设计的成果 (2)软件设计是指利用成熟的技术和产品,完成工程技术要求的设计。这一类型的设计是根据设计任务书中指标要求,在对现场(或客观环境)、有关的产品设备及仪表等进行调研之后,通过计算,落实到设备的选型配套、施工图纸的绘制及对施工要求、投资的说明上,最后写出设计报告。 3、实验研究型 指其所选的课题包含探索和研讨性的内容,且有待通过实验研究的手段,揭示其内在的本质,从而科学地得出正确的结果。 实验研究选题范围和领域一般包括以下几个方面: (1)结合指导教师的科研项目或科研方向进行研究和探讨 (2)新的理论和实际装置的研究与探讨 (3)研制新的实验设备装置 (4)研制家用电工电子产品 4、软件开发型 指以围绕要求实现的功能编写出若干程序,来体现设计成果的题目。主要涉及以下几方面: (1)数据库及管理系统 (2)交换及通信网的软件系统 (3)微处理器专用芯片的软件设计 5、理论研究型 理论研究论文具体可分成两种:一种是以纯粹的抽象理论为研究对象,研究方法是严密的理论推导和数学运算,有的也涉及实验与观测,用以验证论点的正确性。另一种是以对客观事物和现象的调查、考察所得观测资料以及有关文献资料数据为研究对象,研究方法是对有关资料进行分析、综合、概括、抽象,通过归纳、演绎、类比,提出某种新的理论和新的见解。

混合动力电动汽车中电力电子技术应用综述

混合动力电动汽车中电力电子技术应用综述 1 引言 电力电子技术是研究应用电力半导体器件实现电能变换和控制的学科,它是一门由电子、电力半导体器件和控制三者相互交叉而出现的新兴边缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是[1>:(1)电力半导体器件的设计、测试、模型分析、工艺及仿真等; (2)电力开关变换器的电路拓扑、建模、仿真、控制和应用; (3)电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。 电动汽车(EV)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油危机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了DC/DC和DC/AC的全部变换,是实用价值非常高的运用领域[2>。 2 混合动力电动汽车简介 当前世界汽车产业正处于技术革命和产业大调整的发展时期,安全、环保、节能和智能化成为汽车界共同关心的重大课题。为了使人类社会和汽车工业持续发展,世界各国尤其是发达国家和部分发展中国家都在研究各种新技术来改善汽车和环境的协调性。 电动汽车作为21世纪汽车工业改造和发展的主要方向,目前已从实验室开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型概念车,目的是为了引导世界汽车技术的潮流。 2.1 各种类型电动汽车特点及其发展 根据所使用的动力源不同,电动汽车大致可分为三类:蓄电池电动汽车或纯电动汽车(Battery Electric Vehicle)、以氢气为能源的燃料电池电动汽车(Fuel Cell Electric Vehicle)和混合动力电动汽车(Hybrid Electric Vehicle)。 纯电动汽车是单独依靠蓄电池供电的,但目前动力电池的性能和价格还没有取得重大突破,因此,纯电动汽车的发展没有达到预期的目的; 燃料电池电动汽车具有能量转化率高、不污染环境、使用寿命长等不可比拟的优势。但是由于目前燃料电池技术和研究还没有取得重大突破,燃料电池电动汽车的发展也受到了限制; 混合动力电动汽车是同时采用了电动机和发动机作为其动力装置,通过先进的控制系统使两种动力装置有机协调配合,实现最佳能量分配,达到低能耗、低污染和高度自动化的新型汽车。自1995年以来,世界各大汽车生产商已将研究的重点转向了混合动力电动汽车的研究和开发,日本、美国和德国的大型汽车公司均开发了包括轿车、面包车、货车在内的混合动力电动汽车。 以作为混合动力电动汽车研发前沿的丰田汽车公司为例,所开发的混合动力电动汽车已达到实用化水平,自1997年所推出的世界上第一款批量生产的混合动力电动汽车Prius开始,其后又在2002年推出了混合动力面包车,该车混合动力系统采用了世纪首次批量生产的电动四轮驱动及四轮驱动力/制动力综合控制系统。2003年,丰田又推出了新一代Prius,也被称为“新时代丰田混合动力系统统——THS II”(见图1),节能效果可达到100km油耗不足3L。从2004年开始,丰田公司向欧洲市场推出了一款新的Lexus RX型豪

基于单片机的毕业论文题目有哪些

基于单片机的毕业论文题目有哪些 很多物联网专业的学生对单片机非常感兴趣,不光是对专业的热爱,另外由于单片机是集成电路芯片,是控制整个流程最基础的环节,大多数理科生对这种控制式设计充满着好奇,下面,我们学术堂整理了多个基于单片机的毕业论文题目,欢迎各位借鉴。 基于单片机的毕业论文题目一: 1、基于单片机的压电加速度传感器低频信号采集系统的设计 2、基于单片机的超声测距系统 3、基于C8051F005单片机的两相混合式直线步进电机驱动系统的设计 4、基于单片机的工业在线数字图像检测系统研究与实现 5、基于FPGA的8051单片机IP核设计及应用 6、基于单片机的军需仓库温湿度测控系统研究 7、单片机多主机通信模式在粮库温湿度监控系统中的应用 8、基于单片机的中小水电站闸门控制系统 9、基于单片机的正弦逆变电源研制 10、单片机实验教学仿真系统的设计与开发 11、基于单片机的温湿度检测系统的设计 12、基于单片机的蓝牙接口设计及数据传输的实现 13、基于单片机的多功能温度检测系统的设计与研究 14、基于单片机的温度控制系统的研究 15、行为导向教学策略在职校单片机课程教学中的应用研究 16、逻辑电路与单片机的虚拟实验系统设计与实现

17、基于单片机的LED显示系统 18、基于单片机的校园安防系统 19、基于MSP430单片机的红外甲烷检测仪设计及实现 20、基于高性能单片机的无线LED彩灯控制系统的设计与实现 21、基于AVR单片机教学实验板的设计 22、基于单片机的阀岛控制系统的研究 23、基于AT89S51单片机实验开发系统设计 24、基于单片机和GPRS数据传输技术的研究 25、基于HCS12单片机的智能车底层控制系统研究 26、单片机GPRS智能终端及远程工业监控技术研究 27、基于单片机的MODBUS总线协议实现技术研究 28、基于单片机的室内智能通风控制系统研究 29、基于单片机的通用控制器设计与实现 30、基于单片机控制的PTCR阻温特性测试系统的设计与实现 31、Proteus在单片机教学中的应用 32、基于单片机的变频变压电源设计 33、基于单片机的监控系统控制部分的设计 34、基于单片机的葡萄园防盗报警系统设计 35、基于单片机的温度智能控制系统的设计与实现 36、基于单片机的远程抄表系统的设计与研究 37、基于单片机的温度测控系统在温室大棚中的设计与实现 38、基于单片机的高精度随钻测斜仪系统开发 39、基于16位单片机MC9S12DG128B智能车系统的设计 基于单片机的毕业论文题目二: 40、基于单片机的压力/液位控制系统的设计研究 41、单片机与Internet网络的通信应用研究 42、基于单片机控制的温室环境测控装置研究 43、具有新型接口的MCS-51单片机实验系统设计 44、基于单片机控制的直流恒流源的设计 45、基于单片机的模糊控制方法及应用研究 46、基于AT89S52单片机的煤矿瓦斯监测系统的研制 47、基于AT89C51单片机的脉象信号采集系统研究 48、基于DTMF技术的单片机远程通信系统研究 49、基于单片机的GPRS无线数据采集与传输系统的设计 50、基于单片机控制的柴油机喷油泵数据采集系统的设计与实现 51、基于谐振技术及MK单片机的多路升压器研究设计 52、基于单片机的数据串口通信 53、基于单片机的智能寻迹系统设计 54、压电式阀门定位器与单片机实验装置研制 55、基于单片机的微型电子琴研究与实现 56、基于单片机的恒温恒湿孵化器系统设计 57、基于16位单片机MC9S12XS128的两轮自平衡智能车的系统研究与开发

PLC电梯控制系统文献综述

毕业设计(论文) 文献综述 设计(论文)题目:四层电梯PLC控制系统设计 学院名称:机械工程学院 专业:机械设计制造及其自动化 学生姓名:学号: 指导教师: 2012年12 月25 日 一、前言 随着我国经济的发展,城市中涌现出越来越多的高层建筑,而与之配套的电梯已成为人们日常生活中不可缺少的工具。同时,由于城市老龄化问题的日益突出,多层建筑同样也有使用电梯的要求。电梯作为现代智能建筑的代步工具,方便了人们的生活、节省了时间和体力,也越来越显示出它的重要作用。电梯质量

的好坏在很大程度上取决于它的控制系统。传统的电梯自动控制系统由继电器——接触器进行控制,其缺点是触点多、接线复杂、故障率高、可靠性差、维修工作量大等。而采用PLC组成的控制系统很好地解决上述问题,它具有工作可靠性高、灵活性和通用性高、编程简单、使用方便、抗干扰能力强等优点,它使电梯运行更加安全、方便。因此,开发设计由PLC组成的控制系统是非常有必要的。 二、电梯的发展历史 人类利用升降工具运输货物、人员的历史非常悠久。早在公元前2600年,埃及人在建造金字塔时就使用了最原始的升降系统,这套系统的基本原理至今仍无变化:即一个平衡物下降的同时,负载平台上升。早期的升降工具基本以人力为动力。1203年,在法国海岸边的一个修道院里安装了一台以驴子为动力的起重机,这才结束了用人力运送重物的历史。英国科学家瓦特发明蒸汽机后,起重机装置开始采用蒸汽为动力。紧随其后,威廉?汤姆逊研制出用液压驱动的升降梯,液压的介质是水。在这些升降梯的基础上,一代又一代富有创新精神的工程师们在不断改进升降梯的技术。然而,一个关键的安全问题始终没有得到解决,那就是一旦升降梯拉升缆绳发生断裂时,负载平台就一定会发生坠毁事故。 生活在继续,科技在发展,电梯也在进步。150年来,电梯的材质由黑白到彩色,样式由直式到斜式,在操纵控制方面更是步步出新——手柄开关操纵、按钮控制、信号控制、集选控制、人机对话等等,多台电梯还出现了并联控制,智能群控;双层轿厢电梯展示出节省井道空间,提升运输能力的优势;变速式自动人行道扶梯的出现大大节省了行人的时间;不同外形——扇形、三角形、半菱形、半圆形、整圆形的观光电梯则使身处其中的乘客的视线不再封闭。如今,以美国奥的斯公司为代表的世界各大著名电梯公司各展风姿,仍在继续进行电梯新品的研发,并不断完善维修和保养服务系统。调频门控、智能远程监控、主机节能、控制柜低噪音耐用、复合钢带环保——一款款集纳了人类在机械、电子、光学等领域最新科研成果的新型电梯竞相问世,冷冰冰的建筑因此散射出人性的光辉,人们的生活因此变得更加美好。 当今世界上最大的电梯生产企业是美国的奥蒂斯电梯公司,其产量约占世界电梯产量的25%。此外,瑞士迅达电梯公司、芬兰柯尼电梯公司及后起之秀的日本日立、三菱公司在国际电梯业也有一定的声誉。 1900年,美国奥蒂斯电梯公司通过代理商Tullock & Co.获得在中国的第1份电梯合同——为提供2台电梯。从此,世界电梯历史上展开了中国的一页。 据统计,中国在用电梯34.6多万台,每年还以约5万~6万台的速度增长。电梯服务中国已有100 多年历史,而中国在用电梯数量的快速增长却发生在改革开放以后,目前中国电梯技术水平已与世界同步。

电力电子技术论文

电力电子技术的应用 班级:电082 陈泽平40850171 【摘要】本文主要介绍了电力电子技术在电力系统、汽车工业、储能领域等方面的应用。 【关键词】电力电子技术应用电力系统汽车工业储能领域 电力电子技术是一门应用于电力领域的电子技术,就是使用电力电子器件对电能进行变换和控制的技术。电力电子技术所变换的“电力”,功率可以达到数百兆瓦甚至吉瓦,也可以小到数瓦甚至毫瓦级。进入21世纪,随着新的理论、新的器件、新的技术的不断涌现,特别 是与微电子(计算机与信息)技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展。以下主要对电力电子技术在电力系统、汽车工业、储能领域等方面的应用作简要介绍。 一.电力电子技术在电力系统中的应用 自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用。 1.在发电环节的应用 大型发电机广泛采用静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控

制规律提供了充分发挥作用并产生良好控制效果的有利条件。1 变速恒频励磁广泛应用于水力、风力发电机。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。这种技术就叫变速恒频励磁。 2.在输电环节的应用 在输电环节中应用的技术主要有直流输电(HVDC)和轻犁直流输电(HVDC Light)技术以及柔性交流输电(FACTS)技术,其中柔性交流输电技术应用尤为重要。 3.在配电环节的应用 DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。 4.在节能环节的运用 通过交负荷电动机的调速技术节电是电动机节电非常重要的一个方面。交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。 二.电力电子技术在汽车工业中的应用 电力电子技术在汽车工业的应用2,主要包括以下几个方面: 1)利用电子开关替代传统的机械开关以及继电器; 2)无触点点火、燃油电子喷射; 3)电子动力转向、电子自动变速器; 4)对原有的直流电源系统进行改造;

毕业设计、论文、实习选题题目文档

毕业设计、论文、实习选题题目文档Graduation project, thesis, internship topic document 编订:JinTai College

毕业设计、论文、实习选题题目文档 前言:论文格式就是指进行论文写作时的样式要求,以及写作标准,就是论文达到可公之于众的标准样式和内容要求,论文常用来进行科学研究和描述科研成果文章。本文档根据论文格式内容要求和特点展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意调整修改及打印。 以下是我为基于我系实际需要,切合学生实际能力,切合学生为找工作做demo软件的实际需要,拟订的一些设计题目: 设计题目一:个人光盘管理系统 背景概要:现代家庭个人购买的、自刻的光盘比较多,其信息具有很大的随意性、模糊性,对于光盘的查找、借出和归还等使用十分不便。 设计目的:1.开发一个简单实用的个人光盘自助管理系统;2.锻炼调查、建立模型、设计、实施、维护及开发管理的能力 大体要求:

(一)功能方面:0.考虑个人和家庭使用的实际特点, 本系统为单机版 1.自动生成对光盘一级目录(文件)的摘要信息 2.人机结合对自动生成的摘要信息明确化后存储 3.光盘查询功能,如查询影视、资料、歌曲等光盘,以 便使用 4.光盘的借出和归还功能 (二)开发工具:考虑适应单机版的要求,考虑毕业设 计实际条件的情况,考虑毕业生demo的特点(单机上演示比 较方便),建议使用access+vba或excel+vba实现,具体开 发工具学生可根据自己能力和需要自主选择。 设计题目二:毕业设计(论文)信息管理系统 背景概要:我院每年都要进行毕业设计(论文)的选题 工作。从教师报选题,系里汇总,公布,学生选题,学生选题结果汇总、呈报,学生选题结果公布,所选题目的设计撰写,结果的评定,成绩的给出,代码文档论文等结果的提交,这一路下来,都是手工的,都是离线的,而且师生在此期间空间流动性大,不利于对毕业设计(论文)的信息集中有效控制管理,

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

智能电网文献综述

智能电网综述 摘要:智能电网是当今世界电力系统发展变革的最新动向,并被认为是21世纪电力系统的重大科技创新和发展趋势。目前,以美国、英国、法国、德国为代表的欧美国家,己经纷纷加入到研究和发展智能电网的行列中来,将智能电网(Smart Grid )作为末来电网发展的远景目标之一,建立一个高效能、低投资、安全可靠、灵活应变的电力系统。具有对用户可靠、经济、清洁、互动的电力供应和增值服务的智能电网是未来电网的发展方向。本文阐述了智能电网的内涵和特点,分析了国内外智能电网的研究进展和我国发展智能电网的条件,对一些现有的研究行进了分析和讨论。 关键词:智能电网;智能化;信息化;节能减排; 1 智能电网的概念 随着一些国家对电网的环境影响、可靠性和服务质量的关注,电网朝着更经济、稳定、安全和灵活的方向发展,因此提出了“智能电网”的概念。智能电网是以通信网络为基础,通过传感和测量技术、电力电子技术、控制方法以及决策支持系统技术,实现电网的可靠、安全、经济、高效、环境友好和高服务质量的目标,其主要特征包括自愈、引导用户、抵御攻击、提供满足用户需求的电能质量、容许各种不同发电形式的接入、电力市场以及资产的优化高效运行。 目前,全世界智能电网的发展还处在起步阶段,没有一个共同的精确定义。对于智能电网,各个国家的定义有所不同。美国能源部在《Grid 2030》中将智能电网定义为:一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。中国物联网校企联盟将智能电网更具体的定义为:智能电网由:智能配电网、智能电能表、智能发电系统、新型储能等系统组成。欧洲技术论坛把智能电网定义为:一个可整合所有连接到电网用户所有行为的电力传输网络,以有效提供持续、经济和安全的电力。而国家电网中国电力科学研究院将智能电网定义为:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它以充

电力电子技术及应用论文

电力电子技术及应用 引言: 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代 电气传动技术舞台。从工程应用的角度看,无论是电力、机械、矿冶、交通、石油化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高科技产业,都迫切需要提供高质量的电能,特别是要求节能。而电力电子则是实 现将各种能源高效率地变换成高质量电能、节能、环保和提高人民生活质量的 重要手段,它已经成为弱电控制与强电运行之间,信息技术与先进制造技术之间,传统产业实现自动化、智能化、节能化、机电一体化的桥梁。电力电子的突出 特点是高效、节能、省材,所以电力电子已成为我国国民经济的重要基础技术, 是现代科学、工业和国防的重要支撑技术。因此,无论上述诸多高技术应用领域,还是各种传统产业,乃至照明、家电等量大面广的,与人民日常生活密切相关的 应用领域,电力电子产品已无所不在。 电力电子技术概述 电力电子技术是一门新兴的应用与电力领域的电子技术,就是使用电力电 子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子 技术所变换的“电力”功率可大到数百MW甚至GW,也可小至数W甚至1W以下,和以信息处理为主的信息电子技术不同,电力电子技术主要用于电力变换。

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术现已成为现代电气工程与自动化专业 的一门专业基础课,在培养该专业人才中占有重要地位。 电力电子学是由电力学、电子学和控制理论三个学科交叉二形成的。其概 念的基础就是由于晶闸管和晶闸管变流技术的发展而确立的。电力电子技术的 应用范围及其广泛,比如优化电能使用,通过电力电子技术对电能的处理,使 电能的使用达到合理、高效和节约,实现了电能使用最佳化;改造传统产业和 发展机电一体化等新兴产业,电力电子技术是弱电控制强电的媒体,是机电设 备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了 条件,成为发挥计算机作用的保证和基础;电力电子技术高频化和变频技术的 发展,将是机电设备突破工频传统,向高频化方向发展,实现最佳工作效率, 将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何 基准信号,实现无噪音且具有全新的功能和用途;电力电子智能化的发展,在 一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展可能引起电子技术的重大改革。 电力电子技术的内容可分为: 1、电力电子器件; 2、相控型整流器和有源逆变电路; 3、直流电压变换电路; 4、交流电压变换电路; 5、电力电子应用技术。 电力电子器件 常用电力电子器件的基本结构、工作原理、外特性、主要参数、开关特性、安 全工作区。 1、根据开关器件是否可控分类

电力电子技术课程综述

目录 摘要: (1) 一、电力电子技术主要内容 (1) 1、1电力电子器件及应用 (1) 1、1、1电力电子器件分类 (1) 1.1.2电力电子器件的应用 (2) 1.2 整流(AC-DC变换器) (2) 1.2.1整流电路分类 (2) 1.2.2 整流的概念 (3) 1.3斩波 (3) 1.3.1基本概念 (3) 1.3.2主要内容 (3) 1、4逆变 (4) 1.4.1基本概念 (4) 1.4.2主要内容 (4) 1、5 AC-AC变换器 (4) 1.5.1基本概念 (4) 1.5.2主要内容 (5) 二、电力电子技术的应用 (5) 三、学习小结 (5) 四、电力电子的发展及其发展趋势 (6) 五、电力电子技术的具体应用 (7) 参考文献 (8)

摘要: 电力电子技术(Power Electronics Technology)是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,是在电子、电力与控制技术基础上发展起来的一门新兴交叉学科。包括电压、电流、频率和波形变换等知识,涉及电子学、自动控制原理和计算机技术等学科。 关键字:整流、逆变、斩波、变频 正文 一、电力电子技术主要内容 1、1电力电子器件及应用 1、1、1电力电子器件分类 按照电力电子器件能够被控制电路信号所控制的程度分类: 1.半控型器件,例如晶闸管;

毕业设计论文综述

专业毕业实习报告 ——文献综述 题目:基于单片机的工业电阻炉智能温度 控制系统设计 学生姓名: 学号: 专业: 班级: 指导教师:

一、研究背景及意义 随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境的要求,作为工业自动化重要分支的过程控制系统的任务也越来越繁重。 过程控制技术发展至今天,在控制方式上经历了从人工控制到自动控制两个发展时期。目前,过程控制正朝高级阶段发展,不论是从过程控制的历史和现状看,还是从过程控制发展的必要性、可能性来看,过程控制是朝着综合化、智能化方向发展的,即计算机集成制造系统(CIMS):以智能控制理论为基础,以计算机及网络为主要手段,对企业的经营、计划、调度、管理和控制全面综合,实现从原料进库到产品出厂的自动化、整个生产系统信息管理的最优化。 过程控制的研究内容: (1)设计控制系统的控制目标(即设计指标参数); (2)认识生产过程的动态特性(一般为广义对象的动态性); (3)设计控制器的控制规律及控制结构,使控制系统达到控制系统的控制指标要求。 电阻炉是利用电流通过电热体元件将电能转化为热能来加热或者熔化工件和物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成。炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。电气控制系统包括电子线路、微机控制、仪表显示及电气部件等。辅助系统通常指传动系统、真空系统、冷却系统等,随炉种的不同而不同。电阻炉的主要参数由额定电压、额定功率、额定温度、工作空间尺寸。生产率、空炉损耗功率、空炉升温时间、炉温控制精度及炉温均匀性等。 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制;在农业生产、粮食储备、计算机机房等都需要对温度进行测量和控制。因而设计一种较为理想的温度控制系统是非常有价值的。 二、设计方案 在温控系统中采用的测温元件和测量方法不相同,产品的工艺不同,控制温度的

相关文档
最新文档