彩色与灰度图像间转换算法的研究

彩色与灰度图像间转换算法的研究
彩色与灰度图像间转换算法的研究

第27卷 第3期2003年6月

武汉理工大学学报(交通科学

与工程版

)

Jou rnal of W uhan U n iversity of T echno logy

(T ran spo rtati on Science&Engineering)

V o l.27 N o.3

June2003

彩色与灰度图像间转换算法的研究3

刘庆祥1) 蒋天发2)

(荆州师范学院1) 荆州 434104) (中南民族大学计算机科学学院2) 武汉 430074)

摘要:在智能车牌识别系统中,从人眼的视觉特性入手,分析人眼的视觉生理模型和常用的计算机转换算法,在此基础上提出了一种将32位彩色图像转换成8位灰度图像的算法即HL S模型转换算法,使得转换后的灰度图像边缘亮度噪声少,平滑效果好.

关键词:计算机视觉;图像转换算法;HL S模型

中图法分类号:U495

0 引 言

智能车牌识别系统由汽车图像的获取、图像的初分割、图像的定位、车牌的割取以及数据库管理等几部分组成,图像获取部分在整个系统中占有很重要的地位,而图像获取中彩色图像转换成灰度图像的质量好坏直接影响到后端处理和识别的效果,所以对图像获取技术中彩色图像转换成灰度图像的算法进行研究和讨论尤有必要.

在智能车牌识别系统中摄像头拍摄的汽车和背景是彩色的,而摄像头可以是彩色摄像头也可以是黑白摄像头.摄像头拍摄的视频模拟信号需要用图像采集卡来进行离散,识别系统的显示器一般为V GA彩色显示器,它既可以显示彩色图像也可以显示灰度图像.所以当只需要研究图像的灰度即亮度特性时,如果用黑白摄像头和8位灰度图像采集卡来直接获得灰度图像,就不存在转换的问题,只需要一些修正矩阵来弥补信道中的非线形失真[1,2].而在智能车牌识别系统中获得的是彩色图像,为了后端更好地处理和识别,就必须首先将彩色图像转换成灰度图像.人们提出了很多彩色图像的转换模型[3],它们都是基于不同的工业标准来制定的.而在计算机视觉研究领域,因为需要模拟视觉的功能来理解图像中的模式类,则在图像预处理中,对图像的转换就要基于视觉功能的原理来进行,使显示器表现的灰度图像在人的视觉系统中形成的亮度感知接近于彩色图像直接在人的视觉系统中形成的效果.

下面首先分析人的视觉功能,再用电视工业标准中一种彩色图像与黑白图像的转换算法进行转换,从转换的结果中找出其存在的不足,然后提出一种适合人眼视觉特性的转换算法即HL S模型转换算法,使得转换后的灰度图像边缘平滑且亮度噪声少,从而获得满意的效果.

1 人的视觉生理功能

从分析人的视觉功能发现,通常人眼对色光的感觉是视网膜神经末梢产生的刺激,再通过逆向光路的神经束传递到脑中并由脑做分析处理得到的.传递的神经束一般有5束,视网膜上感觉颜色的锥状细胞产生的神经冲动与综合的明暗亮度神经冲动分别由不同的神经束来传递[4].图像的亮度和色彩信息主要由锥状细胞来获得,而柱状细胞对亮度的感知主要在外部环境光亮强度较小时发生,这里主要讨论锥状细胞的功能.

人眼的锥状细胞对各种不同颜色的相对敏感度曲线如图1所示.锥状细胞中主要有3种色素,一种是绿敏色素,其吸收峰为540nm;一种为红敏色素,其吸收峰为570nm.由于蓝敏色素太

①收稿日期:20030303

刘庆祥:男,54岁,副教授,主要研究领域为模式识别、图像处理、多媒体网络通讯 3湖北省教委科研基金项目资助(批准号:99C008)

图1 人眼的锥状细胞对

各种不同颜色的敏感曲线图

少,则锥状细胞对蓝色的感知最弱.图中的曲线是

视觉函数或光谱灵敏度函数V (Κ

),它反映了人眼对能量相等而波长不同的光的相对视觉灵敏度.人眼对彩色光整体强度的感受可以用每种色

细胞的视觉敏感强度来综合成一种合成的冲动传递入脑中.如图2所示.

图2 色彩和亮度感觉合成示意图

下面从彩色电视工业标准出发,主要讨论在一定的范围内,黑白即亮度感觉强度与各彩色的视觉敏感强度的关系是否是线形的,即讨论当图1中的R GB 感受器感受的强度增加时,亮度神经

感觉是否是线性增加.如果这种线形关系是存在的,则可以通过一线性转换矩阵来将彩色图像转换成黑白图像.如果不是线性关系,则需要寻求新的转换模式.

2 采用电视工业标准转换矩阵的转

换结果

根据三基色原理,每一种光都可以分解成

R GB 三基色光,它们的值分别表示每种基色光的

相对强度.这是实现彩色电视技术的理论基础.同样可以通过计算机获得数字化彩色图片的每个像素的红色(R )、绿色(G )、蓝色(B )值.

彩色电视技术是在黑白电视技术日益完善的基础上发展起来的,在彩色电视技术被采用后黑白电视系统仍然存在,因此彩色电视要与黑白电视相互兼容.所以在彩色电视系统中,不是对三基

色的值进行直接编码,而是对转换后的亮度信号和色度信号进行编码.亮度信号的转换是根据X 2

Y 色度图和荧光粉复现的能力来制定的

.在彩色电视接收机中对编码的信号进行解码,还原成彩色信号.而在黑白电视接收机中接收到的彩色信号中的亮度信号与真实彩色图像反映的亮度信息是存在一定的失真的.其转换矩阵为

Y =0.3R +0.59G +0.11B

(1)式中:Y 为象素点的亮度

;R ,G ,B 分别为三基色的相对强度.

在智能车牌识别系统中,用计算机通过这种X 2Y 转换模型来模拟色光亮度的总响应,其效果如图3所示.从图3中可以看出图像中的边缘是不清晰的,达不到后续处理所需图像的清晰度.这说明人眼的视觉系统在感受彩色图像的整体亮度时,神经感觉与感受器感知的强度不是成线性关系的.

图3 采用X 2Y 模型转换得到的灰度图像

3 HL S 模型转化算法

HL S (色调、

亮度、饱和度)模型[5]与一般的色调、亮度、饱和度模型不同.一般的色调、亮度、饱和度是从色度学角度与R GB 模型、C M YK 模型等模型之间的线性转换而来.它们的转换是通过一线性转换矩阵来实现的.而HL S 模型是基于视觉感受的模型,它的转换算法是非线性的.其转换的算法为

Y =[M A X (R ,G ,B )+M I N (R ,G ,B )] 2×3

(2)式中:Y 为像素点的亮度;R ,G ,B 分别为三基色的相对强度.

将HL S 模型转换算法用到智能车牌识别系统中,得到的灰度图像如图4所示.比较图3和图4,可以清楚地看到对于图像的边缘区域,图3反映出边缘的亮度噪声,而图4在边缘区域有较好的平滑效果.所以,用HL S 模型转换算法使得转换后的灰度图像边缘亮度噪声少,平滑效果好,为

?

543? 第3期

刘庆祥等:彩色与灰度图像间转换算法的研究

后续图像分割提供了良好的处理环境

.

图4 采用HL S 模型转换得到的灰度图像

4 结 论

通过以上分析可知,产生上述不同效果的原因主要是人眼感知亮度时,其中信息加工过程不是每个色素体感知的线性叠加,而是在一定区域的综合.相对视觉灵敏度曲线决定了第一种转换模式中亮度总响应Y 的比例系数,在从彩色图像转换成黑白图像时,线性反映了每个像素的亮度情况,同时也反映了噪声信息.所以,转换后的图像效果不佳.

由于人眼在感受其相对应的彩色图像时,忽

略了彩色细节部分,更注重较大区域的彩色变化.

在人眼的明视范围内,人主要感受彩色信息来加工获得亮度信息,则感受的亮度信息也是较大区域变化的.所以,由于第2种转换模式对每个像素的亮度信息进行了非线性的平滑,使相邻像素之间的亮度变化较为平缓,体现了感知区域变化的正确规律.所以,转换后的图像效果很好.

参考文献

1 刘庆祥,蒋天发.智能车牌识别系统中图像获取技术

的研究.武汉理工大学学报(交通科学与工程版),

2003,27(1):127~130

2 徐光佑.用计算机V GA 显示器复现指定颜色的研究.

电子学报,1995(8):95~98

3 张 韬.电脑配色系统中的颜色体系相互转换.光学

学报,1994(1):94~96

4 阮迪云,寿天德.神经生理学.北京:北京希望电子出

版社,1991.28~32

5 崔 屹.数字图像处理与应用.北京:电子工业出版

社,1997.80~82

A Study of T ran slati on A rithm etic

Betw een Co lo r I m age and Grey I m age

L iu Qi ngx i ang 1)

 J i ang T i anfa

2

)

(J ing z hou T eachers Colleg e ,H ubei J ing z hou 434104)1)

(D ep a rt m en t of Co m p u ter S cience ,S ou th 2Cen tra l Colleg e f or N a tiona lities ,W uhan 430074)

2)

Abstract

B ased on the study of the hum an eyes’visual character in the In telligen t V eh icle P late R ecogn iza 2ti on System .T h is p ap er discu sses a tran slati on arithm etic betw een co lo r i m age and gray i m age nam ed HL S tran sfo rm arithm etic after an analysis of hum an eyes visual m odel and classic tran slati on arith 2m etic .W e can get s m oo th i m age w ith less edge gray no ise w h ile u sing the HL S arithm etic .Key words :com p u ter visual ;tran slati on arithm etic ;HL S m odel

?643?武汉理工大学学报(交通科学与工程版)2003年 第27卷

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

彩色图像分割介绍

第一章绪论 计算机图像处理在医学领域的应用越来越广泛,白细胞图像的自动判断就是其中的代表之一。它能有效地减少主观干扰,提高工作效率,减轻医生负担。近些年来,计算机硬件技术和光谱成像技术的飞速发展,使得成功研制开发出小型实用的基于多光谱的白细胞图像自动分类识别系统成为可能。 本文研究的主要目的在于对白细胞多光谱图像分割进行初步的探索研究,为系统中其后的白细胞能够准确地分类识别奠定基础。 本章简要阐述了基于多光谱的白细胞图像分割的应用背景和研究意义,回顾了国内外细胞图像分割和多光谱遥感图像分类的研究发展状况,并简要介绍了本论文的主要工作。 §1.1 概述 §1.1.1 白细胞检验 白细胞的光学显微镜检查是医院临床检验项目之一,特别是对各种血液病的诊断占有极其重要的地位。它的任务是观察或测定血液中的各种白细胞的总数、相对比值、形态等,用于判断有无疾病、疾病种类以及严重程度等,特别是对类似白血病这类血液病诊断具有更加重要的意义。 白细胞分类计数的传统方法是将血液制成涂片,染色后,临床医生在显微镜下用肉眼按照有关标准,如核的形状、细胞浆的量和颜色,细胞浆颗粒的大小和颜色,整个细胞形状、稀薄与细胞间的接触等,来观察和检查这样的细胞标本[1]。然而这项工作十分繁重,工作效率低,容易误判,且人工识别误差随检查人员而异。同时通过观察的细胞数目较少,从统计的角度看,因样本集较小而影响诊断结果的可靠性。 计算机图像处理与分析技术伴随着信息技术的不断进步在最近20年间得到了飞速的发展,已经迅速渗透到人类生活和社会发展的各个方面,这为智能化细胞分析仪代替人工方法提供了基础。因此,借助于现代计算机技术结合临床医生的实践经验,采用图像处理技术对图像进行处理,从而对细胞进行识别,对于医学科研与实践,以及临床诊断方面有着现实意义和非常广阔的前景。 目前已经制成的自动白细胞分析仪主要有两种类型: 一类是用组织化学染色法,通过连续流动的系统,以光电效应的方式分别数出单一细胞,并可同时报告白细胞总数、各类细胞的百分率和绝对值。因为该法不是由细胞形态学特点识别各类白细胞,所以不能目视观察白细胞形态,亦不能保留样本,对感染中毒细胞无法识别。 另一类是原型认定型,其工作原理模仿人“脑眼系统”[2]的智能识别过程,运用计算机图像处理和模式识别技术,将从显微镜与相机或摄像机得到的数字化图像进行自动处理分析和分类。与前一种类型的白细胞分类仪器相比,其主要优

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

彩色图像快速分割方法研究【开题报告】

毕业论文开题报告 电子信息工程 彩色图像快速分割方法研究 一、课题研究意义及现状 图像分割是一种重要的图像技术,不论是在理论研究还是实际应用中都得到了人们的广泛重视。图像分割是我们进行图像理解的基础,是图像处理中的难点之一,也是计算机视觉领域的一个重要研究内容。把图像划分为若干个有意义的区域的技术就是图像分割技术,被划分开的这些区域相互不相交,而且每个区域也必须满足特定区域的一致性条件。 彩色图像反映了物体的颜色信息,比灰度图像提供的信息更多,因此,彩色图像的分割得到了越来越多人的关注,彩色图像分割方法的研究具有很大的价值。彩色图像分割一直是彩色图像处理中一个很重要的问题,它可以看作是灰度图像分割技术在各种颜色空间上的应用。 目前,图像分割的主要方法有:基于区域生长的分割方法、基于边缘检测的分割方法、基于统计学理论的分割方法、基于小波变换法、基于模糊集合理论的方法等多种方法。其中,JSEG算法是一种基于区域生长的图像分割方法,它同时考虑了图像的颜色和纹理信息,分割结果较为准确,受到了广泛的关注。但是JSEG算法要在多个尺度下反复进行局部J值计算和区域生长,同时还要进行基于颜色直方图的区域合并,这样,该算法就显得更为繁琐、复杂。针对这些不足之处,有学者提出了一种结合分水岭与JSEG的图像分割新算法。这种新算法在计算得到图像J后,通过引入分水岭算法直接对J图进行空域分割,然后通过形态后处理完成分割。与原JSEG算法比较,新算法能够得到良好的分割效果,有效的降低了JSEG算法的复杂度。 国内外也有很多学者对彩色图像的分割方法进行研究,也提出了许多有价值的彩色图像分割算法及改进的彩色图像分割算法,而多种分割算法的结合使用也改进了单一算法的不足之处,使得彩色图像的分割结果更加理想。但是从目前对彩色图像的研究来看,由于应用领域的不同、图像质量的好与坏以及图像色彩的分布和结果等一些客观因素引起的差异,我们还没有找到一种能够完全适用于所有彩色图像分割的通用的算法。因此,彩色图像的分割方法仍是一个尚未解决的难题,还需要图像处理领域的研究人员进一步的研究探索。 本研究是对基于JSEG的改进彩色图像分割算法的研究,该算法能够有效降低原JSEG算法的复杂度,提高图像分割效率,在图像分割领域有很重要的意义。该算法是在原JSEG算法的基础上,引入了分水岭算法,降低了原算法的计算量,降低了图像分割时间。 二、课题研究的主要内容和预期目标 主要内容:

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

彩色图像分割的国内外研究现状

1.阈值分割方法 阈值分割方法的历史可追溯到近40年前,现已提出了大量算法,对灰度图像的取阈值分割就是先确定一个处于图像灰度取值范闱之中的灰度阈值,然后将图像中各个象素的灰度值都与这个阈值相比较,并根据比较结果将对应的像素分为两类。这两类像素一般分属图像的两类区域,从而达到分割的目的。从该方法中可以看出,确定一个最优阈值是分割的关键。现有的大部分算法都是集中在阈值确定的研究上。阈值分割方法根据图像木身的特点,可分为单阈值分割方法和多阈值分割方法;也可分为基于像素值的阈值分割方法、基于区域性质的阈值分割方法和基于坐标位罝的阈值分割方法。若根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松弛法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。 目前提出了许多新方法,如严学强等人提出了基于量化直方图的最大熵阈值处理算法,将直方图量化后采用最大熵阈值处理算法,使计算量大大减小。薛贵浩、帝毓晋等人提出基于最大类间后验交叉熵的阈值化分割算法,从目标和背景的类间差异性出发,利用贝叶斯公式估计像素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。这种方法结合了基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能,取得很好的通用性和有效性,该算法也容易实现二维推广,即采用二维统计量(如散射图或共生矩阵)取代直方图,以提高分割的准确性。俞勇等人提出的基于最小能量的图像分割方法,运用了能量直方图来选取分割阈值。任明武等人提出的一种基于边缘模式的直方图构造新方法,使分割阈值受噪声和边缘的影响减少到最小。程杰提出的一种基于直方图的分割方法,该方法对Ostu准则的内在缺陷进行了改进,并运用对直方图的预处理及轮廓追踪,找出了最佳分割阈值。此方法对红外图像有很强的针对性。付忠良提出的基于图像差距度量的阈值选取方法,多次导出Ostu方法,得到了几种与Ostu类似的简单计算公式,使该方法特别适合需自动产生阈值的实时图像分析系统。华长发等人提出了一种基于二维熵阈值的图像分割快速算法,使传统二维阈值方法的复杂度从0(W2 S2)降至0(W2/3 S2/3)。赵雪松等人提出的综合全局二值化与边缘检测的图像方法,将全局二值化与边缘检测有效的结合起来,从而达到对信封图分割的理想效果。靳宏磊等人提出的二维灰度直方图的最佳分割方法,找到了一条最佳分割曲线,使该算法得到的分割效果明显优于一维直方图阈值方法。乐宁等人根据过渡区内象素点具有的邻域方向性特点,引入了基于一元线性回归处理的局部区域随机波动消除方法,将图像过渡区算法进行了改进。模糊技术及其日趋成熟的应用也正适应了大部分图像边缘模糊而难以分析的现状,赵初和王纯提出的模糊边缘检测方法能有效地将物体从背景中分离出来,并已在模式识别中的图像预处理和医学图像处理中获得了良好的应用。金立左、夏良正等提出图像分割的自适应模糊阈值法,利用目标一背景对比度自动选取窗宽的方法,并给出了根据目标与摄像机间的相对距离估计目标--背景对比度的算法,克服隶属函数的分布特性及其窗宽对阈值选取的不良影响。其应用于智能电视跟踪系统,对不同对比度和不同距离的海面舰船图像进行阈值分割,有较强的场景适应能力。王培珍、杜培明等人提出了一种用于多阈值图像自动分割的混合遗传算法,针对Papamarkes等提出爬山法的多阈值分割和Olivo提出子波变换的方法只对明显峰值有效而对不明显的峰值无效的缺点,以及结合模糊C-均值算法和遗传算法的两大显著特点而改进的算法,这种分割方法能够快速正

彩色图像分割-RGB模型

成绩评定表学生姓名班级学号 专业电子信息工 程课程设计题目彩色图像分割程序设 计——RGB模型 评 语 组长签字: 成绩 日期201年月日

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名班级学号 课程设计题目彩色图像分割程序设计——RGB模型 实践教学要求与任务: 本次课程设计中,主要任务是实现基于RGB模型的彩色图像分割的程序设计,对给定的彩色图像的颜色,使用RGB颜色模型,来对其进处理。 并且设计MATLAB程序,使其能完成输入图像便自动使用RGB 模型来进行图像分割。 工作计划与进度安排: 第一阶段(1-2天):熟悉matlab编程环境,查阅相关资料; 第二阶段(2-3天):算法设计; 第三阶段(2-3天):编码与调试; 第四阶段(1-2天):实验与分析; 第五阶段(1-2天):编写文档。 指导教师: 201年月日专业负责人: 201年月日 学院教学副院长: 201年月日

Matlab是当今最优秀的科技应用软件之一,它一强大的科学计算与可视化功能,简单易用,开放式可扩展环境,特别是所附带的30多种面向不同领域工具箱支持,使得它在许多科学领域中成为计算机辅助设计与分析,算法研究和应用开发的基本工具盒首选平台在图像处理中,Matlab也得到了广泛的应用,例如图像变换,设计FIR滤波器,图像增强,四叉树分解,边缘检测,小波分析等等。不同的颜色空间在描述图像的颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器和彩色摄象机,HSI(色调、饱和度、亮度)更符合人描述和解释颜色的方式(或称为HSV,色调、饱和度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑)主要针对彩色打印机、复印机等,YIQ (亮度、色差、色差)是用于NTSC规定的电视系统格式,YUV(亮度、色差、色差)是用于PAL规定的电视系统格式,YCbCr(亮度单一要素、蓝色与参考值的差值、红色与参考值的差值)在数字影像中广泛应用。 彩色图像的处理有时需要将图像数据在不同的颜色空间中表示,因此,图像的颜色空间之间的转换成为一项有意义的工作。其中RGB在颜色空间转换中其关键作用,是各个空间转换的桥梁。Matlab中的颜色空间转换只涉及到了RGB、HSV、YCbCr、YIQ等,没有包含lαβ和其它颜色空间的转换。 关键字:Matlab;图像处理;RGB

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

彩色图像分割技术研究本科毕业论文

彩色图像分割技术研究本科毕业论文 目录 1. 引言 (1) 1.1.课题的研究背景和意义 (1) 1.2.彩色图像分割的现状 (2) 1.3.本文的容安排 (5) 2.彩色图像分割研究 (6) 2.1.数字图像处理概述 (6) 2.2.常用的颜色空间 (7) 2.3.彩色图像分割方法 (9) 2.3.1.阈值化方法 (10) 2.3.2.基于边缘的分割方法 (10) 2.3.3.基于区域的分割方法 (12) 3.无监督彩色图像分割 (13) 3.1.概述 (13) 3.2.颜色空间的转换 (14) 3.3.Sobel算子边缘提取 (15) 3.4.种子的选取 (16) 3.5.区域生长与合并 (17) 4.实验结果与分析 (18)

5.结论 (20) 参考文献 (21) 谢辞 (23)

1. 引言 1.1.课题的研究背景和意义 在人类所接收的信息中,有80%是来自视觉的图形信息,对获得的这些信息进行一定的加工处理也是目前一种广泛的需求,图像分割就是将图像中感兴趣的部分分割出来的技术。在图像分割的基础上,才能对目标进行特征提取和参数测量,使得更高层的图像分析和理解成为可能。因此,对图像分割的研究在图像处理领域具有非常重要的意义。 图像分割作为图像分析的基础,是图像分析过程中的关键步骤。图像分割,顾名思义是将图像按照一定的方法划分成不同的区域,使得同一区域像素之间具有一致性,不同区域间不具有这种一致性。 因为人眼对亮度具有适应性,即在一幅复杂图像的任何一点上只能识别几十种灰度级,但可以识别成千上万种颜色,所以许多情况下,单纯利用灰度信息无法从背景中提取出目标,还必须借助于色彩信息。由于彩色图像提供了比灰度图像更加丰富多彩的信息,因此随着计算机处理能力的提高,彩色图像处理正受到人们越来越多的关注。 自数字图像处理问世不久就开始了图像分割的研究,吸引了很多研究者为之付出了巨大的努力,在不同的领域也取得了很大的进展和成就,现在人们还一直在努力发展新的、更有潜力的算法,希望实现更通用、更完美的分割结果。目前,针对各种具体问题已经提出了许多不同的图像分割算法,对图像分割的效果也有很好的分析结论。但是,由于图像分割问题所面向领域的特殊性,而且问题本身具有一定的难度和复杂性,到目前为止还不存在一个通用的分割方法,也不存在一个判断分割是否成功

用matlab实现图像灰度变换课程设计

课程设计报告册 课程名称: MATLAB课程设计 课题名称:灰度变换增强 专业班级: 姓名: Bob Wang 学号: 15164 课程设计主要场所:信息楼220 时间: 指导教师:成绩:

前言 数字图像处理技术是20世界60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或变成以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。 MATLAB是一种以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的要求,与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。我们学习掌握MATLAB,也可以说是在科学工具上与国际接轨。

目录 一、课程设计目的 (2) 二、设计任务及容 (2) 三、课题设计实验条件 (3) 四、涉及知识 (3) 五、具体设计过程及调试 (4) 5.1、图像的读入和显示 5.1.1、打开图像 (4) 5.1.2、显示原图像 (5) 5.1.3、图像灰度处理 (7) 5.1.4、显示灰阶后图像 (8) 5.2、直方图均衡化 5.2.1、生成直方图 (10) 5.2.2、直方图均衡化 (12) 5.3、灰度变换 5.3.1、线性变换 (9) 5.3.2、分段线性变换 (9) 5.3.3、非线性变换.................................... (9) 六、心得体会 (17) 七、参考文献 (18) 八、程序清单 (19)

彩色图像分割算法:Color Image Segmentation Based on Mean Shift and Normalized Cuts

Color Image Segmentation Based on Mean Shift and Normalized Cuts Wenbing Tao,Hai Jin,Senior Member,IEEE,and Yimin Zhang,Senior Member,IEEE Abstract—In this correspondence,we develop a novel approach that provides effective and robust segmentation of color images.By incor-porating the advantages of the mean shift(MS)segmentation and the normalized cut(Ncut)partitioning methods,the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing.It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image.The segmented regions are then represented by using the graph structures,and the Ncut method is applied to perform globally optimized clustering.Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with signi?cant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels.In addition,the image clustering using the segmented regions,instead of the image pixels,also reduces the sensitivity to noise and results in enhanced image segmentation performance.Furthermore,to avoid some inappro-priate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region.The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images. Index Terms—Color image segmentation,graph partitioning,mean shift (MS),normalized cut(Ncut). I.I NTRODUCTION Image segmentation is a process of dividing an image into different regions such that each region is nearly homogeneous,whereas the union of any two regions is not.It serves as a key in image analysis and pattern recognition and is a fundamental step toward low-level vision, which is signi?cant for object recognition and tracking,image re-trieval,face detection,and other computer-vision-related applications [1].Color images carry much more information than gray-level ones [24].In many pattern recognition and computer vision applications,the color information can be used to enhance the image analysis process and improve segmentation results compared to gray-scale-based ap-proaches.As a result,great efforts have been made in recent years to investigate segmentation of color images due to demanding needs. Existing image segmentation algorithms can be generally classi?ed into three major categories,i.e.,feature-space-based clustering,spa-tial segmentation,and graph-based approaches.Feature-space-based clustering approaches[12],[13]capture the global characteristics of the image through the selection and calculation of the image features, which are usually based on the color or texture.By using a speci?c distance measure that ignores the spatial information,the feature Manuscript received August3,2006;revised December10,2006.This work was supported by the National Natural Science Foundation of China under Grant60603024.This paper was recommended by Associate Editor I.Bloch. W.Tao and H.Jin are with the Cluster and Grid Computing Laboratory, School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan430074,China,and also with the Service Computing Technology and System Laboratory,School of Computer Science and Technol-ogy,Huazhong University of Science and Technology,Wuhan430074,China (e-mail:wenbingtao@https://www.360docs.net/doc/673299712.html,;hjin@https://www.360docs.net/doc/673299712.html,). Y.Zhang is with the Center for Advanced Communications,Villanova University,Villanova,PA19085USA(e-mail:yimin.zhang@https://www.360docs.net/doc/673299712.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/673299712.html,. Digital Object Identi?er10.1109/TSMCB.2007.902249samples are handled as vectors,and the objective is to group them into compact,but well-separated clusters[7]. Although the data clustering approaches are ef?cient in?nding salient image features,they have some serious drawbacks as well.The spatial structure and the detailed edge information of an image are not preserved,and pixels from disconnected regions of the image may be grouped together if their feature spaces overlap.Given the importance of edge information,as well as the need to preserve the spatial relation-ship between the pixels on the image plane,there is a recent tendency to handle images in the spatial domain[11],[28].The spatial segmen-tation method is also referred to as region-based when it is based on region entities.The watershed algorithm[19]is an extensively used technique for this purpose.However,it may undesirably produce a very large number of small but quasi-homogenous regions.Therefore,some merging algorithm should be applied to these regions[20],[28]. Graph-based approaches can be regarded as image perceptual grouping and organization methods based on the fusion of the feature and spatial information.In such approaches,visual group is based on several key factors such as similarity,proximity,and continuation[3], [5],[21],[25].The common theme underlying these approaches is the formation of a weighted graph,where each vertex corresponds to n image pixel or a region,and the weight of each edge connecting two pixels or two regions represents the likelihood that they belong to the same segment.The weights are usually related to the color and texture features,as well as the spatial characteristic of the corresponding pixels or regions.A graph is partitioned into multiple components that minimize some cost function of the vertices in the components and/or the boundaries between those components.So far,several graph cut-based methods have been developed for image segmentations[8], [14],[22],[23],[27],[30],[31].For example,Shi and Malik[23] proposed a general image segmentation approach based on normalized cut(Ncut)by solving an eigensystem,and Wang and Siskind[8] developed an image-partitioning approach by using a complicated graph reduction.Besides graph-based approaches,there are also some other types of image segmentation approaches that mix the feature and spatial information[4],[29]. This correspondence concerns a Ncut method in a large scale. It has been empirically shown that the Ncut method can robustly generate balanced clusters and is superior to other spectral graph-partitioning methods,such as average cut and average association[23]. The Ncut method has been applied in video summarization,scene detection[17],and cluster-based image retrieval[18].However,image segmentation approaches based on Ncut,in general,require high computation complexity and,therefore,are not suitable for real-time processing[23].An ef?cient solution to this problem is to apply the graph representation strategy on the regions that are derived by some region segmentation method.For example,Makrogiannis et al.[20] developed an image segmentation method that incorporates region-based segmentation and graph-partitioning approaches.This method ?rst produces a set of oversegmented regions from an image by using the watershed algorithm,and a graph structure is then applied to represent the relationship between these regions. Not surprisingly,the overall segmentation performance of the region-based graph-partitioning approaches is sensitive to the region segmentation results and the graph grouping strategy.The inherent oversegmentation effect of the watershed algorithm used in[20]and [28]produces a large number of small but quasi-homogenous regions, which may lead to a loss in the salient features of the overall image and,therefore,yield performance degradation in the consequent region grouping. To overcome these problems,we propose in this correspondence a novel approach that provides effective and robust image segmentation 1083-4419/$25.00?2007IEEE

相关文档
最新文档