常用电机驱动电路及原理

常用电机驱动电路及原理
常用电机驱动电路及原理

由于本人主要是搞软件的,所以硬件方面不是很了解,但是为了更好地相互学习,仅此整理出一份总结出来,有什么错误的地方还请大家积极的指出!供大家一起参考研究!

我们做的智能小车,要想出色的完成一场比赛,需要出色的控制策略!就整个智能车这个系统而言,我们的被控对象无外乎舵机和电机两个!通过对舵机的控制能够让我们的小车实时的纠正小车在赛道上的位置,完成转向!当然那些和我一样做平衡组的同学不必考虑舵机的问题!而电机是小车完成比赛的动力保障,同时平衡组的同学也需要通过对两路电机的差速控制,来控制小车的方向!所以选一个好的电机驱动电路非常必要!

常用的电机驱动有两种方式:一、采用集成电机驱动芯片;二、采用MOSFET和专用栅极驱动芯片自己搭。集成主要是飞思卡尔自己生产的33886芯片,还有就是L298芯片,其中298是个很好的芯片,其内部可以看成两个H桥,可以同时驱动两路电机,而且它也是我们驱动步进电机的一个良选!由于他们的驱动电流较小(33886最大5A持续工作,298最大2A持续工作),对于我们智能车来说不足以满足,但是电子设计大赛的时候可能会用到!所以想要详细了解他们的同学可以去查找他们的数据手册!在此只是提供他们的电路图,不作详细介绍!

33886运用电路图

下面着重介绍我们智能车可能使用的驱动电路。普遍使用的是英飞凌公司的半桥驱动芯片BTS7960搭成全桥驱动。其驱动电流约43A,而其升级产品BTS7970驱动电流能够达到70几安培!而且也有其可替代产品BTN79 70,它的驱动电流最大也能达七十几安!其内部结构基本相同如下:

每片芯片的内部有两个MOS管,当IN输入高电平时上边的MOS管导通,常称为高边MOS管,当IN输入低电平时,下边的MOS管导通,常称为低边MOS 管;当INH为高电平时使能整个芯片,芯片工作;当INH为低电平时,芯片不工作。其典型运用电路图如下图所示:

EN1和EN2一般使用时我们直接接高电平,使整个电路始终处于工作状态!

下面就是怎么样用该电路使得电机正反转?假如当PWM1端输入PWM波,PWM2端置0,电机正转;那么当PWM1端为0,PWM2端输入PWM波时电机将反转!使用此方法需要两路PWM信号来控制一个电机,光电平衡组的同学更是需要4路!有点浪费!其实可以只用一路PWM接PWM1端,另外PWM2端可以接在IO端口上,用于控制方向!假如PWM2=0;PWM1输入信号时电机正转,那么当PWM2=1是,PWM1输入信号电机反转(必须注意:此时PWM信号输入的是其对应的负占空比)!

对于以上的电路,今年的电磁组A车和光电组D车来说,其驱动电流已经能够满足,但是对于今年的摄像头组的B车模来说,可能有点吃力,B车的电机功率很大,虽然正常正转时的电流不是很大,但是当我们加上我们的速度控制策略的时候,很多时候车子是在不停的加减速,这就需要电机不停的正反转,此时的电流很大,还用以上的驱动电路,芯片会很烫!!这个时候就需要我们自己用MOSFET和栅极驱动芯片自己设计H桥!

首先以学校提供给大家实验的驱动板上的电路图来简单介绍基本原理:

首先需要我们了解的是TC4427是一个1.5A双通道高速的MOSFET驱动器,顾名思义,其内部有两路同相驱动电路A和B。

上面的电路中4905是P沟道,3205是N沟道,大家都学过数电模电,即使没有学过他们的导通条件也都应该了解!现假设PWM2=0,即Q2导通,Q4不导通!

那么当PWM1=1时,Q1不导通,Q3导通,电流的方向为Q2—电机—Q3,电机正转,当PWM1=0时,Q1导通,Q3不导通,即上桥臂导通,电机处于能耗制动状态!

同理不难得出:当PWM1=0是,PWM2=1时,电机反转;PWM2=0是下桥臂导通,电机处于能耗制动状态!上面电路中的电阻电容R1和C1并联接地,R2和C2并联接地,主要作用是构成阻容滤波,滤除尖脉冲!有时为了进一步的扩大驱动电流,还常常两两并联,用两片3205并联成一片,两片4905并联成一片!组成的H 桥的驱动电路电流将更大!

其实TC4427只是两路同相的驱动器,买过该芯片的同学可能知道,虽说不贵,但是也需要9块钱左右,而且用过该芯片的同学也可能有体会,该芯片不是太好,有时会出现一个方向可以转,另一个方向不可以转的情况,我们是不是可以用其他既廉价又有同样效果的芯片代替呢?其实我们可以想到的是我们常用的74LS00,没错,就是与非门,用它接成两路同相的驱动器,该电路同样好用,我所知道的队伍中有人在用!

通过对上面电路的了解,大家应该大致了解了H 桥的基本工作原理,有没有更好地驱动电路了呢?答案是肯定的!以下是直流电动机的机械特性表达式:

n 是电机的转速,N U 是电机的两端的电压,e C 、T C 、N φ对于我们来说可以看成一

个定值,em T 是负载转矩,车做好之后该值基本确定不变,剩下一个重要的参数a R 电机电枢回路的阻值,电机本身的内阻很小,如果外部引入的电阻过大,此时直流电动机转速降落较大,驱动电路效率较低,电机性能不能充分发挥。为了提高电机的转速我们应该尽量减小电机电枢回路绕组的阻值,我们知道:N 沟道的MOS FET 具有极低的导通电阻,IRF3205导通电阻在8m ?左右,而IRF4905几乎是其两倍,那么是不是可以考虑全部使用N 沟道的3205来搭我们的驱动电路呢,答案也是肯定的,只不过需要换一片栅极驱动芯片就行!

在这里给大家介绍的是IR 公司的IR2104,因为IR 公司号称功率半导体领袖,当然2104也相对比较便宜!IR2104可以驱动可以驱动高端和低端两个N 沟道

MOSFET,能提供较大的栅极驱动电流,并具有硬件死区、硬件防同臂导通等功能。使用两片IR2104型半桥驱动芯片可以组成完整的直流电机H桥式驱动电路。但是需要12V驱动!

IR2104基本应用电路:

SD信号时一个使能信号,跟前面的BTS的INH信号输入端类似,高电平有效,芯片工作,IN为高电平时HO为高,LO为低,IN为低电平时,HO为低,LO为高电平!

关于其中关键参数的选择:

这个驱动设计单从信号逻辑上分析比较容易理解,但要深入的理解和更好的应用,就需要对电路做较深入的分析,对一些外围元件的参数确定做理论分析计算。图中IC是一个高压驱动芯片,驱动1个半桥MOSFET。Vb,Vs为高压端供电;Ho为高压端驱动输出;COM为低压端驱动供电,Lo为低压端驱动输出;Vss为数字电路供电.此半桥电路的上下桥臂是交替导通的,每当下桥臂开通,上桥臂关断时Vs脚的电位为

下桥臂功率管Q2的饱和导通压降,基本上接近地电位,此时Vcc通过自举二极管D对自举电容C2充电使其接近Vcc电压。当Q2关断时Vs端的电压就会升高,由于电容两端的电压不能突变,因此Vb端的电平接近于Vs和Vcc端电压之和,而Vb和Vs之间的电压还是接近Vcc电压。当Q2开通时,C2作为一个浮动的电压源驱动Q2;而

C2在Q2开通其间损失的电荷在下一个周期又会得到补充,这种自举供电方式就是利用Vs端的电平在高低电平之间不停地摆动来实现的.由于自举电路无需浮动电源,因此是最便宜的,如图所示自举电路给一只电容器充电,电容器上的电压基于高端输出晶体管源极电压上下浮动。图中的D和C2是IR2104在脉宽调制(PWM)应用时应严格挑选和设计的元器件,根据一定的规则进行计算分析;并在电

路实验时进行调整,使电路工作处于最佳状态,其中D是一个重要的自举器件,应能阻断直流干线上的高压,其承受的电流是栅极电荷与开关频率之积,

为了减少电荷损失,应选择反向漏电流小的快恢复二极管,芯片内高压部分的供电都来自图中自举电容C2上的电荷;为保证高压部分电路有足够的能量供给,应适当选取C2的大小。

供参考的电路,其中的参数参考北科大技术报告:

其工作的原理在此不在赘述仅提供其工作的真值表,如下:

状态

输入输出

IN1SD1IN2SD2HO1LO1HO2LO2

正转H H L H H L L H

反转L H H H L H H L 上桥臂制动H H H H H L H L

下桥臂制动L H L H L H L H 关闭X L X L L L L L

IR2104比较便宜,有钱的同学可以再去研究研究TD340,基本原理都是大同小异!

最后希望大家在第八届飞思卡尔智能车比赛中取得好的成绩!

如有不足,望安工大智能车团队补充!

愉快做车!

祝你成功!

337实验室团队制作

2013.01.24

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

步进电机的简单电路控制

课程设计说明书 课程设计名称:数字电路课程设计 课程设计题目:步进电机简单的控制电路 学院名称:南昌航空大学信息工程学院 专业:班级: 学号:姓名: 评分:教师: 2013 年 9 月 9 日 数字电路课程设计任务书 20 13-20 14 学年第 1 学期第 2 周- 4 周

注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

步进电机是一种原理为利用电子电路的电脉冲信号转变为角位移或线位移的感应电机。通过简单的数字电路来控制它的转速并可以利用数码管来计算其转动的圈数,便可以实现电机的正反向转动,并且在数码管上精确的显示出它转动的圈数,从而广泛应用于实际生活当中。其中涉及到计算机,数字电路,电机,机械,完成了简单的自动化控制流程,将所学知识应用于工程中,增加实践动手能力。 关键词:分频、时序控制、脉冲计数

前言 (1) 第一章设计内容及要求 (1) 第二章系统的组成及工作原理 (2) 第三章单元电路设计 (2) 3.1多谐振荡器 (2) 3.2 步进电机信号控制电路 (3) 3.3转速的测量及显示电路 (4) 第四章调试 (5) 4.1电路排板及制作 (5) 4.2电路的调试 (5) 第五章总结 (6) 附录1:设计原理图 (7) 附录2:PCB电路图 (8) 附录3: 元件清单 (9)

前言 步进电机最早出现于上世纪,源于资本主义的造船工业,是一种可以自由转动的电磁铁,其工作原理和如今的反应式电机差不多,是依靠磁导来产生电磁矩,从而实现转动。 到了80年代之后,微型计算机逐步的应用于工业与生活中,使得步进电机的控制更加的灵活多样,最主要的是利用分立元件或者小型的集成电路来控制,但是对元件的需求量很大,调试也很复杂,出现问题需要花大量的精力来调试,因此,通过计算机软件来控制步进电机是必然的趋势,以提高工作效率。 现在的步进电机主要是由数字电路组成,也是利用集成电路来控制电路,但是大大的提高了其精度,更好的满足工业发展的需要。目前用到最多的是混合式步进电机,并具有很好的发展前景。 步进电机按照工作原理可分为永磁式、磁阻式和永磁感应子式三种。 今后步进电机将会有以下四个方面的发展,为减小其占用的空间从而会往小型方向发展,以更加的适用于工业制造当中;为增加力矩,从而会将圆形改为方形,以提高其工作效率;为体现其优越的控制性能,从而会偏向于一体化设计,以实现电子自动化控制,更加灵活方便;为降低其成本,增加其性能,从而会向三相和五相的方向发展,以充分实现其优越性能。 步进电机以其显着的特点,在电子数字化时代将发挥重大作用,将广泛应用于数控车床、机器人、航空工业和电子领域中,可完成工作量大,任务复杂、精度高的制造业以及代替人类完成不利于身体健康的工业中,为生活带来更多的便利。 第一章设计内容及要求 基本要求:1、利用proteus软件设计步进电机的工作原理图,并进行仿真。 2、调试及实现。 (1)实现步进电机根据输入的脉冲旋转的相应圈数。 (2)可以实现复位,正反转控制,由4个LED代替4个线圈。 (3)实现步进电机的加速、减速功能。

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

_单片机控制步进电机驱动原理___驱动图

单片机控制步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.AT89C2051 步进电机驱动器系统电路原理如图3:

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

步进电机驱动电路设计

https://www.360docs.net/doc/654110092.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器)L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

有刷直流马达驱动电路

有刷直流马达驱动电路MX612 有刷直流马达驱动电路 MX612 概述 该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。该电路具备较宽的工作电压范围(从2V到10V),最大持续输出电流达到1.2A,最大峰值输出电流达到2.5A。 该驱动电路内置过热保护电路。通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。 特性 ●低待机电流(小于0.1uA); ●低静态工作电流; ●集成的H桥驱动电路; ●内置防共态导通电路; ●低导通内阻的功率MOSFET管; ●内置带迟滞效应的过热保护电路(TSD); ●抗静电等级:3KV (HBM)。 典型应用 ● 2-6节AA/AAA干电池供电的玩具马达驱动; ● 2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动; ● 1-2节锂电池供电的马达驱动

引脚排列 引脚定义 功能框图

注:D A JA T A表示电路工作的环境温度,θJA为封装的热阻。150℃表示电路的最高工作结温。 (2)、电路功耗的计算方法: P =I2*R 其中P为电路功耗,I为持续输出电流,R为电路的导通内阻。电路功耗P必须小于最大功耗P D (3)、人体模型,100pF电容通过1.5KΩ 电阻放电。 注:(1)、逻辑控制电源VCC与功率电源VDD内部完全独立,可分别供电。当逻辑控制电源VCC掉电之后,电路将进入待机模式。 (2)、持续输出电流测试条件为:电路贴装在PCB上测试,SOP8封装的测试PCB板尺寸为25mm*15mm。

电机驱动电路的设计

《电子线路CAD》课程论文题目:电机驱动电路的设计

1 电路功能和性能指标 此电路是用MCU发出的PWM波来控制电机的转速的电路,电路输入电压是7.2V。 2 原理图设计 2.1原理图元器件制作 元器件截图: 图1 这个是图中的BTN7971的原理图,是一款电机驱动半桥芯片。 制作步骤: 1.点击菜单栏的放置,然后点击弹出的窗口中的矩形,如下图: 图2 2.然后鼠标光标下就会出现一个黄色的矩形边框,自己就可以随意设置边框的大小,之后框图的大小可以拖动修改,如下图:

图3 3.框图定好后,点击下图的图标,可以进行画引脚: 图4 4.放引脚时可以按table键设置引脚属性: 图5 2.2 原理图设计 ①原理图设计过程: 首先简历里一个PCB工程项目,保存命名为BTN驱动,然后在这个工程下面

建立一个原理图文件和一个PCB文件,并将其保存并重命名为BTN在与工程相同的目录下面,然后开始绘制原理图了,将所有设置默认为初始状态不需要更改,然后开始画原理图了,将其模块化绘图比较方便好看。 ②下面就是绘制成功后的原理图: 图6 ③下图为massage框图: 图7 其操作步骤为: 1.点击system中的message, 2.然后点击下图中高亮部分 图8

3.最后打开message就可以看见编译信息了 4.之后根据错误提示进行查找修改,直至没有错误和警告,如下图: 图9 ④该项目的元器件库截图如下: 图10 图11

生成原理图库的步骤为: 1.点击界面右下角的design compiler,然后点击如图高亮部分: 图12 2.点击界面上面的工具栏中的设计,然后点击高亮部分: 图13 3.最后可以查看刚才打开的navigater,如图:

步进电机控制电路

北京工业大学电子课程设计报告 (数电部分) 题目:步进电机

目录 一、设计题目------------------------------------------------------------------------------------------------3 二、设计任务和设计要求 1.设计题目------------------------------------------------------------------------------------------------3 2.设计技术指标及设计要求----------------------------------------------------------------------------3 三、电路设计------------------------------------------------------------------------------------------------4 1.脉冲发生电路-------------------------------------------------------------------------------------------4 2.环形脉冲分配电路-------------------------------------------------------------------------------------5 3.控制电路-------------------------------------------------------------------------------------------------6 4.驱动电路-----------------------------------------------------------------------------------------------10 5.步进电机-----------------------------------------------------------------------------------------------11 四、电路的组装和调试------------------------------------------------------------------------------------12 1.电路的组装----------------------------------------------------------------------------------------------12 2.电路的调试----------------------------------------------------------------------------------------------13 五、收获和体会---------------------------------------------------------------------------------------------14 六、附录------------------------------------------------------------------------------------------------------15 1.列表-------------------------------------------------------------------------------------------------------15 2.参考资料-------------------------------------------------------------------------------------------------15 3.部分芯片管脚图----------------------------------------------------------------------------------------16

直流无刷电机驱动原理

直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电 枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会 产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及 整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技 术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处 理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制 交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转 子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直 流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子 的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电 机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需 求转换输入电源频率。

步进电机驱动器的工作原理

步进电机驱动器的工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产 生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极 产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向 转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图

电机及电机驱动模块设计

电机及电机驱动模块设计 1.电机选择 通过对各种电机性能的初步查询和在单片机开发板上对于步进马达和PWM直流电机的实验,我们了解到:步进电机的优点是可以精确定位,但缺点是耗电量大,若采用电池供电,可能不能长时间工作,此外,采用步进电机需要两块驱动板,控制复杂。而直流电机的缺点是不能实现精确定位,但是可以通过调节PWM波实现调速,但在电源相同的条件下,速度较慢;优点是耗电小。由于设备有限,我们无法精确测量两种电机工作时的实际工作电流,上述比较出自文献[1]与产品参数的分析。结合我们的需求,最终决定选择普通直流电机。2.增加驱动、实现换向、实现调速 由于电机属于大功率的器件,而单片机的I/O口所提供的电流往往十分有限,所以必须外加驱动电路来增大驱动;由于我们小车中即将使用的直流电机没有电刷,且供电电源为单电源,所以需要设计一个电子开关以实现换向功能。通过对电机驱动原理的研究得知使用H 桥电路可以实现这两个功能。 从图中可以看出,在上面电路由于内部采用了三极管,三极管本身起到放大的作用,即增大了驱动电流;假设开关A、D接通,电机正向转动,而开关B、C接通时,直流电机将反向转动,从而实现了电机的正反控制。 依据这个原理,我们决定直接使用结构较为简单、价格便宜且可靠性高的电机驱动芯片来连接单片机与电机以减少电路搭建的麻烦和硬件设计的复杂性。电机驱动芯片L298N内部的组成其就是H桥驱动电路,其内部电路图如下:

各引脚功能以及性能参数再次不做赘述。因为小车中打算采用两个直流电机,而选择的L298的特点是工作电压高,输出电流大。因此决定设计单片机和电机独立供电,即控制电路和驱动电路双电源供电。优点是可以保证电源功率和电压大小满足需要,可提高系统的稳定性。缺点是电机驱动模块中独立电影的增加会使车体变重,可能影响小车的运行效果。 最后将L298的引脚正确连接到单片机PO口并拉上电阻,通过Keil对单片机编写程序让小车上的两个电机正反转即可实现小车前进。目前已经写出使两个电机正转的程序,等待测试。小车左右转向的程序设计还未完成。 结构框图

(完整word版)步进电机控制工作原理

步进电机控制工作原理 步进电机的名称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 步进电机简介: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 一,步进电机的种类 现在,在市场上所出现的步进电机有很多种类,依照性能及使用目的等有各自不同的区分使用。

直流电机H桥驱动原理和驱动电路选择L9110_L298N_LMD18200

在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机 即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使 用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM (脉冲宽度调制)调速。 2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防 止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或 光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 H桥驱动电路:H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。 要使电机M运转,必须使对角线上的一对三极管导通。例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。电机顺时针转动。当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。

相关文档
最新文档