遗传算法 (2)

遗传算法 (2)
遗传算法 (2)

用遗传算法优化BP神经网络的Matlab编程实例

由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。

程序一:GA训练BP权值的主函数

function net=GABPNET(XX,YY)

%--------------------------------------------------------------------------

% GABPNET.m

% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络

%--------------------------------------------------------------------------

%数据归一化预处理

nntwarn off

XX=premn mx(XX);

YY=premn mx(YY);

%创建网络

net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

%下面使用遗传算法对网络进行优化

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

aa=ones(S,1)*[-1,1];

popu=50;%种群规模

initPpp=initializega(popu,aa,'gabpEval');%初始化种群

gen=100;%遗传代数

%下面调用gaot工具箱,其中目标函数定义为gabpEval

[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1

1],'maxGenTerm',gen,...

'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);

%绘收敛曲线图

figure(1)

plot(trace(:,1),1./trace(:,3),'r-');

hold on

plot(trace(:,1),1./trace(:,2),'b-');

xlabel('Generation');

ylabel('Sum-Squared Error');

figure(2)

plot(trace(:,1),trace(:,3),'r-');

hold on

plot(trace(:,1),trace(:,2),'b-');

xlabel('Generation');

ylabel('Fittness');

%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络

[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);

net.LW{2,1}=W1;

net.LW{3,2}=W2;

net.b{2,1}=B1;

net.b{3,1}=B2;

XX=P;

YY=T;

%设置训练参数

net.trainParam.show=1;

net.trainParam.lr=1;

net.trainParam.epochs=50;

net.trainParam.goal=0.001;

%训练网络

net=train(net,XX,YY);

程序二:适应值函数

function [sol, val] = gabpEval(sol,options)

% val - the fittness of this individual

% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]

load data2

nntwarn off

XX=premn mx(XX);

YY=premn mx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

for i=1:S,

x(i)=sol(i);

end;

[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

程序三:编解码函数

function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2

nntwarn off

XX=premn mx(XX);

YY=premn mx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

% 前R*S1个编码为W1

for i=1:S1,

for k=1:R,

W1(i,k)=x(R*(i-1)+k);

end

end

% 接着的S1*S2个编码(即第R*S1个后的编码)为W2

for i=1:S2,

for k=1:S1,

W2(i,k)=x(S1*(i-1)+k+R*S1);

end

end

% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1

for i=1:S1,

B1(i,1)=x((R*S1+S1*S2)+i);

end

% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2,

B2(i,1)=x((R*S1+S1*S2+S1)+i);

end

% 计算S1与S2层的输出

A1=tansig(W1*P,B1);

A2=purelin(W2*A1,B2);

% 计算误差平方和

SE=sumsqr(T-A2);

val=1/SE; % 遗传算法的适应值

上述程序需要调用gaot工具箱,请从附件里下载!

原创】蚁群算法最短路径通用Matlab程序(附图)

下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划

function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)

%% ---------------------------------------------------------------

% ACASP.m

% 蚁群算法动态寻路算法

% ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/673870987.html,

% All rights reserved

%% ---------------------------------------------------------------

% 输入参数列表

% G 地形图为01矩阵,如果为1表示障碍物

% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)

% K 迭代次数(指蚂蚁出动多少波)

% M 蚂蚁个数(每一波蚂蚁有多少个)

% S 起始点(最短路径的起始点)

% E 终止点(最短路径的目的点)

% Alpha 表征信息素重要程度的参数

% Beta 表征启发式因子重要程度的参数

% Rho 信息素蒸发系数

% Q 信息素增加强度系数

%

% 输出参数列表

% ROUTES 每一代的每一只蚂蚁的爬行路线

% PL 每一代的每一只蚂蚁的爬行路线长度

% Tau 输出动态修正过的信息素

%% --------------------变量初始化----------------------------------

%load

D=G2D(G);

N=size(D,1);%N表示问题的规模(象素个数)

MM=size(G,1);

a=1;%小方格象素的边长

Ex=a*(mod(E,MM)-0.5);%终止点横坐标

if Ex==-0.5

Ex=MM-0.5;

end

Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标

Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数

%下面构造启发式信息矩阵

for i=1:N

if ix==-0.5

ix=MM-0.5;

end

iy=a*(MM+0.5-ceil(i/MM));

if i~=E

Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;

else

Eta(1,i)=100;

end

end

ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线

PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度

%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K

disp(k);

for m=1:M

%% 第一步:状态初始化

W=S;%当前节点初始化为起始点

Path=S;%爬行路线初始化

PLkm=0;%爬行路线长度初始化

TABUkm=ones(1,N);%禁忌表初始化

TABUkm(S)=0;%已经在初始点了,因此要排除

DD=D;%邻接矩阵初始化

%% 第二步:下一步可以前往的节点

DW=DD(W,:);

DW1=find(DW

for j=1:length(DW1)

if TABUkm(DW1(j))==0

DW(j)=inf;

end

end

LJD=find(DW

Len_LJD=length(LJD);%可选节点的个数

%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同

while W~=E&&Len_LJD>=1

%% 第三步:转轮赌法选择下一步怎么走

PP=zeros(1,Len_LJD);

for i=1:Len_LJD

PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);

end

PP=PP/(sum(PP));%建立概率分布

Pcum=cumsum(PP);

Select=find(Pcum>=rand);

%% 第四步:状态更新和记录

Path=[Path,to_visit];%路径增加

PLkm=PLkm+DD(W,to_visit);%路径长度增加

W=to_visit;%蚂蚁移到下一个节点

for kk=1:N

遗传算法在图像处理中的应用

遗传算法在图像处理中的应用 束道胜 P201002117 1引言 遗传算法( genetic algorithm, GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求, GA 在这些图像处理中的优化计算方面找到了用武之地,目前已在图像分割、图像恢复、图像重建、图像检索和图像匹配等方面得到了广泛的应用。 2 遗传算法的原理、基本性质和改进 GA把问题的解表示成染色体(也称串) , GA的求解步骤如下: (1) 编码定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。 (2) 初始化种群在一定的限制条件下初始化种群,该种群是解空间的一个子空间。 (3) 设计适应度函数将种群中的每个染色体解码成适于计算机适应度函数的 形式,计算其数值。 (4) 选择根据适应度大小选择优秀个体繁殖下一代,适应度越高,则选择概率越大。 (5) 交叉随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。 (6) 变异对某个串中的基因按突变概率进行翻转。 (7) 从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。 步骤1、2和3是实际应用中的关键,步骤4~步骤6进行3种基本基因操作,选择实现

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法在图像处理中应用

课程:新技术讲座 题目:遗传算法在图像处理中的应用XX: 学号:

目录 摘要2 1.引言3 2.遗传算法的基本原理和基本性质4 3.遗传算法在图像处理中的应用6 3.1在图像增强中的应用6 3.2在图像恢复中的应用7 3.3在图像分割中的应用8 3.4在图像压缩中的应用10 3.5在图像匹配中的应用11 4.遗传算法在图像处理中的问题及发展方向12 参考文献12

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism,random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving plex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in puter science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

遗传算法在图像处理中的应用

. . 课程:新技术讲座 题目:遗传算法在图像处理中的应用姓名: 学号:

目录 摘要 (2) 1.引言 (3) 2.遗传算法的基本原理和基本性质 (3) 3.遗传算法在图像处理中的应用 (5) 3.1在图像增强中的应用 (5) 3.2在图像恢复中的应用 (6) 3.3在图像分割中的应用 (7) 3.4在图像压缩中的应用 (8) 3.5在图像匹配中的应用 (9) 4.遗传算法在图像处理中的问题及发展方向 (10) 参考文献 (10)

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end. keyword :Genetic Algorithm,Digital image processing

论文-遗传算法的基本步骤

遗传算法 遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。 比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解: 下续(表格) 下续……

即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。 遗传算法的具体的步骤如下:

1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。 2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。 3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率( P)挑选的每两个父代 c 通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。 4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。

遗传算法的流程图

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法心得

最近在看遗传算法,查了很多资料,所以做了如下一些总结,也希望对后面研究的人有些帮助.因为初学GA,文中自己的见解,不一定全对,感兴趣的可以一起探讨. I简介 基本概念 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。 它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 GA的组成: (1)编码(产生初始种群) (2)适应度函数 (3)遗传算子(选择、交叉、变异) (4)运行参数 编码 基因在一定能够意义上包含了它所代表的问题的解。基因的编码方式有很多,这也取决于要解决的问题本身。常见的编码方式有: (1)二进制编码,基因用0或1表示(常用于解决01背包问题) 如:基因A:00100011010 (代表一个个体的染色体) (2)互换编码(用于解决排序问题,如旅行商问题和调度问题) 如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。 (3)树形编码(用于遗传规划中的演化编程或者表示)

如,问题:给定了很多组输入和输出。请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。 编码方法:基因就是树形结构中的一些函数。 (4)值编码(二进制编码不好用时,解决复杂的数值问题) 在值编码中,每个基因就是一串取值。这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。 适应度函数 遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。 如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。 遗传算子——选择 遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。 SGA(基本遗传算法)中采用轮盘赌选择方法。 轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为: 遗传算子——交叉 所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算在GA中起关键作用,是产生新个体的主要方法。

第五章-遗传算法工具箱函数

第五章遗传算法工具箱函数 本章介绍英国设菲尔德大学开发的遗传算法工具箱函数。 由于MATLAB高级语言的通用性,对问题用M文件编码,与此配对的是MA TLAB先进的数据分析、可视化工具、特殊目的的应用领域工具箱和展现给使用者具有研究遗传算法可能性的一致环境。MATLAB遗传算法工具箱为遗传算法从业者和第一次实验遗传算法的人提供了广泛多样的有用函数。 遗传算法工具箱使用MA TLAB矩阵函数为实现广泛领域的遗传算法建立一套通用工具,这个遗传算法工具是用M文件写成的,是命令行形式的函数,能完成遗传算法大部分重要功能的程序的集合。用户可通过这些命令行函数,根据实际分析的需要,编写出功能强大的MATLAB程序。 5.1 工具箱结构 本节给出GA工具箱的主要程序。表5.1为遗传算法工具箱中的各种函数分类表。 表5.1 遗传算法工具箱中函数分类表

5.1.1 种群表示和初始化 种群表示和初始化函数有:crtbase,crtbp,crtrp。 GA工具箱支持二进制、整数和浮点数的基因表示。二进制和整数种群可以使用工具箱中的crtbp建立二进制种群。crtbase是附加的功能,它提供向量描述整数表示。种群的实值可用crtrp进行初始化。在二进制代码和实值之间的变换可使用函数bs2rv,它支持格雷码和对数编码。 5.1.2 适应度计算 适应度函数有:ranking,scaling。 适应度函数用于转换目标函数值,给每一个个体一个非负的价值数。这个工具箱支持Goldberg的偏移法(offsetting)和比率法以及贝克的线性评估算法。另外,ranking函数支持非线性评估。 5.1.3 选择函数 选择函数有:reins,rws,select,sus。 这些函数根据个体的适应度大小在已知种群中选择一定数量的个体,对它的索引返回一个列向量。现在最合适的是轮盘赌选择(即rws函数)和随机遍历抽样(即sus函数)。高级入口函数select为选择程序,特别为多种群的使用提供了一个方便的接口界面。在这种情况下,代沟是必须的,这就是整个种群在每一代中没有被完全复制,reins能使用均匀的随机数或基于适应度的重新插入。 5.1.4 交叉算子 交叉算子函数有:recdis,recint,reclin,recmut,recombin,xovdp,xovdprs,xovmp,xovsh,xovshrs,xovsp,xovsprs。 交叉是通过给定的概率重组一对个体产生后代。单点交叉、两点交叉和洗牌交叉是由xovsp、xovdp、xovsh函数分别完成的。缩小代理交叉函数分别是:xovdprs、xovshrs和xovsprs。通用的多点交叉函数是xovmp,它提供均匀交换的支持。为支持染色体实值表示,离散的、中间的和线性重组分别由函数recdis、recint、reclin完成。函数recmut提供具有突变特征的线性重组。函数recombin是一高级入口函数,对所有交叉操作提供多子群支持入口。 5.1.5 变异算子 变异算子函数有:mut,mutate,mutbga。

遗传算法与优化问题.

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关

遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体; 第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

遗传算法基本理论与方法

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。 关键词:遗传算法;遗传算法的改进 1.标准遗传算法 基本遗传算法包括选择、交叉和变异这些基本遗传算子。其数学模型可表示为: sag=(c,e,p0,n,φ,г,ψ,t) 其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件; 2 遗传算法基本方法及其改进 2.1编码方式 编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。 二进制编码 二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。二进制编码方法应用于遗传算法中有如下优点: 1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释; 2)算法可处理的模式多,增强了全局搜索能力; 3)便于编码、解码操作; 4)符合最小字符集编码原则; 5)并行处理能力较强。 二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。 2.2初始种群的设定 基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。 2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。 2.3选择算子的分析 选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。常用的遗传算子: (1)轮盘赌选择机制 轮盘赌选择也称适应度比例选择,是遗传算法中最基本的选择机制,每个个体被选择进入下一代的概率为这个个体的适应度值占全部个体适应度值之和的比例。但是轮盘赌选择机制选择误差较大,不是所有高适应度值的个体都能被选中,适应度值较低但具有优良基因模式的个体被选择的概率也很低,这样就会导致早熟现象的产生。 (2)最优保存选择机制 最优保存选择机制的基本思想是直接把群体中适应度最高的个体复制到下一代,而不进行配对交叉等遗传操作。具体步骤如下: 1)找出当前群体中适应度值最高和最低的个体的集合;

遗传算法基础知识

遗传算法(GENETIC ALGORITHM,GA) 一、遗传算法的特点: 1、遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性。 2、遗传算法只需要利用目标的取值信息,而无需梯度等高价值信息,因而适用于任何大规模、高度非线性的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性。 3、遗传算法择优机制是一种软选择,加上其良好的并行性,使它具有良好的全局优化和稳健性。 4、遗传算法操作的可行解是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性和简单性。 二、遗传算法的发展与现状 遗传算法的产生归功于美国的Michigan大学的Holland在20世纪60年代末、70年代初的开创性,其本意是在人工适应系统中设计的一种基于自然演化原理搜索机制。大约在同一时代,Foegl和Rechenberg及Schwefel,引入了另两种基于自然演化原理的算法,演化程序(evolutionary programming)和演化策略(evolution strategies).这三种算法构成了目前演化计算(evolutionary computation)领域的三大分支,它们从不同层次、不同角度模拟自然演化原理,以达到求解问题的目的。Holland不仅设计了遗传算法的模拟与操作原理,更重要的是他运用统计策略理论对遗传算法的搜索机理进行了理论分析,

建立了著名的Schema定理和隐含并行(implicit parallelism)原理,为遗传算法奠定了基础。遗传算法应用于函数优化始于De Jone的在线(one-line)和离线(off-line)指标仍是目前衡量遗传算法性能的主要手段。 1、遗传算法在神经网络、模糊系统和机器学习中的应用 神经网络的学习包含两个优化过程,分别是网络连接权重的优化和网络拓扑结构的优化。优化连接权重最著名的方法是Rumelhart提出的基于梯度下降法的反向传播法(backpropagation,BP)。BP算法的最大弱点是局部极小问题和无法学习网络拓扑结构。作为一种通用性和全局性良好的优化技术,遗传算法用于神经网络的训练就是很自然的事情。遗传算法用于神经网络的学习可分为三个不同的层次:连接权重的学习规则的学习。目前遗传算法已经广泛用于前向网络(feedward networks)、径向基网络(radial basis function networks)、Kohonen特征映射及Recurrent网络等各种人工神经网络的训练与设计中。演化神经网络(evolutionary artificial neural networks)作为一种一般的自适应学习模型加以研究。 被Zedeh 称作软计算(soft computing)的两大组成部分——遗传算法与模糊系统的相互融合也是近年人们关注的话题。模糊系统是对人类处理模糊性概念极其推理机制的模拟。最初,在模糊系统设计中,推理方法的选取、隶属函数形状及参数的选取、相关权重的确定以及规则的确定,均是由专家根据实际经验经验指定的。模糊神经网络(fuzzy neural networks).遗传算法已成功应用于隶属函数形状与参

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

遗传算法 (2)

用遗传算法优化BP神经网络的Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premn mx(XX); YY=premn mx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-');

遗传算法的基本原理

遗传算法的基本原理 遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。 下面就是遗传算法思想: (1) 初始化群体; (2) 计算群体上每个个体的适应度值; (3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体; (4) 按概率PX进行交叉操作; (5) 按概率PM进行突变操作; (6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。 (7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。 程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。 根据遗传算法思想可以画出如右图所示的简单遗传算法框图: 图 3.22 简单遗传算法框图 遗传算法的选择算子 选择即从当前群体中选择适应值高的个体以生成交配池的过程. 遗传算法中最常用的选择方式是轮盘赌(Roulette Wheel)选择方式, 也称比例选择或复制. 在该方法中, 各个个体被选择的概率和其适应度值成比例. 设群体规模大小为N, 个体i 的适应度值为Fi , 则这个个体

遗传算法在数字图像处理中的应用

遗传算法在数字图像中的应用 摘要:遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。本文将在系统介绍遗传算法的基本理论基础上,重点综述其在数字图像处理领域的主要应用,探讨目前遗传算法在图像处理领域中存在的问题及其在今后的发展方向。 关键词:遗传算法,数字图像处理 Abstract:Genetic algorithm is a random search and optimization method based on natural selection and genetic mechanism of the living beings。This paper discusses and surveys the status and advances in Genetic algorithm research,the basic algorithms,theory,implementation techniques of GA are outlined first ,then many applications of Genetic algorithm in image processing field are reviewed,at lastseveral key problems in this field are discussed as well as their development in the future。 Keywords:genetic algorithm,digital image processing

1 引言:遗传算法(genetic algorithm,GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求,GA在这些图像处理中的优化计算方面找到了用武之地,目前已在图像分割、图像恢复、图像重建、图像检索和图像匹配等方面得到了广泛的应用。 本文将从遗传算法的理论和技术两方面描述遗传算法的主要特点、基本原理以及各种改进算法,介绍了遗传算法在数字图像处理领域中的应用。 2 遗传算法的基本原理 遗传算法是建立在自然选择和群体遗传学机理基础上的随机迭代和进化,具有广泛适用性的搜索方法,具有很强的全局优化搜索能力。它模拟了自然选择和自然遗传过程中发生的繁殖、交配和变异现象,根据适者生存、优胜劣汰的自然法则,利用遗传算子(选择、交叉和变异)逐代产生优选个体(即候选解),最终搜索到较优的个体。经典遗传算法的计算流程如图1 所示。从图中可以看出,遗传算法是一种种群型操作,该操作以种群中的所有个体为对象。具体求解步骤如下: 1) 参数编码:遗传算法一般不直接处理问题空间的参数而是将待优化的参数集进行 编码,一般总是用二进制将参数集编码成由0 或 1 组成的有限长度的字符串。 2) 初始种群的生成:随机地产生n 个个体组成一个群体,该群体代表一些可能解的集合。GA 的任务是从这些群体出发,模拟进化过程进行择优汰劣,最后得出优秀的群体和 个体,满足优化的要求。 3) 适应度函数的设计:遗传算法在运行中基本上不需要外部信息,只需依据适应

相关文档
最新文档